
ΕΠΛ 428: IOT PROGRAMMING

Dr. Panayiotis Kolios
Assistant Professor, Dept. Computer Science,
KIOS CoE for Intelligent Systems and Networks
Office: FST 01, 116
Telephone: +357 22893450 / 22892695
Web: https://www.kios.ucy.ac.cy/pkolios/

Time series analysis:
Neural Networks

https://www.kios.ucy.ac.cy/pkolios/

• Windowed approaches and nonlinear models for time series
forecasting

• Neural networks and the Multi-Layer Perceptron

• A brief overview of Recurrent Neural Networks

• ESN, a randomized RNN from the family of Reservoir
Computing

• An introduction to dimensionality reduction with Principal
Component Analysis

• Examples of forecasting with MLP and ESN on real-world
electricity data

N
O

N
-LIN

EA
R

M
O

D
ELS

FO
R

TIM
E

SER
IES

FO
R

EC
A

STIN
G

P
YTH

O
N

 LIB
R

A
R

IES TO
 B

E U
SED

Imports

import numpy as np

import matplotlib.pyplot as plt

import time

import plotly.graph_objects as go

import statsmodels.api as sm

from sklearn.datasets import make_circles

from sklearn.neural_network import MLPRegressor

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import mean_squared_error

from sklearn.datasets import make_blobs

from sklearn.decomposition import PCA

from sklearn.linear_model import Ridge

from sklearn.ensemble import HistGradientBoostingRegressor

from reservoir_computing.reservoir import Reservoir

from reservoir_computing.utils import make_forecasting_dataset

from reservoir_computing.datasets import PredLoader

W
IN

D
O

W
ED

A
P

P
R

O
A

C
H

ES
FO

R
P

R
ED

IC
TIO

N

• Windowed methods consider a fixed window of size 𝑃

• Data of time series within the window 𝑥 𝑡 − 𝑃 ,… , 𝑥(𝑡)
used to compute the prediction 𝑥 𝑡 + 𝜏 ,

• Different algorithms combine the elements of the window in
different ways to make predictions

W
IN

D
O

W
ED

A
P

P
R

O
A

C
H

ES
FO

R
P

R
ED

IC
TIO

N

• An example of windowed approach is the linear AR model of
order 𝑃

ො𝑦 𝑡 + 1 = 𝛽0 + 𝛽1x t − 1 + 𝛽2𝑥 𝑡 − 2 +⋯+ 𝛽𝑃𝑥 𝑡 − 𝑃 + 𝜀𝑡

L
IM

ITA
TIO

N
O

F
LIN

EA
R

M
O

D
ELS

• Linear models are widely used for their simplicity and
interpretiveness

• However, linearity assumption between input and output
often fails in practice (cannot capture nonlinearities and
interactions effectively)

• Consider the following examples:
• Compute the position 𝑦 of a robotic arm given the positions

𝑥1, 𝑥2, … of the joints

• Compute a trajectory ො𝑦 given the angular velocities of the joints

E
X

A
M

P
LE: FO

R
EC

A
STIN

G
ELEC

TR
IC

ITY
D

EM
A

N
D

• This is a classic example where linear models fail

• Electricity demand is often governed by complex and nonlinear
interactions:

• Temperature and Demand

• Relationship between temperature and electricity demand
is typically nonlinear and can exhibit a U-shaped curve

• Demand is low at moderate temperatures but increases
sharply at high or low temperatures due to heating and
cooling needs

• Time and Demand

• Demand patterns vary significantly throughout:

• the day (peak hours in the morning and evening)

• week (workdays vs. weekends)

• year (summer vs. winter)

A
D

V
A

N
TA

G
ES

O
F

N
O

N
LIN

EA
R

M
O

D
ELS

• Nonlinear models, include neural networks, SVM, tree-
based methods, etc

• Model the nonlinear relationships between demand and
factors like temperature, capturing the U-shaped curve
accurately

• Take into account the interactions between different
variables, such as the combined effect of time, holidays, and
temperature on demand

• Adapt to various patterns and changes in trends over time,
making them more robust in dynamic environments

N
EU

R
A

L
N

ETW
O

R
K

S

• Neural Nets are universal approximators, i.e., they can learn
to approximate any function

• Basic idea:

• Map the data into a high dimensional space (bless of
dimensionality)

• Apply a nonlinear transformation

• Data become linearly separable

plot_3D()

:data from a lower
dimension (2D) to a
higher dimension
(3D) can become
linearly separable by
a hyperplane

