
ΕΠΛ 428: IOT PROGRAMMING

Dr. Panayiotis Kolios
Assistant Professor, Dept. Computer Science,
KIOS CoE for Intelligent Systems and Networks
Office: FST 01, 116
Telephone: +357 22893450 / 22892695
Web: https://www.kios.ucy.ac.cy/pkolios/

Time series analysis:
PROPHET

https://www.kios.ucy.ac.cy/pkolios/

• PROPHET Framework developed by Facebook (Meta) for
time series forecasting

• Based on an additive model where non-linear trends
are fit with yearly, weekly, and daily seasonality, plus
holiday effects

• Works best with time series that have strong seasonal
effects and several seasons of historical data

• PROPHET is robust to missing data, shifts in the trend,
and typically handles outliers well

P
R

O
P

H
ET

https://facebook.github.io/prophet/

P
R

O
P

H
ET

• PROPHET model: trend, seasonality, and holidays

• PROPHET library in Python to perform time series
forecasting

• Advanced options and configurations available within the
Python library

Imports

import warnings

warnings.filterwarnings("ignore")

import pandas as pd

from prophet import Prophet

import matplotlib.pyplot as plt

import numpy as np

import statsmodels.api as sm

P
R

O
P

H
ET M

O
D

EL
C

O
M

P
O

N
EN

TS
Model components

• Prophet models a time series 𝑦(𝑡) as a combination of three
components:

• Trend 𝑔(𝑡)

• Seasonality 𝑠(𝑡)

• Holidays ℎ(𝑡)

• The linear model is then:

• where 𝜀𝑡 is the error, assumed to be normally distributed

𝑦 𝑡 = 𝑔 𝑡 + 𝑠 𝑡 + ℎ 𝑡 + 𝜀𝑡

P
R

O
P

H
ET M

O
D

EL
C

O
M

P
O

N
EN

TS
Model components

• Trend 𝑔(𝑡) models non-periodic changes in the value of the time series
• Prophet provides two options for modeling the trend:

• Piece-wise linear growth model
• Logistic growth model

• Piece-wise linear growth model
• Piece-wise linear function accommodates changes in the trend’s

direction
• Accounts shifts in growth rates due to internal / external factors
• Captures and forecast time series that do not follow a simple

form (linear or logistic)
• In the piece-wise model, the series is divided into segments

• In each segment, the trend is modeled as a linear function
• The points where the trend changes direction are called change

points
• Prophet allows users to specify the maximum number of potential

change points or to let the algorithm automatically estimate it
• Prophet automatically detects the change points, allowing the trend to

adjust its slope at these points, hence capturing shifts in the trend’s
direction

P
R

O
P

H
ET M

O
D

EL
C

O
M

P
O

N
EN

TS
Model components

• Users can adjust the flexibility of the model in capturing trend
changes by tuning the change point prior scale parameter

• A higher prior scale makes the model more sensitive to changes
(allowing more flexibility)

• A lower prior scale makes the model less sensitive to fluctuations
(resulting in a smoother trend)

• The piece-wise linear trend model in Prophet is defined as:

• where
• 𝑘 is the initial growth rate

• 𝑎(𝑡) is a vector with each element is:
• the amount of time since the corresponding change point, if 𝑡 is after a

change point;

• 0 otherwise

• 𝛿 represents adjustments to the growth rate at each change point

• 𝑔0 is the offset (intercept), i.e., the value at 𝑡 = 0

• 𝛾 compensates for discontinuities in the trend at each change point, ensuring the
trend is continuous

𝑔 𝑡 = 𝑘 + 𝑎 𝑡 𝑇𝛿 · 𝑡 + (𝑔0 + 𝑎 𝑡 𝑇𝛾)

