

Introduction

- Motivation - Fault Model
- Measurement Setup
- Nearest Neighbor
- Algorithm Fault Detection
- Fault Tolerance
- Hybrid Positioning Algorithm
- Experimental Evaluation
- Evaluation - Results
- Conclusions
- Concluding Remarks

Fault Detection and Mitigation in WLAN RSS Fingerprint-based Positioning

Christos Laoudias, Michalis Michaelides and Christos Panayiotou

KIOS Research Center for Intelligent Systems and Networks Department of Electrical and Computer Engineering University of Cyprus, Nicosia, Cyprus

Outline

Introduction

- Motivation - Fault Model
- Measurement Setup
- Nearest Neighbor
- Algorithm Fault Detection
- Fault Tolerance
- Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

Conclusions

- Concluding Remarks

Introduction

Nearest Neighbor Algorithm

Hybrid Positioning Algorithm

Experimental Evaluation

Conclusions

Motivation of our work

Introduction

- Motivation - Fault Model
- Measurement Setup
- Nearest Neighbor

Algorithm

- Fault Detection
- Fault Tolerance
- Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- Concluding Remarks

Main focus of fingerprint positioning algorithms has been on reducing the positioning error which ranges between 2-10m depending on the

- underlying method (deterministic, probabilistic, etc)
- experimentation parameters (number of fingerprints collected, resolution of the reference locations, density of the APs)

Motivation of our work

Introduction

- Motivation - Fault Model
- Measurement Setup
- Nearest Neighbor

Algorithm

- Fault Detection - Fault Tolerance

Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- Concluding Remarks

Main focus of fingerprint positioning algorithms has been on reducing the positioning error which ranges between 2-10m depending on the

- underlying method (deterministic, probabilistic, etc)
- experimentation parameters (number of fingerprints collected, resolution of the reference locations, density of the APs)

Fault Tolerance

It is desirable to provide smooth performance degradation in the presence of faults, due to unpredicted failures or malicious attacks.

Motivation of our work

Introduction

- Motivation
- Fault Model
- Measurement Setup Nearest Neighbor
- Algorithm
- Fault Detection
- Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- Concluding Remarks

Main focus of fingerprint positioning algorithms has been on reducing the positioning error which ranges between 2-10m depending on the

- underlying method (deterministic, probabilistic, etc)
- experimentation parameters (number of fingerprints collected, resolution of the reference locations, density of the APs)

Fault Tolerance

It is desirable to provide smooth performance degradation in the presence of faults, due to unpredicted failures or malicious attacks.

Assumption

The RSS data collected in the offline phase is not corrupted and we focus on AP failures and non-cryptographic RSS attacks that may occur during positioning.

OC AP Failure model

Introduction

- Motivation
 Fault Model
- Manage Co.
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection
- Fault Tolerance

Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- Concluding Remarks

Effect

► APs detected in the offline phase are not available during positioning

Feasibility

- ► Unpredicted AP failures, e.g. power outage, WLAN system maintenance, AP firmware upgrade etc
- ► AP shut down temporarily or removed permanently (public WLAN systems)
- Adversary cuts off the power supply or severely jams the communication channel

Simulation

► Remove the RSS values of the faulty AP in the original test fingerprints

Measurement Setup

Introduction

- Motivation
- Fault Model
- Measurement Setup Nearest Neighbor

Algorithm - Fault Detection

- Fault Tolerance
- Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- Concluding Remarks

- ► Area 560m² at KIOS Research Center, Cyprus
- ► 73 WLAN APs (9 local, 64 neighboring)
- ► HP iPAQ hw6915 PDA

Training data

▶ 105 reference locations, 40 fingerprints per location (4200 in total)

Testing data

▶ 96 test locations, 20 fingerprints per location (1920 in total)

KOC Nearest Neighbor Algorithm

Introduction

- Motivation - Fault Model
- Measurement Setup

Nearest Neighbor

- Algorithm - Fault Detection
- Fault Tolerance

Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- Concluding Remarks

Location Estimation

$$\widehat{\ell}(s) = \arg\min_{\ell_i \in L} D_i, \quad D_i = \sqrt{\sum_{j=1}^n (\overline{r}_{ij} - s_j)^2}$$

