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• Introduction to the Kalman Filter

• Assumptions and Model components

• The Kalman Filter algorithm

• Application to static and dynamic one-dimensional data

• Application to higher-dimensional data
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# Imports

import warnings

warnings.filterwarnings("ignore")

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import cv2

np.random.seed(0) # for reproducibility



• The Kalman Filter (KF) is an algorithm that processes time 
series measurements, containing statistical noise and other 
inaccuracies

• It produces estimates of unknown variables that tend to be 
more accurate than those based only on measurements

• Developed by Rudolf E. Kálmán in the late 1950s

• Applications:

• tracking objects (Apollo project, GPS, self driving cars)

• image processing

• processes where model can be extracted from 
dynamics
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• Dynamic systems are systems that change over time
• They are described by a set of equations that predict the future 

state of the system based on its current state
• The KF assumes the system is a linear dynamic system with 

Gaussian noise
• Gaussian distributions are used because of their nice properties 

when dealing with averages and variances
What are the ingredients?
• State

• True value of the variables we want to estimate
• State vector represents all the information needed to 

describe the current state of the system
• Observation model

• Relates the current state to the measurements or 
observations

• Noisy measurements
• Process and measurement noise (assumed to be Gaussian) 

represent the uncertainty in our models and measurements
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• Example 

• Car moving at a constant velocity

• Model: 

• Car position = velocity × time × system noise

• Measurements: 

• Position and velocity (which are also noisy)
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• The tradeoff between the influence of the model and the 
measurements is determined by noise

• If the model has relatively large errors, more 
importance is given to the latest measurements in 
computing the current estimate

• If the measurement have larger errors, more 
importance is given to the model in making the 
current estimate

• Therefore, you need to estimate not only your state but also 
the errors (the covariance) for both the model and the 
measurements

• Must be updated at each time step, too!
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• KF is a recursive algorithm:

• Uses information from previous time step to update 
the estimates

• Does not keep in memory all the data acquired so far

• Has predictor-corrector structure:

1. Make a prediction based on the model

2. Update the prediction with the measurements

3. Repeat
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• KF is based on three fundamental assumptions:

1. The system can be described or approximated by a linear model

2. All noise (from both the system and the measurements) is 
white, i.e., the values are not correlated

3. All noise is Gaussian

• Assumption 1: Linearity

• Each variable at the current time is a linear function of the 
variables at previous times

• Many systems can be approximated this way

• Linear systems are easy to analyze

• Nonlinear systems can often be approximated by linear models 
around a current estimate (extended KF)

• Assumption 2: Whiteness

• The noise values are not correlated in time

• If you know the noise at time t, it doesn’t help you to predict the 
noise at future times 𝑡 + 𝜏

• White noise is a reasonable approximation of the real noise

• The assumption makes the mathematics tractable
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• Assumption 3: Gaussian Noise

At any point in time, the probability density of the noise is a 
Gaussian

• System and measurement noise are often a 
combination of many small sources of noise

• The combination effect is approximately Gaussian

• If only mean and variance are known (typical case in 
engineering systems), Gaussian distribution is a good 
choice as these two quantities completely determine 
the Gaussian distribution

• Gaussian distribution have nice properties and are 
easy to treat mathematically
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Car moving at a constant velocity (combining two sources)

• Assume the car has an initial position 𝑥0 = 0 and initial 
velocity ̇𝑥0 = 60km/h

• If the speed is constant, we have:

• And in matrix form:
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𝑥𝑡 = 1 · 𝑥𝑡−1 + 𝛿𝑡 · 𝑥̇𝑡−1

𝑥̇𝑡 = 0 · 𝑥𝑡−1 + 1 · 𝑥̇𝑡−1

𝑥𝑡 =
𝑥𝑡
𝑥̇𝑡

=
1 𝛿𝑡
0 1

𝑥𝑡−1
𝑥̇𝑡−1

= 𝐴𝑥𝑡−1



• New position and speed will evolve according to the linear 
dynamical system:

• where 𝑤𝑡−1~𝑁(0, 𝑄), is the process noise (things that have 
not been modelled)

• 𝑥𝑡 ∈ ℝ𝑁 represents the state of the system

• 𝑄 ∈ ℝ𝑁×𝑁 is the process noise covariance, where 𝑁
represents the number of state variables (2 in our case, 
position and speed)
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Where is the car when 1 minute passed?