M
U

LTI-L
A

YER
P

ER
C

EP
TR

O
N

• A Multi-Layer Perceptron (MLP) is a simple Neural Network that
consists of at least three layers of nodes:

• An input layer
• One or more hidden layers
• An output layer

• The nodes in the hidden layers apply a nonlinear activation
function 𝜎

• MLP are generally trained with a supervised learning technique
called backpropagation

• The MLP’s layers are fully connected, meaning each node in one
layer connects with a certain weight to every node in the following
layer

• The first layer receives the input.
• The output of each layer is the input for the next layer until the

final layer produces the output of the MLP
• The weights are stored in matrices 𝑊 and are the trainable

parameters of the model
• The MLP can learn complex mappings from inputs to outputs to

perform a wide range of data modeling and prediction tasks

E
X

A
M

P
LE: A

SIM
P

LE
M

LP

• Consider an example of an MLP with one input layer, two
hidden layers (with ℎ1 and ℎ2 units respectively), and one
output layer

• The input vectors are of size 𝑑𝑖𝑛, and the output vectors are
of size 𝑑𝑜𝑢𝑡.

E
X

A
M

P
LE: A

SIM
P

LE
M

LP

• Input layer
• The size of the input layer corresponds to the size of the input vectors, 𝑑𝑖𝑛
• This layer simply passes the input to the first hidden layer without applying

any transformation
• First hidden layer

• This layer has ℎ1nodes
• Each node connects to all the 𝑑𝑖𝑛 inputs.
• It applies a weight matrix 𝑊𝑖𝑛 ∈ ℝ𝑑𝑖𝑛×ℎ1that transforms the input from

vectors in ℝ𝑑𝑖𝑛 to vectors in ℝℎ1

• Then, it applies a nonlinear activation function 𝜎, and outputs intermediate
results

• Second hidden layer
• This layer has ℎ2 nodes
• It takes the outputs ℎ1 from the first hidden layer.
• Αpplies another set of weights and a nonlinear activation function to produce

ℎ2 intermediate results
• Output Layer

• The output layer has 𝑑𝑜𝑢𝑡 units.
• It takes the ℎ2 outputs from the second hidden layer, applies weights and

possibly a different activation function that depends on the task (usually,
softmax for classification or no activation for regression)

• The final output vector is of size 𝑑𝑜𝑢𝑡

M
LP

 FO
R

TIM
E

SER
IES

FO
R

EC
A

STIN
G

• The MLP can be used as a windowed technique to perform
time series forecasting

• The sequence of past values 𝑥 𝑡 − 𝑃 ,… , 𝑥(𝑡) will represent
our input vector (𝑑𝑖𝑛 = P)

• The future value 𝑥 𝑡 + 𝜏 will be the output that the model
will learn to predict (𝑑𝑜𝑢𝑡 = 1)

• We can also train the MLP to predict a sequence 𝑑𝑜𝑢𝑡 = 𝐻 of
future predictions, e.g., 𝑥 𝑡 + 𝜏 , 𝑥 𝑡 + 𝜏 + 1 ,… , 𝑥 𝑡 + 𝜏 + 𝐻

M
LP

 FO
R

TIM
E

SER
IES

FO
R

EC
A

STIN
G

• Key for the training of the MLP is the creation of input-
output pairs {𝑥𝑖 , 𝑦𝑖} used for training

• Given the input 𝑥𝑖 the model must learn to predict the
output 𝑦𝑖

• This is done by adapting the model weights to minimize the
discrepancy between the prediction ො𝑦𝑖 and the desired
output 𝑦𝑖

• The weights are modified according to the gradient taken
with respect to a loss function ℒ(ො𝑦𝑖 , 𝑦𝑖) such that the MSE,

e.g., 𝑊 ←𝑊 + δ
𝜕ℒ

𝜕𝑊
is a small constant defining the gradient

step (learning rate)

M
LP

 FO
R

TIM
E

SER
IES

FO
R

EC
A

STIN
G

• Training samples are generated from chunks of time series

• Each input-output pair consists of:

• a window of past time series values 𝑥 𝑡 − 𝑃 ,… , 𝑥(𝑡)

• a window of future values 𝑥 𝑡 + 𝜏 ,… , 𝑥 𝑡 + 𝜏 + 𝐻

EX
A

M
P

LE

• Consider a time series of electricity consumption registered
on a backbone of the energy distribution network of Rome

• The original time series has 10min resolution

• For this example, we will resample it to 1h resolution as it
will become more smooth (and easier to predict)

• To train our models faster, we will consider only the first
3000 samples
ts_full = PredLoader().get_data('ElecRome')

Resample the time series to hourly frequency

ts_hourly = np.mean(ts_full.reshape(-1, 6), axis=1)

Use only the first 3000 time steps

time_series = ts_hourly[0:3000]

time_steps = np.arange(0, len(time_series))

Split the time series into training and test sets

train_size = int(0.9*len(time_series))

tr = time_series[:train_size]

te = time_series[train_size:]

EX
A

M
P

LE

• Next, we define the function to create input-output pairs.