Fault Detection

Introduction Motivation

- Fault Model
- Measurement Setup
- Nearest Neighbor
- Algorithm - Fault Detection
- Fault Tolerance
- Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- Concluding Remarks

Main Idea

- \triangleright Exploit the distances D_i that are already computed to decide whether fingerprint s is corrupt or not
- ▶ The value of a distance-based fault indicator will violate a certain 'fault-free' threshold

Fault Detection

- Introduction Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor

- Algorithm - Fault Detection
- Fault Tolerance
- Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- Concluding Remarks

Main Idea

- \triangleright Exploit the distances D_i that are already computed to decide whether fingerprint s is corrupt or not
- ▶ The value of a distance-based fault indicator will violate a certain 'fault-free' threshold

Proposed Fault Indicator

▶ Sum of distances to the K nearest neighbors $D_{sum}^{(K)}$

Fault Detection

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection
- Fault Tolerance

Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- Concluding Remarks

Main Idea

- \triangleright Exploit the distances D_i that are already computed to decide whether fingerprint s is corrupt or not
- ▶ The value of a distance-based fault indicator will violate a certain 'fault-free' threshold

Proposed Fault Indicator

▶ Sum of distances to the K nearest neighbors $D_{sum}^{(K)}$

Fault Detection Steps

- \blacktriangleright Select an appropriate threshold γ based on the distribution of the fault indicator $D_{sum}^{(K)}$ in the fault-free case
- ▶ Fault is detected during positioning if $D_{sum}^{(K)} > \gamma$ for the currently observed fingerprint

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection
- Fault Tolerance

Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- Concluding Remarks

 As the number of faulty APs is increased the CDF curve of D⁽²⁾_{sum} is shifted to the right

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection
- Fault Tolerance

Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- Concluding Remarks

 As the number of faulty APs is increased the CDF curve of D⁽²⁾_{sum} is shifted to the right

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- **Fault Detection**
- Fault Tolerance

Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- ► As the number of faulty APs is increased the CDF curve of $D_{sum}^{(2)}$ is shifted to the right
- \blacktriangleright $D_{sum}^{(2)} < 76 dBm$ for 95% of time, thus $\gamma = 76 dBm$ (5% false detections are acceptable)

Introduction

- Motivation
- Fault Model Measurement Setup
- Nearest Neighbor
- Algorithm - Fault Detection
- Fault Tolerance
- Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- As the number of faulty APs is increased the CDF curve of $D_{sum}^{(2)}$ is shifted to the right
- ► $D_{sum}^{(2)}$ < 76*dBm* for 95% of time, thus $\gamma = 76$ *dBm* (5% false detections are acceptable)
- ► This corresponds to the 88th, 53th, 15th, 7th, 1st percentile as faulty APs increase from 3 to 15

Introduction

- Motivation
- Fault Model Measurement Setup
- Nearest Neighbor
- Algorithm - Fault Detection
- Fault Tolerance
- Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- As the number of faulty APs is increased the CDF curve of $D_{sum}^{(2)}$ is shifted to the right
- ► $D_{sum}^{(2)}$ < 76*dBm* for 95% of time, thus $\gamma = 76$ *dBm* (5% false detections are acceptable)
- ▶ This corresponds to the 88th, 53th, 15th, 7th, 1st percentile as faulty APs increase from 3 to 15
- ▶ 12%, 47%, 85%, 93%, 99% correct detections are expected

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection - Fault Tolerance

Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- Concluding Remarks

► Correct Detections Rate R_{cd}

 $R_{cd} - R_{fd}$ Trade off

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection
- Fault Tolerance

Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- ► Correct Detections Rate R_{cd}
- ightharpoonup False Detections Rate R_{fd}

 $R_{cd} - R_{fd}$ Trade off

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection
- Fault Tolerance

Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- ► Correct Detections Rate R_{cd}
- ► False Detections Rate R_{fd}
- $ightharpoonup \alpha = 0\%$, $\gamma \downarrow \Rightarrow R_{fd} \uparrow$