• If we rely only on our simple system 𝑥𝑡+1 = 𝐴𝑥𝑡 without 
even consider the noise, the car will keep moving at 60km/h 
and will be displaced 1km across the 1d direction we are 
considering

• Consider the GPS measurement of a car receiver

• As all instruments, our GPS will be affected by errors 
and gives us measurements with uncertainties in it

• In addition, our GPS can only measure the position but 
not the speed

• Based on our GPS, after 1 minute we are at 0.8km 
from where we started
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• We can model GPS measurement as follows:

• where 𝑣𝑡~𝑁(0, 𝑅), is uncertainty in the measurements

• 𝑧𝑡 ∈ ℝ𝑀 is the measurement vector

• Since GPS measures only position, 𝐻 = [1 0] and R = [𝑟𝑥𝑥]

• 𝐻 ∈ ℝ𝑀,𝑁is a matrix that maps the 𝑁 state variables into the 
M measurements and R ∈ ℝ𝑀,𝑀 is the measurement noise 
covariance
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𝑧𝑡 = 𝐻𝑥𝑡 + 𝑣𝑡



• Hence, we have two different sources of information:

• a linear stochastic difference equation, representing 
our imprecise knowledge of a discrete-time controlled 
process; model

• a source of measurements, that are noisy

• Combine them to get the best possible estimate of our 
system variables!
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𝑧𝑡 = 𝐻𝑥𝑡 + 𝑣𝑡

𝑥𝑡 = 𝐴𝑥𝑡−1 +𝑤𝑡−1



• KF is an iterative procedure that consists of two steps:

• Predict (Time update)

• Correct (Measurement update)

• These two steps are used to update two quantities:

• State estimate

• Uncertainty about our state estimate, called 
covariance estimate
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• Covariance estimate
• Two sources of error in the estimate of the state of our system

• Prior estimate error 𝑒𝑡
− = 𝑥𝑡 − ො𝑥𝑡

−

• Posterior estimate error 𝑒𝑡 = 𝑥𝑡 − ො𝑥𝑡

• where
• ො𝑥𝑡

− is the estimate of the state based only on the knowledge of 
the system, e.g., dynamics model

• ො𝑥𝑡 is the estimate based on the measurement 𝑧𝑡 e.g. GPS

• Each type of error is associated with a covariance matrix, 
which reflects the amount of uncertainty in the state 
estimates

• 𝑃𝑡
− = 𝔼 𝑒𝑡

−𝑒𝑡
−𝑇 ∈ ℝ𝑁×𝑁(prior covariance estimate)

• 𝑃𝑡 = 𝔼 𝑒𝑡𝑒𝑡
𝑇 ∈ ℝ𝑁×𝑁(posterior covariance estimate)
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• 𝑃𝑡 =
𝑝𝑥𝑥 𝑝𝑥̇𝑥
𝑝𝑥̇𝑥 𝑝𝑥̇𝑥̇

, time t omitted on the matrix elements

• 𝑝𝑥𝑥 uncertainty about the position

• 𝑝𝑥̇𝑥̇ uncertainty about the velocity

• 𝑝𝑥̇𝑥 and 𝑝𝑥̇𝑥 represent the correlation between the 
noise in the measurements of the position and the 
speed

• 𝑃𝑡
− has the same form
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• Predict

• The dynamics equations are responsible for projecting 
forward (in time) the current state and error 
covariance estimates to obtain the prior estimate for 
the next time step

• Such time update equations can also be thought of as 
predictor equations

• State estimate update:
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• Covariance estimate update:

• Predict step consists of two updates:

• State estimate

• Covariance estimate
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𝑃𝑡
− = 𝔼 𝑒𝑡

−𝑒𝑡
−𝑇

= 𝔼 (𝑥𝑡 − ො𝑥𝑡
−)(𝑥𝑡 − ො𝑥𝑡

−)𝑇

= 𝔼 (𝐴𝑥𝑡−1 +𝑤 − 𝐴ො𝑥𝑡−1)(𝐴𝑥𝑡−1 + 𝑤 − 𝐴ො𝑥𝑡−1)
𝑇

= 𝔼 (𝐴𝑒𝑡−1)(𝐴
𝑇𝑒𝑡−1

𝑇 ) + 𝔼[𝑤𝑤𝑇]

= 𝐴𝔼 (𝑒𝑡−1𝑒𝑡−1
𝑇 ) 𝐴𝑇 + Q

= 𝐴𝑃𝑡−1𝐴
𝑇 + Q

ො𝑥𝑡
− = 𝐴ො𝑥𝑡−1

𝑃𝑡
− = 𝐴𝑃𝑡−1𝐴

𝑇 + Q



Correction step

• The measurement update equations are responsible for the 
feedback, i.e. for incorporating a new measurement into the 
prior estimate to obtain an improved posterior estimate.

• The posterior estimate ො𝑥𝑡 is a linear combination of:
• The prior estimate ො𝑥𝑡

−

• A weighted difference between the actual measurement 𝑧𝑡 and a 
measurement prediction 𝐻ො𝑥𝑡

−

• with the difference ∆𝑡= 𝑧𝑡 − 𝐻ො𝑥𝑡
− is called measurement 

innovation or residual

• ∆𝑡 reflects the difference between our imprecise prediction 𝐻ො𝑥𝑡
−

and the actual noisy measurement 𝑧𝑡
• Residual of zero means that the two are in complete agreement
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ො𝑥𝑡 = ො𝑥𝑡
− + 𝐾𝑡(𝑧𝑡 − 𝐻ො𝑥𝑡

−)
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• Matrix 𝐾𝑡 ∈ ℝ𝑁×𝑀 is chosen to be the gain that minimizes the posterior 
error covariance

• Execution steps:

1. Consider the posterior error 𝑒𝑡 = 𝑥𝑡 − ො𝑥𝑡
2. Consider the posterior error covariance 𝑃𝑡 = 𝔼 𝑒𝑡𝑒𝑡

𝑇

3. Substitute value ො𝑥𝑡 = ො𝑥𝑡
− + 𝐾𝑡∆𝑡in 1.

4. Substitute the 𝑒𝑡 value obtained from 3. in 2. and take the 
expectation

5. Take the derivative of the trace of the result with respect to 𝐾𝑡
6. Set the result equal to zero

7. Solve for 𝐾𝑡
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• Overall

• In the moving car example:

• time index t has been omitted from matrix components for readability

• the update equations for the position and speed become

• position:

•

• speed:

𝐾𝑡 = 𝑃𝑡
−𝐻𝑇(𝐻𝑃𝑡

−𝐻𝑇 + 𝑅)−1=
𝑃𝑡
−𝐻𝑇

𝐻𝑃𝑡
−𝐻𝑇 + 𝑅

𝐾𝑡 =

𝑝𝑥𝑥
− 𝑝𝑥̇𝑥

−

𝑝𝑥̇𝑥
− 𝑝𝑥̇𝑥̇

−
1
0

1 0
𝑝𝑥𝑥
− 𝑝𝑥̇𝑥

−

𝑝𝑥̇𝑥
− 𝑝𝑥̇𝑥̇

−
1
0
+ [𝑟𝑥𝑥]