• For example, we create as input windows of size 𝑃 = 12 by
specifying window_size=12

• Similarly, we create as output windows of size
forecast_horizon=12

• If we are interested in predicting only one sample, e.g., 𝜏 =
12 and 𝐻 = 1, we simply take the last element of the output

def create_windows(data, window_size, forecast_horizon):

X, y = [], []

for i in range(len(data) - window_size - forecast_horizon + 1):

X.append(data[i:(i + window_size)])

y.append(data[i + window_size:i + window_size + forecast_horizon])

return np.array(X), np.array(y)

Define window size and forecast horizon

window_size = 12

forecast_horizon = 12

Create input-output pairs

X_train, y_train = create_windows(tr, window_size, forecast_horizon)

X_test, y_test = create_windows(te, window_size, forecast_horizon)

EX
A

M
P

LE

• Input-output pair visualization (blue input, orange output)

• 𝑃 = 12 𝜏 = 12
Plot some pairs of input-output

fig, axes = plt.subplots(5,1,figsize=(10,8))

for i in range(5):

axes[i].scatter(range(i, window_size+i), X_train[i], color='tab:blue',

edgecolor='k') # Input

axes[i].scatter(range(window_size+i, i+window_size+forecast_horizon-1),

y_train[i,:-1], color='lightgray', edgecolor='k')

axes[i].scatter(i+window_size+forecast_horizon-1, y_train[i,-1],

color='tab:orange', edgecolor='k')

axes[i].set_xlim(-1,28)

plt.xlabel('Time step')

plt.show()

EX
A

M
P

LE

• Predict energy consumption 1-day ahead by looking at the
consumption of the previous 12 hours, forecast_horizon = 24

• Most neural nets, including the MLP, want the data to be
normalized in a small range

• Apply StandardScaler() from the sklearn library

• scaler.fit_transform(X_train) will subtract from X_train
its mean and divide by its variance

• scaler.transform(X_test) will subtract from X_test the
mean of X_train and divide by the variance of X_train

Define window size and forecast horizon

window_size = 12

forecast_horizon = 24

Create input-output pairs

X_train, y_train = create_windows(tr, window_size, forecast_horizon)

X_test, y_test = create_windows(te, window_size, forecast_horizon)

We are only interested in the last time step of the horizon

y_train = y_train[:, -1]

y_test = y_test[:, -1]

Normalize the data

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

EX
A

M
P

LE

• Next, we define the MLP

• Specify the size of the hidden layers as ℎ1 = 16 and
ℎ2 = 8

• Using larger values increases the model capacity, but
can lead to overfit

• As the activation function we use a ReLU

• As the algorithms to compute the gradients and update the
values of the parameters 𝑊 we use Adam

• Finally, we train the model for 1000 iterations

Define and train the neural network

mlp = MLPRegressor(hidden_layer_sizes=(16,8), activation='relu', solver='adam',

max_iter=1000)

mlp.fit(X_train_scaled, y_train)

EX
A

M
P

LE

• Once the model is trained, we can compute the prediction on
the test set

• We can also compute predictions beyond the whole dataset
that we have available

• In this case, we do not have a way to check how well the
model is doing since we do not have the actual data available

• However, it reflects a realistic forecasting scenario where we,
indeed, do not know the future

Predict on the test set

y_pred = mlp.predict(X_test_scaled)

Forecast beyond the dataset using the model

last_window = time_series[-window_size:]

last_window_scaled = scaler.transform(last_window.reshape(1, -1))

next_step_pred = mlp.predict(last_window_scaled)

print(f"The next time step prediction is {next_step_pred[0]:.2f}")

EX
A

M
P

LE

• To check the performance of the model we can compute the
MSE on the predictions of the test set

• We can also visualize the predictions against the real data

Check performance with MSE

mse = mean_squared_error(y_test, y_pred)

print(f"Mean Squared Error: {mse:.2f}")

plt.figure(figsize=(14, 4))

plt.plot(time_steps[2500:], time_series[2500:], label="Actual")

plt.plot(time_steps[-len(y_test):], y_pred, label="Predicted")

plt.title("Time Series Forecast")

plt.xlabel("Time Step")

plt.ylabel("Value")

plt.grid()

plt.legend()

plt.show()

Mean Squared Error: 23.67

EX
A

M
P

LE: H
O

W
G

O
O

D
IS

TH
E

P
R

ED
IC

TIO
N

?