 $R_{cd} - R_{fd}$ Trade off

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection
- Fault Tolerance
- Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- ► Correct Detections Rate R_{cd}
- ▶ False Detections Rate R_{fd}
- $ightharpoonup \alpha = 0\%, \ \gamma \downarrow \Rightarrow R_{fd} \uparrow$
- ightharpoonup $\alpha \leq 10\%$, $R_{cd} < 0.6 \ \forall \gamma$

 $R_{cd} - R_{fd}$ Trade off

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection
- Fault Tolerance

Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- ► Correct Detections Rate R_{cd}
- ▶ False Detections Rate R_{fd}
- $ightharpoonup \alpha = 0\%, \ \gamma \downarrow \Rightarrow R_{fd} \uparrow$
- $ightharpoonup lpha \le 10\%$, $R_{cd} < 0.6 \ \forall \gamma$
- $ightharpoonup \alpha > 0\%$, $\gamma \uparrow \Rightarrow R_{fd} \downarrow$

 $R_{cd} - R_{fd}$ Trade off

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection
- Fault Tolerance
- Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- ► Correct Detections Rate R_{cd}
- ► False Detections Rate R_{fd}

$$ightharpoonup \alpha = 0\%, \ \gamma \downarrow \Rightarrow R_{fd} \uparrow$$

- ightharpoonup $\alpha \leq$ 10%, $R_{cd} <$ 0.6 $\forall \gamma$
- $ightharpoonup \alpha > 0\%$, $\gamma \uparrow \Rightarrow R_{fd} \downarrow$
- $ightharpoonup \alpha > 0\%, \ \gamma \uparrow \Rightarrow R_{cd} \downarrow$

$$R_{cd} - R_{fd}$$
 Trade off

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection
- Fault Tolerance
- Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- ► Correct Detections Rate R_{cd}
- ► False Detections Rate R_{fd}

$$ightharpoonup \alpha = 0\%, \ \gamma \downarrow \Rightarrow R_{fd} \uparrow$$

- $ightharpoonup lpha \leq 10\%$, $R_{cd} < 0.6 \ \forall \gamma$
- $ightharpoonup \alpha > 0\%, \ \gamma \uparrow \Rightarrow R_{fd} \downarrow$
- $ightharpoonup \alpha > 0\%, \ \gamma \uparrow \Rightarrow R_{cd} \downarrow$
- $ightharpoonup \gamma = 76dBm$ is a good option

 $R_{cd} - R_{fd}$ Trade off

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection
- Fault Tolerance

Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- ► Correct Detections Rate R_{cd}
- ► False Detections Rate R_{fd}
- $ightharpoonup \alpha = 0\%, \ \gamma \downarrow \Rightarrow R_{fd} \uparrow$
- ightharpoonup $\alpha \leq 10\%$, $R_{cd} < 0.6 \ orall \gamma$
- $ightharpoonup \alpha > 0\%$, $\gamma \uparrow \Rightarrow R_{fd} \downarrow$
- $ightharpoonup \alpha > 0\%, \ \gamma \uparrow \Rightarrow R_{cd} \downarrow$
- $\gamma = 76dBm$ is a good option
 - ▶ High R_{cd} when $\alpha \uparrow$

 $R_{cd} - R_{fd}$ Trade off

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection
- Fault Tolerance
- Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- ► Correct Detections Rate R_{cd}
- ► False Detections Rate R_{fd}
- $ightharpoonup \alpha = 0\%$, $\gamma \downarrow \Rightarrow R_{fd} \uparrow$
- $\alpha \leq$ 10%, $R_{cd} <$ 0.6 $\forall \gamma$
- $ightharpoonup \alpha > 0\%$, $\gamma \uparrow \Rightarrow R_{fd} \downarrow$
- $ightharpoonup \alpha > 0\%, \ \gamma \uparrow \Rightarrow R_{cd} \downarrow$
- $\gamma = 76dBm$ is a good option
 - ▶ High R_{cd} when $\alpha \uparrow$
 - ▶ Low R_{fd} when $\alpha \downarrow$