=

𝑝𝑥𝑥
−

𝑝𝑥̇𝑥
−

𝑝𝑥𝑥
− + 𝑟𝑥𝑥

ො𝑥𝑡 = ො𝑥𝑡
− +

𝑝𝑥𝑥
−

𝑝𝑥𝑥
− + 𝑟𝑥𝑥

∆𝑡

෠̇𝑥𝑡 = ෠̇𝑥𝑡
− +

𝑝𝑥𝑥̇
−

𝑝𝑥𝑥
− + 𝑟𝑥𝑥

∆𝑡
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• One key observation is that the speed is updated even if we 
do not have a direct measure for it in our measurement 𝑧𝑡

• The update is possible thanks to the term 𝑝𝑥̇𝑥
− in 𝐾𝑡 that 

relates the position (and its measurement) to the velocity

• This showcases one of the main strengths of KF: it can 
handle partial observations 

• Let’s consider the two extreme cases for the values of 𝐾𝑡
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1. the measurement error covariance R approaches zero, i.e., 
there is no noise in the measurements

• Measurements are completely reliable

• We have lim
𝑅→0

𝐾𝑡 =
𝑃𝑡
−𝐻𝑇

𝐻𝑃𝑡
−𝐻𝑇+𝑅

= 𝐻−1

• 𝐾𝑡 weights the residuals more heavily:

ො𝑥𝑡 = ො𝑥𝑡
− +𝐻−1∆𝑡= ො𝑥𝑡

− +𝐻−1 𝑧𝑡 − 𝐻ො𝑥𝑡
−

= ො𝑥𝑡
− +𝐻−1𝑧𝑡 − 𝐻−1𝐻ො𝑥𝑡

− = ො𝑥𝑡
− +𝐻−1𝑧𝑡 − ො𝑥𝑡

−

= 𝐻−1𝑧𝑡
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2. Covariance estimate 𝑃𝑡
− approaches zero

• the model is completely reliable and the 
measurements are not accounted for

• We have lim
𝑃𝑡
−→0

𝐾𝑡 =
𝑃𝑡
−𝐻𝑇

𝐻𝑃𝑡
−𝐻𝑇+𝑅

= 0

• 𝐾𝑡 does not give importance to residuals ො𝑥𝑡 = ො𝑥𝑡
− +

0∆𝑡= ො𝑥𝑡
−
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• Final step is to update is the posterior covariance estimate 
to be used in the next predict step

• The formula is:

• Consider again the two extreme cases for the values of 𝐾𝑡
• 𝐾𝑡 = 𝐻−1 → 𝑃𝑡 = 0

• measurements are completely reliable

• Only source of uncertainty at the next Predict step will be the one 

of the model: 𝑃𝑡
− = 𝐴𝑃𝑡−1𝐴

𝑇 + Q = Q

• 𝐾𝑡 = 0 → 𝑃𝑡 = 𝑃𝑡
−

• measurements are completely unreliable

• Posterior covariance estimate same as prior covariance estimate 
obtained in the Predict step using the model and not modified 
with the new measurements in the Correct step

𝑃𝑡 = (𝐼 − 𝐾𝑡H)𝑃𝑡
−
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• In general, both the measurement noise covariance R and the 
process noise covariance 𝑄are unknown

• Estimating R is usually done prior to operation of the filter

• Measuring R is usually possible because we measure the 
process anyway (while operating the filter)

• We can take some offline sample measurements to 
determine the variance of the measurement noise

• Determining the process noise covariance 𝑄is generally more 
difficult

• We typically do not have the ability to directly observe the 
process we are estimating

• Sometimes a relatively simple process model can produce 
acceptable results if one “injects” enough uncertainty into the 
process

• This works well if the process measurements are reliable



K
F E

X
TEN

SIO
N

S
A

N
D

V
A

R
IA

N
TS

• Extended Kalman Filter (EKF) is used for nonlinear systems by 
linearizing about the current estimate

• Ensemble Kalman Filter (EnKF) replaces the covariance matrix 
with the sample covariance to be used in problems with a 
large number of variables 