• Compare the performance against a simple baseline

• In this case, we are making a prediction at a forecast horizon
equal to the main seasonality of the time series

• The most natural baseline is to use the values of the previous
day as the prediction for the next day
Compute the mse between the original time series and the time series shifhted

by 24 time steps

mse = mean_squared_error(y_test[24:], y_test[:-24])

print(f"Mean Squared Error: {mse:.2f}")

plt.figure(figsize=(7, 3))

plt.plot(y_test[24:])

plt.plot(y_test[:-24])

plt.grid()

plt.show()

Mean Squared Error: 27.14

W
IN

D
O

W
ED

A
P

P
R

O
A

C
H

ES
D

R
A

W
B

A
C

K
S

• What is the optimal value of 𝑃?

• If 𝑃 is fixed, how can we deal with different temporal
dependencies?

In the first case, we need to go back 4 time steps to retrieve the
information we need. In the second, 9 steps.

• How to set 𝑃? What is the maximum memory we will ever need?

• As discussed previously, setting 𝑃 too high will smooth our data
too much

• Finding a good tradeoff is difficult…

R
EC

U
R

R
EN

T
N

EU
R

A
L

N
ETW

O
R

K
S

• RNNs are a class of neural networks designed to recognize
patterns in sequences of data, such as time series data

• Unlike traditional neural networks, RNNs have a memory
that captures information about what has been calculated so
far, essentially allowing them to make predictions based on
past inputs

• As an RNN processes a sequence 𝑥 maintains information in
a hidden state ℎ

• This process allows the RNN to use previous computations as
a context for making decisions about new data

B
A

C
K

P
R

O
P

A
G

A
TIO

N
T

H
R

O
U

G
H

T
IM

E
(B

P
TT)

• BPTT is the algorithm used for training RNNs

• It involves unfolding the RNN through time to obtain a
standard feed-forward neural network (like an MLP)

• After unfolding, one can apply the standard backpropagation
algorithm

• BPTT computes gradients for each parameter across all time
steps of the input sequence

C
H

A
LLEN

G
ES

A
N

D
SH

O
R

TC
O

M
IN

G
S

IN
R

N
N

S

• In BPTT the gradient has to go through all time steps and, due to
the presence of nonlinearities, it can become too small and not
reach distant time steps

• This creates the problem called vanishing gradient

• Opposed, yet similar, is the problem of exploding gradient
occurring when the gradients grow across the sequence.

• The vanishing gradient problem makes it hard for RNNs to learn
long-range dependencies because updates to the weights become
insignificantly small, causing the learning to stall

• Conversely, exploding gradients can cause weights to oscillate or
diverge

• Techniques such as gradient clipping and gated units (e.g., LSTM,
GRU) have been developed to mitigate these issues

• Another important limitation of the RNNs is that they fail to
exploit hardware acceleration like other neural nets

• This is due to their recurrent nature that requires computations to
be done sequentially rather than in parallel

R
ESER

V
O

IR
C

O
M

P
U

TIN
G

• RC is a family of randomized RNNs, popularized in machine
learning by Echo State Networks (ESNs)

• RC and ESNs are terms often used interchangeably

• There are two main differences that separate an ESN from an
RNN:

• The output weights 𝑊𝑜 is the only part of the ESN that is
trained

R
ESER

V
O

IR
C

O
M

P
U

TIN
G

• Optimizing 𝑊𝑜 can be done with a simple linear regression
algorithm

• The workflow is as follows:

• Generate a sequence of reservoir states 𝐻 = {ℎ 0 ,… , ℎ 𝑡 }

• This is done by applying the state update equation

• for each time step 𝑡 = 1, 2,… , 𝑇 of the input sequence

• The nonlinearity 𝜎 is usually a hyperbolic tangent (tanh).