P
R

O
P

H
ET M

O
D

EL
C

O
M

P
O

N
EN

TS
Model components

Imports

change_points = [3, 7, 11] # Times at which changes occur

k = 0.3 # Initial growth rate

delta = np.array([0.1, -0.2, -0.1]) # Adjustments to growth rate

g0 = 4.0 # Initial offset

gamma = np.array([0.3, -0.1, 0.1]) # Compensations for discontinuities

def compute_a(t, change_points):

return np.array([max(0, t - cp) for cp in change_points])

def compute_g(t, k, delta, g0, gamma, change_points):

a_t = compute_a(t, change_points)

trend = (k + np.dot(a_t, delta)) * t + (g0 + np.dot(a_t, gamma))

return trend

time_points = np.linspace(0, 15, 200)

g_values = [compute_g(t, k, delta, g0, gamma, change_points) for t in

time_points]

plt.figure(figsize=(7, 3))

plt.plot(time_points, g_values, label="Piecewise Linear Trend")

plt.scatter(change_points, [compute_g(cp, k, delta, g0, gamma, change_points) for

cp in change_points], color='tab:red', label="Change Points")

plt.xlabel("Time")

plt.ylabel("g(t)")

plt.legend()

plt.grid(True)

plt.tight_layout();

P
R

O
P

H
ET M

O
D

EL
C

O
M

P
O

N
EN

TS
Model components

P
R

O
P

H
ET M

O
D

EL
C

O
M

P
O

N
EN

TS
Model components

• Trend 𝑔(𝑡) models non-periodic changes in the value of the time series
• Prophet provides two options for modeling the trend:

• Piece-wise linear growth model
• Logistic growth model

• Logistic growth model
• Describes a population that:

• Grows rapidly when it’s small
• Grows slowly as it approaches a maximum limit (carrying capacity) that it

cannot exceed
• Eventually levels off when the carrying capacity is reached (saturating

growth)
• Carrying capacity

• Refers to the maximum population size that can be sustained
• Could represent a maximum number of users a platform can support

• Saturating growth
• It refers to a growth pattern where increments become progressively

smaller as the value approaches the carrying capacity
• When the values are far below the carrying capacity, growth can be

rapid (there is a lot of “room” to grow)
• As the values approach the carrying capacity, the growth rate decreases,

and the time series levels off, reflecting a saturation point where further
growth becomes increasingly difficult

P
R

O
P

H
ET M

O
D

EL
C

O
M

P
O

N
EN

TS
Model components

• Logistic growth model:

• where:
• 𝑘 is the growth rate, 𝑡 is time

• 𝐶 is the carrying capacity (maximum achievable value)

• 𝑚 is the point in time where growth is halfway to the carrying
capacity

𝑔 𝑡 =
𝐶

1 + 𝑒−𝑘(𝑡−𝑚)

def logistic_growth(t, C, k, m):

return C / (1 + np.exp(-k * (t - m)))

Parameters

C = 800 # carrying capacity

k = 0.1 # growth rate

m = 60 # offset parameter, indicating the inflection point

t = np.linspace(0, 120, 200)

y = logistic_growth(t, C, k, m)

plt.figure(figsize=(7, 3))

plt.plot(t, y, label='Logistic growth')

plt.xlabel('Time')

plt.ylabel('Value')

plt.axhline(C, color='tab:red', linestyle='--', label='Carrying capacity')

plt.legend()

plt.grid(True)

plt.show()

P
R

O
P

H
ET M

O
D

EL
C

O
M

P
O

N
EN

TS
Model components

• Logistic growth model

P
R

O
P

H
ET M

O
D

EL
C

O
M

P
O

N
EN

TS
Model components

• Seasonality component 𝑠(𝑡)

• The seasonality component 𝑠(𝑡) models periodic changes, which
can be yearly, weekly, or daily

• Prophet uses Fourier series to model these periodic changes,
allowing for flexibility in capturing seasonality:

• where

• 𝑁 is the number of Fourier terms (higher 𝑁 captures more
detailed seasonal patterns)

• 𝑃 is the period (e.g., 365.25 for yearly seasonality)

• 𝑎𝑛 and 𝑏𝑛 are the Fourier series coefficients that are fitted
to the data

𝑠 𝑡 =

𝑛=1

𝑁

(𝑎𝑛cos(
2𝜋𝑛𝑡

𝑃
) + 𝑏𝑛sin(

2𝜋𝑛𝑡

𝑃
))