• Particle Filter handles arbitrary noise distributions (other than 
Gaussian noise processes); computationally expensive

• Unscented Kalman Filter (UKF) uses a deterministic sampling 
technique to capture the mean and variance of the state 
distribution – Balances efficiency of Kalman and accuracy of 
particle filter
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• Designing an accurate model and having reliable measurements 
are crucial for effective filtering

• Dealing with nonlinearities can be challenging and may require 
the EKF or UKF

• Tuning process and measurement noise covariances 𝑄 and 𝑅 is 
essential for optimal performance

• Python implementation

1. Make an initial estimate of your state vector and 
covariance matrix

2. Predict the state and covariance for the next time step

3. Computer the Kalman gain

4. Make a measurement

5. Update estimates of state and covariance

6. Repeat from step 2.
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• Python implementation for 1D examples

1. Make an initial estimate of your state vector (single 
number) and covariance matrix (reduces to variance)

2. Predict the state and covariance for the next time 
step

3. Computer the Kalman gain

4. Make a measurement

5. Update estimates of state and covariance

6. Repeat from step 2.

• No matrices involved thus normal multiplication



E
X

A
M

P
LE

1
: S

TA
TIC

O
N

E-D
IM

EN
SIO

N
A

L
D

A
TA

• Considering a simple example: determine the position of a 
stationary car

• 1D example so we need the distance along (a one-
dimensional value) along a stretch of road from a landmark

• Need to predict the true position based on some noisy 
measurements of the distance

• We assume the measurements follow the distribution:

• where 𝜇 is the actual position and 𝑅 is the measurement 
noise covariance

• these two values are unknown to the KF

𝑧𝑡 = 𝜇 + 𝑣𝑡 with 𝑣𝑡~𝑁(0, 𝑅)
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• Generate the dataset
mu = 124.5 # Actual position

R = 0.1    # Actual standard deviation of actual measurements (R)

# Generate measurements

n_measurements = 1000 # Change the number of points to see how the convergence changes

Z = np.random.normal(mu, np.sqrt(R), size=n_measurements)

plt.plot(Z,'k+',label='measurements $z_t$',alpha=0.2)

plt.title('Noisy position measurements')

plt.xlabel('Time')

plt.ylabel('$z_t$')

plt.tight_layout();
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• Since in reality the actual measurement noise covariance is 
unknown, we have to provide an estimate

• Estimate 𝑅 from the available measurements

• In addition, we need to estimate the process noise covariance 𝑄, 
which is usually harder to guess

• Remember that 𝑄 represents the noise of the model used to 
describe the actual position

• In our case:

• We can see the effect of making a good or a bad estimate for 𝑅

• Also, we choose the actual position of our car, so we can see how 
quickly the KF converges to the true value

• Finally, we need to guess initial values for the initial position of 
the car and the variance in this initial estimate

𝑥𝑡 = 𝑥0 +𝑤𝑡with 𝑤𝑡~𝑁(0, 𝑄)

# Estimated covariances

Q_est = 1e-4 

R_est = 2e-2 
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# Function to compute the estimated position and associated error

def kalman_1d(x, P, measurement, R_est, Q_est):

# Prediction

x_pred = x

P_pred = P + Q_est

# Update

K = P_pred / (P_pred + R_est)

x_est = x_pred + K * (measurement - x_pred)

P_est = (1 - K) * P_pred

return x_est, P_est

# Apply KF to the 1D measurements

# initial guesses 

x = 123 # Use an integer (imagine the initial guess is determined with a meter 

stick)

P = 0.04 # error covariance P

KF_estimate=[] # To store the position estimate at each time point 

KF_error=[] # To store estimated error at each time point

for z in Z:

x, P = kalman_1d(x, P, z, R_est, Q_est)

KF_estimate.append(x)

KF_error.append(P)
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# Function to plot estimates and measurements

def plot_1d_comparison(measurements_made, estimate, true_value, axis):

axis.plot(measurements_made,'k+',label='measurements',alpha=0.3)

axis.plot(estimate,'-',label='KF estimate')

if not isinstance(true_value, (list, tuple, np.ndarray)):