• Apply a linear regression algorithm to compute a linear
mapping 𝑔(.) between the reservoir states and the desired
output sequence 𝑦 = {𝑦(1), 𝑦(2),… , 𝑦(𝑇)}

• The function 𝑔(.) is called readout

• In a forecasting setting, 𝑦(𝑡) correspond to a future value of
the input, e.g., 𝑦 𝑡 = 𝑥(𝑡 + 𝜏)

ℎ𝑡 = 𝜎(𝑊𝑖𝑥 𝑡 +𝑊ℎℎ 𝑡 − 1)

R
EA

D
O

U
T

• The readout 𝑔(.) is usually implemented through a linear
regression model, e.g., Ridge Regression

• In this case 𝑔(.) corresponds to a weight matrix 𝑊𝑜

• However, any other regression model can be used to
implement the readout, including an ML

R
EA

D
O

U
T

• Fitting an MLP to the readout states is different from the
window approach we saw before

• Window approach:

• The model predicts a future value from the fixed
amount of temporal information contained in the
window

• Reservoir approach:

• The model predicts a future value from a single
Reservoir state

𝑥 𝑡 + 𝜏 = 𝑔(ℎ 𝑡)

𝑥 𝑡 + 𝜏 = 𝑔([𝑥 𝑡 − 𝑃 ,… , 𝑥 𝑡])

W
H

Y
TH

E
R

ESER
V

O
IR

A
P

P
R

O
A

C
H

W
O

R
K

S

• The Reservoir extracts a rich pool dynamical features from
the time series

• These are embedded into the high-dimensional Reservoir
state ℎ 𝑡

• Contrary to a fixed window, ℎ 𝑡 maintains a memory of all
the previous inputs, back to the origin of the series 𝑥 0

• Some of the features are relevant for the task at hand, while
others are not

• The task of the readout is to select those features relevant
for the task

W
H

Y
TH

E
R

ESER
V

O
IR

A
P

P
R

O
A

C
H

W
O

R
K

S

• Say, we want make a forecast 𝜏1 steps ahead

• The readout will select a certain combination of dynamical
features from the Reservoir

• To predict at a different horizon 𝜏2 the readout will select a
different group of features

• Note that in both cases the Readout produces always the
same pool of features!

W
H

Y
TH

E
R

ESER
V

O
IR

A
P

P
R

O
A

C
H

W
O

R
K

S

• The Readout is untrained and its states are generated
without supervision, i.e., without an external guidance.

• Since it does not know what task it will have to solve, the
Readout is configured to produce a pool of dynamic features
that is most rich and varied as possible.

• In other words, the Readout trades the lack of training with a
redundancy of generated features

R
ESER

V
O

IR
C

O
N

FIG
U

R
A

TIO
N

Spectral radius

• More recent inputs must have a stronger influence on the
current state

• So Reservoir should gradually forget its past states

• This is the echo state property

• It ensures to not model noise, to forget sporadic shocks, and
the initial state that is uninformative

• In control theory, this translate in having dynamics that are
contractive (two initially different states eventually
converge)

• On the other hand, we want the Reservoir to produce a rich
pool of features

• Does not happen if the dynamics of the Reservoir are too
conctractive

• Need a sweet spot by tuning a parameter called spectral
radius

R
ESER

V
O

IR
C

O
N

FIG
U

R
A

TIO
N

S
P

EC
TR

A
L

R
A

D
IU

S

• The spectral radius is the largest eigenvalue of the state transition matrix
𝑊ℎ

• We can set the spectral radius by computing the largest eigenvalue 𝜆𝑚𝑎𝑥

of 𝑊ℎ and then letting 𝑊ℎ = 𝜌
𝑊ℎ

𝜆𝑚𝑎𝑥

• A rule of thumb is to set 𝜌 just below 1

• However, to achieve good performance it is often necessary to fine-tune
𝜌 to values that can be lower or even higher than 1

• Another way of determining a good value of 𝜌 is to look at the transient
phase of the Reservoir

• This is how much time it takes to forget the initialization

• Assume two different initializations of the Reservoir state: ℎ1(0) and
ℎ2(0)

• If the Reservoir dynamics is contractive, the effect of the different
initializations will eventually fade

• If it is chaotic, it will persist

ℎ𝑡 = 𝜎(𝑊𝑖𝑥 𝑡 +𝑊ℎℎ 𝑡 − 1)

P
R

A
C

TIC
A

L EX
A

M
P

LE

• Two initializations: ℎ1 0 = [0,… , 0] and ℎ2 0 = [1,… , 1]

• Set the input 𝑥 to be always zero to not let it affect the
evolution of the Reservoir state
Initial states

initial_state_0 = np.zeros((1, 100), dtype=float)

initial_state_1 = np.ones((1, 100), dtype=float)

x = np.zeros((1, 100, 1)) # Zero input, it does not contribute to the state

rhos = [.3, 0.99, 1.3] # We will use three different spectral radii

plot_states_evolution(x, rhos, initial_state_0, initial_state_1)