 $R_{cd} - R_{fd}$ Trade off

Fault Tolerance

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor

- Algorithm Fault Detection
- Fault Tolerance

Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- Concluding Remarks

$$\widehat{\ell}(s) = \arg\min_{\ell_i \in L} D_i, \quad D_i = \sqrt{\sum_{j=1}^n (\bar{r}_{ij} - s_j)^2}$$
 (1)

Distance Metric

$$D_i = \sqrt{\sum_{j \in R_i \cap S} d_{ij} + \sum_{j \in R_i \setminus S} d_{ij} + \sum_{j \in S \setminus R_i} d_{ij}}, \quad d_{ij} = (\bar{r}_{ij} - s_j)^2$$
 (2)

 R_i and S are the subsets of APs that are present in \overline{r}_i and s.

Fault Tolerance

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection - Fault Tolerance
- Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- Concluding Remarks

$$\widehat{\ell}(s) = \arg\min_{\ell_i \in L} D_i, \quad D_i = \sqrt{\sum_{j=1}^n (\bar{r}_{ij} - s_j)^2}$$
 (1)

Distance Metric

$$D_{i} = \sqrt{\sum_{j \in R_{i} \cap S} d_{ij} + \sum_{j \in R_{i} \setminus S} d_{ij} + \sum_{j \in S \setminus R_{i}} d_{ij}}, \quad d_{ij} = (\overline{r}_{ij} - s_{j})^{2}$$
 (2)

 R_i and S are the subsets of APs that are present in \overline{r}_i and s.

▶ Effective in the fault-free case because all APs not found in common between \overline{r}_i and s are penalized

Fault Tolerance

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection
- Fault Tolerance

Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- Concluding Remarks

$$\widehat{\ell}(s) = \arg\min_{\ell_i \in L} D_i, \quad D_i = \sqrt{\sum_{j=1}^n (\bar{r}_{ij} - s_j)^2}$$
 (1)

Distance Metric

$$D_{i} = \sqrt{\sum_{j \in R_{i} \cap S} d_{ij} + \sum_{j \in R_{i} \setminus S} d_{ij} + \sum_{j \in S \setminus R_{i}} d_{ij}}, \quad d_{ij} = (\overline{r}_{ij} - s_{j})^{2}$$
 (2)

 R_i and S are the subsets of APs that are present in \overline{r}_i and s.

- ► Effective in the fault-free case because all APs not found in common between \(\overline{r}_i\) and s are penalized
- ► What happens in case of faults?

K\rightarrowloc Fault Tolerance

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor

- Algorithm - Fault Detection
- Fault Tolerance

Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- Concluding Remarks

$\widehat{\ell}(s) = \arg\min_{\ell_i \in L} D_i, \quad D_i = \sqrt{\sum_{i=1}^n (\overline{r}_{ij} - s_j)^2}$ (1)

Distance Metric

$$D_{i} = \sqrt{\sum_{j \in R_{i} \cap S} d_{ij} + \sum_{j \in R_{i} \setminus S} d_{ij} + \sum_{j \in S \setminus R_{i}} d_{ij}}, \quad d_{ij} = (\overline{r}_{ij} - s_{j})^{2}$$
(2)

 R_i and S are the subsets of APs that are present in \overline{r}_i and s.

- ▶ Effective in the fault-free case because all APs not found in common between \overline{r}_i and s are penalized
- ► What happens in case of faults?

Modified Distance Metric

$$D_i' = \sqrt{\sum_{j \in R_i \cap S} d_{ij} + \sum_{j \in S \setminus R_i} d_{ij}}$$
 (3)

Hybrid Positioning Algorithm

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection
- Fault Tolerance

Hybrid Positioning Algorithm

Experimental

Evaluation - Results

Conclusions

- Concluding Remarks

General Idea

- ► Incorporate our fault detection mechanism
- ► Employ the Modified Distance Metric if faults are present

The Hybrid Positioning Algorithm

- 1. RSS Distance Calculation: Use (2) to calculate the RSS distances D_i between the currently observed fingerprint and all the fingerprints in the radio map.
- 2. Fault Indicator Computation: Compute the fault indicator $D_{sum}^{(K)}$ using the distances D_i from the K Nearest Neighbors.
- **3. Location Estimation:** If the condition $D_{sum}^{(K)} > \gamma$ is satisfied, then calculate the respective RSS distances D'_i with (3) and estimate location $\widehat{\ell}(s)$; else use the distances D_i calculated in step 1 to determine location.