# plot line for a constant value

axis.axhline(true_value,color='r',label='true value', alpha=0.5) 

else:

# for a list, tuple or array, plot the points

axis.plot(true_value,color='r',label='true value', alpha=0.5)

axis.legend(loc = 'lower right')

axis.set_title('Estimated position vs. time step')

axis.set_xlabel('Time')

axis.set_ylabel('$x_t$')

def plot_1d_error(estimated_error, lower_limit, upper_limit, axis):

# lower_limit and upper_limit are the lower and upper limits of the 

vertical axis 

axis.plot(estimated_error, label='KF estimate for $P$')

axis.legend(loc = 'upper right')

axis.set_title('Estimated error vs. time step')

axis.set_xlabel('Time')

axis.set_ylabel('$P_t$')

plt.setp(axis,'ylim',[lower_limit, upper_limit])

fig, axes = plt.subplots(1,2, figsize=(12, 5))

plot_1d_comparison(Z, KF_estimate, mu, axes[0])

plot_1d_error(KF_error, 0, 0.015, axes[1])

plt.tight_layout();
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to the true value quickly and the noise is filtered out

• Fluctuations around the true value are approximately the 

size of the standard deviation of the estimate, 𝑃𝑡
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• Considering another example: determine the position of a 
car moving at constant velocity 𝑣0

• position changes over time according to the linear model:

• 𝑤𝑡 is the model noise

• We assume to have measurements of position only:

• where 𝑣𝑡 is the noise measurement of velocity not observed 
directly and 𝑅 is the variance of measurement errors

𝑧𝑡 = 𝑧𝑡 + 𝛿𝑡 · 𝑣𝑡 with 𝑣𝑡~𝑁(𝑣0, 𝑅)

𝑥𝑡 = 𝑥𝑡−1 + 𝛿𝑡 · 𝑣0 +𝑤𝑡 with 𝑤𝑡~𝑁(0, 𝑄)
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• At each time point, we will generate a random value 𝑣𝑡 for 
the velocity measurement

• We will assume that the car moves at velocity 𝑣𝑡 until the 
next time point, which allows us to calculate the distance 
traveled

• By summing up all of the distances traveled, we can 
calculate the measured position of the car 𝑧𝑡

• Then apply the KF and compare the KF estimate for the 
position with both the model position 𝑥𝑡 = 𝑥0 + 𝑡 · 𝑣0 and 
the measured positions 𝑧𝑡
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# initial parameters

v0 = 0.3 

x0 = 0.0     

R = 4.0

# generate noisy measurements

n_measurements = 1000

Zv = np.zeros(n_measurements) # velocity measurements

Zx = np.zeros(n_measurements) # position measurements

for t in range(0, n_measurements-1):

Zv[t] = np.random.normal(v0, np.sqrt(R)) 

Zx[t+1] = Zx[t] + Zv[t] * 1 # delta_t = 1

# generate true positions

Xt = np.zeros(n_measurements) 

for t in range(0, n_measurements):

Xt[t]= x0 + v0*t

plt.plot(Zx,'k+',label='measurements $z_t$',alpha=0.2)

plt.title('Noisy position measurements')

plt.xlabel('Time')

plt.ylabel('$z_t$')

plt.tight_layout();
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# initial guesses and estimates

x = 0 

P = 0.5

Q_est = 4 

R_est = 4

KF_estimate = [] # To store the position estimate at each time point 

KF_error = [] # To store estimated error at each time point

# Kalman filter

for z in Zx:

x, P = kalman_1d(x, P, z, R_est, Q_est)

KF_estimate.append(x)