R
ESER

V
O

IR
C

O
N

FIG
U

R
A

TIO
N

: IN
P

U
T

SC
A

LIN
G

Input scaling
• Another critical value is the input scaling 𝜔𝑖𝑛

• It multiplies the input weights 𝑊𝑖, changing their magnitude

• This is key to control the amount of nonlinearity in the model

• Reservoir units are usually equipped with a tanh activation

• A small value 𝜔𝑖𝑛 maps the Reservoir inputs towards the centre of the
tanh where is more linear

• A small 𝜔𝑖𝑛 reduces the amount of
nonlinearity

• A large 𝜔𝑖𝑛 translates into a more
nonlinear behavior as the tanh is
closer to saturation

• Good starting value around 0.1

R
ESER

V
O

IR
C

O
N

FIG
U

R
A

TIO
N

: R
ESER

V
O

IR
U

N
ITS

Reservoir units
• Another hypeparameter 𝑁ℎ
• A larger value can give better performance at the cost of higher

computation time

• A good starting point is usually 𝑁ℎ = 300, to be increased until there is
no more gain in performance

Readout Sparsity
• There are also other hyperparameters in the ESN, such as the sparsity of

the Readout and an optional noise to inject in the state update equation

• These are usually less critical than 𝜌 and 𝜔𝑖𝑛, and can be left to their
default value in most cases

• Tuning hyperparameters in randomized architectures such as the ESN is
much more important than in trainable neural networks, since there is no
training that can compensate for poorly initialized models

ELEC
TR

IC
ITY

LO
A

D
FO

R
EC

A
STIN

G
W

ITH
ESN

• Use the Python library reservoir-computing

• Tasks in the library include classification, clustering, and
forecasting

• Set input and target data Xtr and Ytr

• Use test data Xte and Yte to test the model

• Validation data Xval and Yval for hyperparameters tuning

Load energy data set

ts_full = PredLoader().get_data('ElecRome')

Resample the time series to hourly frequency

ts_hourly = np.mean(ts_full.reshape(-1, 6), axis=1)[:, None]

Use only the first 3000 time steps

time_series = ts_hourly[0:3000, :]

ELEC
TR

IC
ITY

LO
A

D
FO

R
EC

A
STIN

G
W

ITH
ESN

• Given data X, the function forecasting_datasets computes:
1. Splits the dataset in consecutive chunks: train, val and test.

• The size of the chunks is given by the values val_percent
and test_percent

• If we do not need validation data, set val_percent=0
(default) and the validation data will not be created

2. Create input data X and target data Y by shifting the data horizon
time steps, where horizon is how far we want to predict
• For example:

• Xtr = train[:-horizon,:]
• Ytr = train[horizon:,:]

• Normalizes the data using a scaler from
sklearn.preprocessing

• If no scalers are passed, a StandardScaler is created
• The scaler is fit on Xtr and then used to transform Ytr, Xval,

and Xte
• Note that Yval and Yte are not transformed

ELEC
TR

IC
ITY

LO
A

D
FO

R
EC

A
STIN

G
W

ITH
ESN

Generate training and test datasets

Xtr, Ytr, Xte, Yte, scaler = make_forecasting_dataset(time_series,

horizon=24, # forecast

horizon of 24h ahead

test_percent = 0.1)

print(f"Xtr shape: {Xtr.shape}\nYtr shape: {Ytr.shape}\nXte shape:

{Xte.shape}\nYte shape: {Yte.shape}")

• Define the Reservoir hyperparameters and initialize

• Compute the sequence of the Reservoir states

• Drop the initial states used for initialization ℎ 0

res= Reservoir(n_internal_units=900,

spectral_radius=0.99,

input_scaling=0.1,

connectivity=0.25)

n_drop=10

states_tr = res.get_states(Xtr[None,:,:], n_drop=n_drop, bidir=False)

states_te = res.get_states(Xte[None,:,:], n_drop=n_drop, bidir=False)

print(f"states_tr shape: {states_tr.shape}\nstates_te shape: {states_te.shape}")

ELEC
TR

IC
ITY

LO
A

D
FO

R
EC

A
STIN

G
W

ITH
ESN

• Fit a linear readout implemented by Ridge regressor

• Use it to predict ෠𝑌𝑡𝑒

Fit the ridge regression model

ridge = Ridge(alpha=1.0)

time_start = time.time()

ridge.fit(states_tr[0], Ytr[n_drop:,:])

print(f"Training time: {time.time()-time_start:.4f}s")

Compute the predictions

time_start = time.time()

Yhat = ridge.predict(states_te[0])

print(f"Test time: {time.time()-time_start:.4f}s")