P
R

O
P

H
ET M

O
D

EL
C

O
M

P
O

N
EN

TS
Model components

• Holidays and events ℎ(𝑡)

• The holiday component ℎ(𝑡) models irregular but predictable
events

• Represented as a series of indicator functions that equal 1 if the
time 𝑡 corresponds to a holiday and 0 otherwise

• Coefficients associated with these indicators are fitted to measure
the impact of holidays on the forecast

• where

• 𝐷𝑖 represents the set of times corresponding to holiday 𝑖

• 𝐼 is the indicator function

• 𝛿𝑖 is the effect of holiday 𝑖 on the time series (tunable)

ℎ 𝑡 =

𝑖

𝐼(𝑡 ∈ 𝐷𝑖) · 𝛿𝑖

P
R

O
P

H
ET M

O
D

EL
C

O
M

P
O

N
EN

TS
Model components

Seasonal and holiday effects adjustment

• Prophet can adjust for overfitting or underfitting of seasonal
and holiday effects by changing the prior scale of these
components

• A larger prior scale allows the model to fit larger seasonal
fluctuations

• A smaller scale regularizes the model, preventing it from
overfitting seasonal and holiday effects

P
R

O
P

H
ET M

O
D

EL
C

O
M

P
O

N
EN

TS
Model components

Fitting the Model

• To fit the Prophet model to historical data the model’s
parameters are estimated using maximum likelihood
estimation or Bayesian sampling

• This involves optimizing the parameters to minimize the
difference between the observed and predicted values of
the time series

• The optimization is usually done through gradient descent
methods

• To perform the optimization Prophet relies on Stan, a C++
library for statistical modeling and high-performance
statistical computation that makes model fitting very fast

P
R

O
P

H
ET

IN
P

YTH
O

N
Model components

• The input to Prophet is always a dataframe with two
columns: ds and y

• Be sure to rename your dataframe with these column names

• The ds (datestamp) column should be of a format expected
by Pandas, ideally YYYY-MM-DD for a date or YYYY-MM-DD
HH:MM:SS for a timestamp

• The y column must be numeric, and represents the
measurement we wish to forecast

• As an example, we’ll look at a time series of daily page views
for the Wikipedia page of Peyton Manning, a former football
player

• This is a nice example because it illustrates some of Prophet’s
features, like multiple seasonality, changing growth rates, and
the ability to model special days (such as Manning’s playoff and
superbowl appearances)

P
R

O
P

H
ET

IN
P

YTH
O

N
Model components

data_path =

'https://raw.githubusercontent.com/PinkWink/DataScience/master/data/07.%20example

_wp_peyton_manning.csv'

peyton = pd.read_csv(data_path)

peyton.head()

peyton.plot(figsize=(14, 4), grid=True);

ds y

0 2007-12-10 14629

1 2007-12-11 5012

2 2007-12-12 3582

3 2007-12-13 3205

4 2007-12-14 2680

P
R

O
P

H
ET

IN
P

YTH
O

N
Model components

peyton['y'] = np.log(peyton['y'])

peyton.head()

peyton.plot(figsize=(14, 4), grid=True);

• Since there are big spikes in the data, we will apply a logarithm
transformation to obtain a more even range of variation in the data

ds y

0 2007-12-10 9.590761

1 2007-12-11 8.519590

2 2007-12-12 8.183677

3 2007-12-13 8.072467

4 2007-12-14 7.893572

P
R

O
P

H
ET

IN
P

YTH
O

N
Model components

• Several parameters to specify:

• growth='linear', meaning that we use a piece-wise linear function
to model the trend or 'logistic' or 'flat’

• seasonality_mode='additive’ or 'multiplicative’

• interval_width=0.90 specifies the width of the uncertainty
intervals for the forecast

• Predictions made on a dataframe by specifying the ds date

• You can get a suitable dataframe that extends into the future a specified
number of days using the helper method
Prophet.make_future_dataframe