Methodology

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection
- Fault Tolerance
- Hybrid Positioning

Algorithm

Experimental **Evaluation**

- Results

Conclusions

- Concluding Remarks

Metrics

- ightharpoonup Performance Degradation: mean positioning error (\mathcal{E}) vs percentage of faulty APs
- ► Fault Tolerance: percentage of faulty APs tolerated so that $\mathcal{E} < ub$ (e.g. ub = 5m)

Existing Positioning Algorithms

- KNN that uses the standard distance metric (2)
- Probabilistic Minimum Mean Square Error (MMSE)

$$\widehat{\ell}(s) = \sum_{i=1}^{l} \ell_i p(\ell_i | s), \ \ p(\ell_i | s) = \frac{p(s | \ell_i) p(\ell_i)}{p(s)} \text{ and } p(s | \ell_i) = \prod_{j=1}^{n} p(s_j | \ell_i)$$

The median-based KNN variant (MED)

$$\widehat{\ell}(s) = \arg\min_{\ell} D_i, \ \ D_i = \mathrm{med}_{j=1}^{\ n} ig(r_{ij} - s_jig)^2$$

Results at KIOS with 9 APs

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection - Fault Tolerance
- Hybrid Positioning

Algorithm Experimental

Evaluation - Results

Conclusions

- ▶ For KNN and MMSE \mathcal{E} degrades sharply when $\alpha > 10\%$
- ► HYBRID and MFD exhibit similar fault tolerance in case α < 40%
- ▶ For the HYBRID algorithm $\mathcal{E} = 2.07m$ in the fault-free case, while for MFD $\mathcal{E} = 3.45m$
- ▶ For MED \mathcal{E} explodes when $\alpha > 50\%$ (requires that at least half of the APs provide uncorrupted RSS values)

Results at KIOS with 9 APs

Introduction

- Motivation - Fault Model
- Measurement Setup
- Nearest Neighbor

Algorithm - Fault Detection

- Fault Tolerance
- Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- ▶ When $\alpha = 50\%$, for KNN \mathcal{E} is increased by 8m compared to the fault-free case (std = 5.5m)
- ▶ For HYBRID \mathcal{E} is only increased by 0.85m when α grows up to 50% (std = 2.44m)

Results at KIOS with 73 APs

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection
- Fault Tolerance

Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- ▶ KNN and MMSE perform poorly when $\alpha > 20\%$
- ▶ HYBRID is extremely fault tolerant: when $\alpha = 50\%$, $\mathcal{E} = 3.0m$ compared to 6.0m (MED), 9.9m (KNN) and 10.5m (MMSE)
 - ▶ If $\mathcal{E} = 5.0m$ is acceptable, HYBRID can tolerate 80% faulty APs, compared to 30% (MED) and only 10% (KNN, MMSE)

Results at KIOS with 73 APs

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection
- Fault Tolerance

Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- ▶ For KNN, $\mathcal E$ is increased by 7.3m when $\alpha=50\%$ compared to the fault-free case
- ► For MED \mathcal{E} is only increased by 1m when $\alpha = 50\%$ and std = 3.5m, however it is still outperformed by HYBRID
- ▶ For HYBRID $\mathcal E$ is only increased by 0.5m when $\alpha=50\%$ and std remains below 2.6m

Concluding Remarks

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor

- Algorithm - Fault Detection
- Fault Tolerance
- Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- Concluding Remarks

Our Contributions

- ► Focus on the **Fault Tolerance** of fingerprint-based positioning algorithms, instead of absolute positioning error
- ▶ Developed a **robust fault detection** scheme to signify faults
- ▶ Introduced a **Hybrid** algorithm that combines the fault detection mechanism with a modified Euclidean distance metric
- ► Experimental results indicate improved fault tolerance compared to existing algorithms