Evaluate performance

mse = mean_squared_error(scaler.inverse_transform(Yhat), Yte[n_drop:,:])

R
ED

U
C

IN
G

TH
E

D
IM

EN
SIO

N
A

LITY
O

F
TH

E
R

ESER
V

O
IR

STA
TES

• Reservoir states contain a rich, yet often redundant, pool of
dynamics

• The readout job is to select only the dynamics that are useful
for the task at hand

• However, training a readout on high-dimensional states is
computational demanding, especially when using a
sophisticated readout

• Also working with high dimensional data can increase the
risk of multicollinearity, which destabilizes certain models,
and overfitting

• May need to limit redundancy in the Reservoir states

• This can be done with an unsupervised dimensionality
reduction procedure

• The most common and efficient dimensionality reduction
procedure is PCA

P
R

IN
C

IP
A

L
C

O
M

P
O

N
EN

T
A

N
A

LYSIS
(P

C
A

)

• PCA is a statistical procedure that utilizes an orthogonal
transformation to convert a set of observations of possibly
correlated variables into a set of values of linearly
uncorrelated variables called principal components

• The number of principal components is less than or equal to
the number of original variables

• By using a few components, PCA reduces the dimensionality
of large data sets, by projecting the data onto a lower-
dimensional space with minimal loss of information

• Our data is a sequence of length 𝑇 Reservoir states, each
one of size 𝑁ℎ

• They can be arranged in a matrix 𝐻 ∈ ℝ𝑇×𝑁ℎ

P
R

IN
C

IP
A

L
C

O
M

P
O

N
EN

T
A

N
A

LYSIS
(P

C
A

)

• To illustrate the procedure, let’s first consider a toy example
with only 𝑁ℎ = 3 features

• In addition, we will create some structure in the data, by
dividing the samples in 4 groups/clusters

• This will help us to see how PCA preserves the structure in
the data
Generate 4 clusters of points in 3 dimensions

T = 300 # number of samples

N_h = 3 # number of features

H, clust_id = make_blobs(n_samples=T, n_features=N_h,

centers=4, cluster_std=1.5, random_state=1)

plot_data(H, clust_id, interactive=False)

P
R

IN
C

IP
A

L
C

O
M

P
O

N
EN

T
A

N
A

LYSIS
(P

C
A

)

Reducing the data dimensionality with PCA invole the following
steps:

1. Standardization

• Scale the data so that each feature has a mean of 0 and a
standard deviation of 1

• This is important because PCA is affected by scale

2. Covariance matrix computation:

• Calculate the empirical covariance matrix 𝐻𝑇𝐻

• The matrix shows how changes in one variable are
associated with changes in another variable

3. Eigenvalues and eigenvectors computation

• The eigenvectors of the covariance matrix represent the
directions of maximum variance

• In the context of PCA, the eigenvectors are the principal
components

• The eigenvalues indicate the variance explained by each
principal component.

P
R

IN
C

IP
A

L
C

O
M

P
O

N
EN

T
A

N
A

LYSIS
(P

C
A

)

4. Sorting eigenvectors:

• The eigenvectors are sorted by decreasing
eigenvalues

• The top-𝑘 eigenvectors are selected, where 𝑘 is the
number of dimensions we want to keep

• In our case, we keep 𝑘 = 2 dimensions

5. Projection onto the new feature space:

• The original data are projected onto the selected
principal components

• In our case, the 3-dimensional data are projected
onto the plane spanned by the first two principal
components

• The projected data are the reduced-dimensional data

P
R

IN
C

IP
A

L
C

O
M

P
O

N
EN

T
A

N
A

LYSIS
(P

C
A

)

Apply PCA to reduce to 2 components

pca = PCA(n_components=2)

H_pca = pca.fit_transform(H)

v1, v2 = pca.components_

Plot the hyperplane spanned by the first two principal components

plot_pca_plane(H, clust_id, v1, v2, interactive=False)

Plot the 2D projection

plt.figure(figsize=(4, 4))

plt.scatter(H_pca[:, 0], H_pca[:, 1], c=clust_id, cmap='viridis', alpha=0.7)

plt.xticks([], []), plt.yticks([], [])

plt.show()

P
R

IN
C

IP
A

L
C

O
M

P
O

N
EN

T
A

N
A

LYSIS
(P

C
A

)

• Can further reduce the number of dimensions

• In this case, we can go down to 1 dimension

• It boils down to projecting the data into the direction of
maximum variation
H_pca_1d = PCA(n_components=1).fit_transform(H)