• periods=365 specifies the length of our forecast

• freq='D' specifies that the units (365 in this case) represent days

• Setting include_history=True will include the dates used for training, so
we can also see the model

model = Prophet(growth='linear', seasonality_mode='additive', interval_width=0.90)

model.fit(peyton);

P
R

O
P

H
ET

IN
P

YTH
O

N
Model components

future = model.make_future_dataframe(periods=365, freq='D', include_history=True)

future.tail()

ds

3265 2017-01-15

3266 2017-01-16

3267 2017-01-17

3268 2017-01-18

3269 2017-01-19

forecast = model.predict(future)

forecast.tail()

ds 𝑔 𝑡 ෝ𝒚𝒍 ෝ𝒚𝒖 𝑠 𝑡 𝑙 𝑠 𝑡 𝑢

additiv
e_term
s

additiv
e_term
s_lower

additiv
e_term
s_upper

𝑠 𝑡 𝑤 𝑠 𝑡 𝑤𝑙 𝑠 𝑡 𝑤𝑢 𝑠 𝑡 𝑦 𝑠 𝑡 𝑦𝑙 𝑠 𝑡 𝑦𝑢

multipli
cative_t
erms

multipli
cative_t
erms_l
ower

multipli
cative_t
erms_u
pper

ෝ𝒚

3265
2017-
01-15

7.183
818

7.163
135

9.052
371

6.656
108

7.658
024

1.018
136

1.018
136

1.018
136

0.048
285

0.048
285

0.048
285

0.969
851

0.969
851

0.969
851

0.0 0.0 0.0
8.201
955

3266
2017-
01-16

7.182
785

7.542
376

9.457
438

6.654
270

7.658
730

1.344
165

1.344
165

1.344
165

0.352
294

0.352
294

0.352
294

0.991
871

0.991
871

0.991
871

0.0 0.0 0.0
8.526
949

3267
2017-
01-17

7.181
751

7.365
621

9.208
123

6.651
965

7.659
161

1.132
587

1.132
587

1.132
587

0.119
640

0.119
640

0.119
640

1.012
947

1.012
947

1.012
947

0.0 0.0 0.0
8.314
338

3268
2017-
01-18

7.180
717

7.150
724

9.107
429

6.648
953

7.659
711

0.966
217

0.966
217

0.966
217

-
0.066
658

-
0.066
658

-
0.066
658

1.032
875

1.032
875

1.032
875

0.0 0.0 0.0
8.146
934

3269
2017-
01-19

7.179
683

7.231
810

9.073
292

6.645
942

7.660
261

0.979
145

0.979
145

0.979
145

-
0.072
266

-
0.072
266

-
0.072
266

1.051
411

1.051
411

1.051
411

0.0 0.0 0.0
8.158
829

P
R

O
P

H
ET

IN
P

YTH
O

N
Model components

fig1 = model.plot(forecast, figsize=(14, 4))

fig2 = model.plot_components(forecast, figsize=(7, 6))

M
O

D
ELIN

G
H

O
LID

A
YS

A
N

D
SP

EC
IA

L
EV

EN
TS

Model components

• For holidays or other recurring events to model, must create
a dataframe for them

• Two columns (holiday and ds), a row for each occurrence of
a holiday

• It must include all occurrences of a holiday, both in the past
(back as far as the historical data go) and in the future (out
as far as the forecast is being made)

• If they won’t repeat in the future, Prophet will model them
and then not include them in the forecast

• Durations of a holiday used with fields [lower_window,
upper_window] days around the date

• For instance, if you wanted to include Christmas Eve in
addition to Christmas you’d include 'lower_window': -1 and
'upper_window': 0