Future Work

- Apply to different types of faults (e.g. AP relocation)
- Extend our approach to probabilistic fingerprint-based algorithms (e.g. effect of faults on the maximum probability)

Introduction

- Motivation - Fault Model
- Measurement Setup

Nearest Neighbor

- Algorithm - Fault Detection
- Fault Tolerance

Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- Concluding Remarks

Thank you for your attention

Contact

Christos Laoudias

KIOS Research Center for Intelligent Systems and Networks

Department of Electrical & Computer Engineering

University of Cyprus

Email: laoudias@ucy.ac.cy

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection
- Fault Tolerance

Hybrid Positioning Algorithm

Experimental Evaluation

- Results

Conclusions

- Concluding Remarks

Extra slides

KOLOC Effectiveness of the Modified Metric

Introduction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection - Fault Tolerance
- Hybrid Positioning

Algorithm

Experimental Evaluation

- Results

Conclusions

Location	AP1	AP2	AP3	AP4	AP5	AP6
ℓ_1	-55	-70	-63	-78	NaN	-81
ℓ_2	-67	-87	NaN	-47	-66	-43
ℓ_3	-44	-65	-50	NaN	-52	-87
ℓ_{4}	NaN	-45	-83	-59	-60	-51
ℓ_{5}	-48	-69	-58	-83	-59	NaN
ℓ_6	-39	NaN	-68	-76	NaN	-55

Effectiveness of the Modified Metric

Introd	luctio

- Motivation
- Fault Model
- Measurement Setup Nearest Neighbor

Algorithm - Fault Detection

- Fault Tolerance
- Hybrid Positioning

Algorithm

Experimental Evaluation

- Results

Conclusions

- Concluding Remarks

Location	AP1	AP2	AP3	AP4	AP5	AP6
ℓ_1	-55	-70	-63	-78	NaN	-81
ℓ_2	-67	-87	NaN	-47	-66	-43
ℓ_3	-44	-65	-50	NaN	-52	-87
ℓ_{4}	NaN	-45	-83	-59	-60	-51
ℓ_{5}	-48	-69	-58	-83	-59	NaN
ℓ_6	-39	NaN	-68	-76	NaN	-55

Fault-free Case

- Observed fingerprint: s = [-48, -61, -48, NaN, -44, -80]
- ▶ Using (2) or (3) we obtain the ordering $\{\ell_3, \ell_5, \ell_1, \ell_6, \ell_4, \ell_2\}$

Effectiveness of the Modified Metric

ntrod	uction

- Motivation
- Fault Model
- Measurement Setup

Nearest Neighbor Algorithm

- Fault Detection
- Fault Tolerance

Hybrid Positioning Algorithm

Experimental

Evaluation - Results

Conclusions

- Concluding Remarks

Location	AP1	AP2	AP3	AP4	AP5	AP6
ℓ_1	-55	-70	-63	-78	NaN	-81
ℓ_2	-67	-87	NaN	-47	-66	-43
ℓ_3	-44	-65	-50	NaN	-52	-87
ℓ_{4}	NaN	-45	-83	-59	-60	-51
ℓ_{5}	-48	-69	-58	-83	-59	NaN
ℓ_6	-39	NaN	-68	-76	NaN	-55

Fault-free Case

- ► Observed fingerprint: s = [-48, -61, -48, NaN, -44, -80]
- ▶ Using (2) or (3) we obtain the ordering $\{\ell_3, \ell_5, \ell_1, \ell_6, \ell_4, \ell_2\}$

Failures in AP1 and AP5

- ► Corrupt fingerprint: $\tilde{s} = [NaN, -61, -48, NaN, NaN, -80]$
- ▶ Using (2) we obtain the wrong ordering $\{\ell_1, \ell_5, \ell_3, \ell_4, \ell_6, \ell_2\}$
- ▶ Using the Modified Metric (3) the correct ordering is preserved