Plot the 1D projection

plt.figure(figsize=(4, 1.5))

plt.scatter(H_pca_1d, np.zeros_like(H_pca_1d), c=clust_id, cmap='viridis',

alpha=0.7)

plt.xticks([], []), plt.yticks([], [])

plt.show()

R
ED

U
C

IN
G

TH
E

D
IM

EN
SIO

N
A

LITY
O

F
TH

E
R

ESER
V

O
IR

STA
TES

• PCA for Reservoir states

• Since n_internal_units=900, we end up with a sequence of
length 𝑇 of vectors with size 900

• PCA used to reduce the dimensions to 75
PCA for Reservoir states

pca = PCA(n_components=75)

states_tr_pca = pca.fit_transform(states_tr[0])

states_te_pca = pca.transform(states_te[0])

print(f"states_tr shape: {states_tr_pca.shape}\nstates_te shape:

{states_te_pca.shape}")

Fit the ridge regression model

ridge = Ridge(alpha=1.0)

time_start = time.time()

ridge.fit(states_tr_pca, Ytr[n_drop:,:])

print(f"Training time: {time.time()-time_start:.4f}s")

Compute the predictions

time_start = time.time()

Yhat_pca = ridge.predict(states_te_pca)

print(f"Test time: {time.time()-time_start:.4f}s")

Compute the mean squared error

mse = mean_squared_error(scaler.inverse_transform(Yhat_pca), Yte[n_drop:,:])

print(f"Mean Squared Error: {mse:.2f}")

Training time: 0.0018s

Test time: 0.0001s

Mean Squared Error: 20.90

Performance was not impacted a lot but
training and testing time reduced significantly

F
IT

A
G

B
R

T R
EA

D
O

U
T

• Mapping the Reservoir states to the desired output is a standard
regression problem, which can be solved by one of the many standard
regression models in scikit-learn

• For example, we can use a Gradient Boost Regression Tree
(GBRT), which gives us predictions for different quantiles

• In this way, we can compute confidence intervals in our
predictions

• This is a very simple way to implement probabilistic forecasting

• In the following example, we will fit a different model for the 0.5, 0.05
and 0.95 quantiles

• The 0.5 quantile will give us the most likely prediction for the future
values

• The 0.05 and 0.95 quantiles together will us a 90% confidence interval
for our prediction

F
IT

A
G

B
R

T R
EA

D
O

U
T

time_start = time.time()

Quantile 0.5

max_iter = 100

gbrt_median = HistGradientBoostingRegressor(

loss="quantile", quantile=0.5, max_iter=max_iter)

gbrt_median.fit(states_tr[0], Ytr[n_drop:,0])

median_predictions = gbrt_median.predict(states_te[0])

Quantile 0.05

gbrt_percentile_5 = HistGradientBoostingRegressor(

loss="quantile", quantile=0.05, max_iter=max_iter)

gbrt_percentile_5.fit(states_tr[0], Ytr[n_drop:,0])

percentile_5_predictions = gbrt_percentile_5.predict(states_te[0])

Quantile 0.95

gbrt_percentile_95 = HistGradientBoostingRegressor(

loss="quantile", quantile=0.95, max_iter=max_iter)

gbrt_percentile_95.fit(states_tr[0], Ytr[n_drop:,0])

percentile_95_predictions = gbrt_percentile_95.predict(states_te[0])

print(f"Training time: {time.time()-time_start:.2f}s")

• Without PCA training time: 3.37s

• With PCA training time: 1.19s

F
IT

A
G

B
R

T R
EA

D
O

U
T

W
ITH

P
C

A

time_start = time.time()

Quantile 0.5

max_iter = 100

gbrt_median = HistGradientBoostingRegressor(

loss="quantile", quantile=0.5, max_iter=max_iter)

gbrt_median.fit(states_tr_pca, Ytr[n_drop:,0])

median_predictions = gbrt_median.predict(states_te_pca)

Quantile 0.05

gbrt_percentile_5 = HistGradientBoostingRegressor(

loss="quantile", quantile=0.05, max_iter=max_iter)

gbrt_percentile_5.fit(states_tr_pca, Ytr[n_drop:,0])

percentile_5_predictions = gbrt_percentile_5.predict(states_te_pca)

Quantile 0.95

gbrt_percentile_95 = HistGradientBoostingRegressor(

loss="quantile", quantile=0.95, max_iter=max_iter)

gbrt_percentile_95.fit(states_tr_pca, Ytr[n_drop:,0])

percentile_95_predictions = gbrt_percentile_95.predict(states_te_pca)

print(f"Training time: {time.time()-time_start:.2f}s")