M
O

D
ELIN

G
H

O
LID

A
YS

A
N

D
SP

EC
IA

L
EV

EN
TS

Model components

add holidays

playoffs = pd.DataFrame({

'holiday': 'playoff',

'ds': pd.to_datetime(['2008-01-13', '2009-01-03', '2010-01-16',

'2010-01-24', '2010-02-07', '2011-01-08',

'2013-01-12', '2014-01-12', '2014-01-19',

'2014-02-02', '2015-01-11', '2016-01-17',

'2016-01-24', '2016-02-07']),

'lower_window': 0, # this specifies spillover into previous days

'upper_window': 1, # this for the future days

})

superbowls = pd.DataFrame({

'holiday': 'superbowl',

'ds': pd.to_datetime(['2010-02-07', '2014-02-02', '2016-02-07']),

'lower_window': 0,

'upper_window': 1,

})

holidays_df = pd.concat((playoffs, superbowls))

fit and predict

model_holyday = Prophet(holidays=holidays_df, # this includes the holidays

growth='linear', seasonality_mode='additive',

interval_width=0.90) # these are unchanged

forecast = model_holyday.fit(peyton).predict(future)

M
O

D
ELIN

G
H

O
LID

A
YS

A
N

D
SP

EC
IA

L
EV

EN
TS

Model components

check visually the impact of the holidays

fig2 = model_holyday.plot_components(forecast, figsize=(7, 6))

S
A

TU
R

A
TIN

G
FO

R
EC

A
STS

• Prophet allows you to make forecasts using a logistic growth
trend model as well

• Will give an example with Datasets Package from
statsmodels

• First lets do a bit of data preproccesing before using the data

get data from statsmodels

co2 = sm.datasets.get_rdataset("co2", "datasets").data

Convert decimal year to pandas datetime

def convert_decimal_year_to_datetime(decimal_years):

dates = [(pd.to_datetime(f'{int(year)}-01-01') + pd.to_timedelta((year -

int(year)) * 365.25, unit='D')).date()

for year in decimal_years]

return dates

Convert to Prophet format

co2['time'] = convert_decimal_year_to_datetime(co2['time'])

co2.rename(columns={'time': 'ds', 'value': 'y'}, inplace=True)

Convert the column ds to datetime

co2['ds'] = pd.to_datetime(co2['ds'])

print("\nConverted:\n------------------\n", co2.head())

S
A

TU
R

A
TIN

G
FO

R
EC

A
STS

Resample to monthly frequency based on the ds column

co2 = co2.resample('MS', on='ds').mean().reset_index()

Replace NaN with the mean of the previous and next value

co2['y'] = co2['y'].interpolate()

print("\nResampled:\n------------------\n", co2.head())print("\nConverted:\n-----

-------------\n", co2.head())

Note that we need to make a copy here since we will modify the data

Split data to training (first 90%) and test data

train = co2.iloc[:int(co2.shape[0] * 0.9)].copy()

test = co2.iloc[int(co2.shape[0] * 0.9):].copy()

fig, ax = plt.subplots(figsize=(10, 4))

train.plot(x='ds', y='y', figsize=(14, 4), grid=True, ax=ax)

test.plot(x='ds', y='y', figsize=(14, 4), grid=True, ax=ax)

plt.show()

S
A

TU
R

A
TIN

G
FO

R
EC

A
STS

• The logistic model requires to specify a carrying capacity,
i.e., the maximum achievable point (total population size)

• The carrying capacity is specified in a column cap

• Normally be set based on expertise and knowledge
Set training cap

train['cap'] = 360

Train the model with logistic

model_logist = Prophet(growth='logistic', # this has changed

seasonality_mode='additive', interval_width=0.90)

model_logist.fit(train);

Make a prediction with the same cap size

future = future = pd.DataFrame({'ds': pd.concat([train['ds'], test['ds']])}) #

Init df for predictions

future['cap'] = 360 #

Set the cap

fcst = model_logist.predict(future) #

Compute forecasts

fig, ax = plt.subplots(figsize=(14, 4))

fig = model_logist.plot(fcst, ax=ax)

ax.plot(test['ds'], test['y'], 'tab:red', marker='o', markersize=3, alpha=0.5);

S
A

TU
R

A
TIN

G
FO

R
EC

A
STS

• The model tries to keep the predictions under the specified cap value

• The value is clearly too low in this case. Try with cap=380 to get better
predictions

• The logistic growth model can also handle a saturating minimum

• This is specified with a column floor in the same way as the cap column
specifies the maximum

• To use a logistic growth trend with a saturating minimum, a maximum
capacity must also be specified