KF_error.append(P)

fig, axes = plt.subplots(1,2, figsize=(12, 5))

plot_1d_comparison(Zx, KF_estimate, Xt, axes[0])

plot_1d_error(KF_error, min(KF_error)-0.1, max(KF_error)+0.1, axes[1])

plt.tight_layout();
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• The measurements are not close to the true value because 
the variance of the measurements error 𝑅 is large compared 
to the velocity 𝑣0

• The KF estimate is tracking the measurements, so it won’t be 
close to the true value

• In addition, we do not have measurements for the 
instantaneous velocity

• With dynamic models, there are more parameters to tune, 
so it can be more challenging to reach convergence

• If we had a way to measure velocity, we could use that 
information too to improve the estimates

• Nevertheless, the KF can work with incomplete 
observations, which is one of its main advantages
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• Now we consider an example that is closer to real-world 
applications: estimating the motion of a point in two 
dimensions, 𝑥 and 𝑦

• Derive the algorithm to track objects

• a mouse on a screen 

• objects in a video

• Use instantaneous measurements for the position (𝑥, 𝑦)

• Going to use the Kalman filter built into the OpenCV library
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• System is defined by the following quantities:

• State vector 𝑥
representing the 2D position and velocity

• Measurement vector 𝑧
for measurements of 2D position

• Transition matrix 𝐴

• Measurement matrix 𝐻

• Covariance of the model noise 𝑄

• Covariance of the measurements noise 𝑅

𝑥 =

𝑥
𝑦
𝑥̇
𝑦̇

𝑧 =
𝑧𝑥
𝑧𝑦

𝐴 =

1 0 𝛿𝑡 0
0 1 0 𝛿𝑡
0
0

0
0

1
0

0
1

𝐻 =
1 0 0 0
0 1 0 0

𝑄 =

𝑞 0 0 0

0 𝑞 0 0

0
0

0
0

𝑞
0

0
𝑞

𝑅 =
𝑟 0
0 𝑟

# KF implementation in OpenCV

KalmanFilter(state_size, measurements_size, control_size)
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• state_size is the dimension of the state vector 𝑥, which is 4 in our 
case

• measurements_size is the dimension of the state vector 𝑥, which 
is 2 in our case

• control_size, which is 0 since we do not at this point do not 
control our car (𝑢, not discussed in this lecture)

# KF implementation in OpenCV

KalmanFilter(state_size, measurements_size, control_size)

kalman = cv2.KalmanFilter(4,2,0) # 4 states, 2 measurements, 0 controls

q = 1 # the variance in the model

r = 20 # the variance in the measurement

dtime = 1 # size of time step

kalman.measurementMatrix = np.array([[1,0,0,0],

[0,1,0,0]],np.float32) #  H

kalman.transitionMatrix = np.array([[1,0,dtime,0],

[0,1,0,dtime],

[0,0,1,0],

[0,0,0,1]],np.float32) # A

kalman.processNoiseCov = np.array([[1,0,0,0],

[0,1,0,0],

[0,0,1,0],

[0,0,0,1]],np.float32) * q # Q

kalman.measurementNoiseCov = np.array([[1,0],

[0,1]],np.float32) * r # R

KF_estimate_xy = [] # To store the position estimate at each time point
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# Load some pre-computed data

xy_motion = 

pd.read_csv('https://zenodo.org/records/10951538/files/kf_ts1.csv?download=1',

header = None).values.astype('float32')

for i in xy_motion:

pred = kalman.predict()  # predicts new state using the model

kalman.correct((i))      # updates estimated state with the measurement

KF_estimate_xy.append(((pred[0]),(pred[1]))) # store the estimated 

position

x_est, y_est = zip(*KF_estimate_xy)

x_true, y_true = zip(*xy_motion)

plt.scatter(x_est, y_est, marker= '.', label = 'KF estimate', alpha = 0.5)

plt.scatter(x_true, y_true,marker= '.', label = 'true value', alpha = 0.5)

plt.legend(loc = 'lower center')

plt.title('2D position')

plt.xlabel('x coordinate')

plt.ylabel('y coordinate')

plt.tight_layout();