S
A

TU
R

A
TIN

G
FO

R
EC

A
STS

train['y'] = 400 - train['y'] # Modify the data so that the time series decreases

over time

train['cap'] = 85

train['floor'] = 40

future['cap'] = 85

future['floor'] = 40

m = Prophet(growth='logistic')

m.fit(train)

fcst = m.predict(future)

fig = m.plot(fcst, figsize=(14, 4))

T
R

EN
D

C
H

A
N

G
EP

O
IN

TS

• Real time-series frequently have abrupt changes in their
trajectories

• Prophet automatically detects changepoints and allows the
trend to adapt appropriately

• Finer control over this process (e.g., Prophet missed a rate
change, or is overfitting rate changes in the history), with
several input arguments

• Prophet detects changepoints by

• first specifying a large number of potential
changepoints at which the rate is allowed to change

• Then L1 regularization that encourages sparsity, to use
as few of them as possible

T
R

EN
D

C
H

A
N

G
EP

O
IN

TS

• Previous example considered
Data already log-transformed

df =

pd.read_csv('https://raw.githubusercontent.com/facebook/prophet/main/examples/exa

mple_wp_log_peyton_manning.csv')

m = Prophet()

m.fit(df)

future = m.make_future_dataframe(periods=365)

forecast = m.predict(future)

25 potential checkpoints set uniformly across 80% of time series

from prophet.plot import add_changepoints_to_plot

fig = m.plot(forecast, figsize=(14, 4))

a = add_changepoints_to_plot(fig.gca(), m, forecast, threshold=0.0,

cp_color='gray', trend=False)

T
R

EN
D

C
H

A
N

G
EP

O
IN

TS

• Of the 25 used only significant checkpoints are kept based
on rate of change
fig, ax = plt.subplots(figsize=(7, 4))

eps = 5e-3 # small offset to improve visualization

ax.bar(m.changepoints, np.nanmean(m.params['delta'], axis=0)+eps, color='k',

width=40)

ax.fill_between(ax.get_xlim(), 0.01+eps, -0.01-eps, color='r', alpha=0.2,

label='Significance Level')

ax.set_title('Change Points')

ax.set_ylabel('Rate change')

ax.set_xlabel('Potential Changepoints')

plt.legend()

plt.show()

T
R

EN
D

C
H

A
N

G
EP

O
IN

TS

• The default 80% use for checkpoints can be changed using
the changepoint_range argument

• e.g. m = Prophet(changepoint_range=0.9) will place
potential changepoints in the first 90% of the time series

fig = m.plot(forecast, figsize=(14, 4))

a = add_changepoints_to_plot(fig.gca(), m, forecast, threshold=0.01,

cp_color='tab:red', trend=True)

A
D

JU
STIN

G
TR

EN
D

FLEX
IB

ILITY

• Trend changes can be overfit (too much flexibility) or
underfit (not enough flexibility)

• Can adjust the strength of the sparsity prior using the input
argument changepoint_prior_scale

• Default parameter 0.05

• Increasing it will make the trend more flexible

m = Prophet(changepoint_prior_scale=0.5) # Increase prior

forecast = m.fit(df).predict(future)

fig = m.plot(forecast, figsize=(14, 4))

a = add_changepoints_to_plot(fig.gca(), m, forecast, threshold=0.01,

cp_color='tab:red', trend=True)

S
P

EC
IFYIN

G
TH

E
LO

C
A

TIO
N

S
O

F
TH

E
C

H
A

N
G

EP
O

IN
TS

• locations of potential changepoints manually set with the
changepoints argument

• Slope changes will then be allowed only at these points, with
the same sparse regularization as before

• One could, for instance, create automatically a grid of points

• Add specific dates that likely have changes

• Alternatively, limit to a small set of dates
m = Prophet(changepoints=['2014-01-01'])

forecast = m.fit(df).predict(future)

fig = m.plot(forecast, figsize=(14, 4))

a = add_changepoints_to_plot(fig.gca(), m, forecast, threshold=0.01,

cp_color='tab:red', trend=True)

