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• Windowed approaches and nonlinear models for time series 
forecasting

• Neural networks and the Multi-Layer Perceptron

• A brief overview of Recurrent Neural Networks

• ESN, a randomized RNN from the family of Reservoir 
Computing

• An introduction to dimensionality reduction with Principal 
Component Analysis

• Examples of forecasting with MLP and ESN on real-world 
electricity data
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# Imports

import numpy as np

import matplotlib.pyplot as plt

import time

import plotly.graph_objects as go

import statsmodels.api as sm

from sklearn.datasets import make_circles

from sklearn.neural_network import MLPRegressor

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import mean_squared_error

from sklearn.datasets import make_blobs

from sklearn.decomposition import PCA

from sklearn.linear_model import Ridge

from sklearn.ensemble import HistGradientBoostingRegressor

from reservoir_computing.reservoir import Reservoir

from reservoir_computing.utils import make_forecasting_dataset

from reservoir_computing.datasets import PredLoader
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• Windowed methods consider a fixed window of size 𝑃

• Data of time series within the window 𝑥 𝑡 − 𝑃 ,… , 𝑥(𝑡)
used to compute the prediction 𝑥 𝑡 + 𝜏 , 

• Different algorithms combine the elements of the window in 
different ways to make predictions
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• An example of windowed approach is the linear AR model of 
order 𝑃

ො𝑦 𝑡 + 1 = 𝛽0 + 𝛽1x t − 1 + 𝛽2𝑥 𝑡 − 2 +⋯+ 𝛽𝑃𝑥 𝑡 − 𝑃 + 𝜀𝑡
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• Linear models are widely used for their simplicity and 
interpretiveness

• However, linearity assumption between input and output 
often fails in practice (cannot capture nonlinearities and 
interactions effectively)

• Consider the following examples:
• Compute the position 𝑦 of a robotic arm given the positions 

𝑥1, 𝑥2, … of the joints

• Compute a trajectory ො𝑦 given the angular velocities of the joints
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• This is a classic example where linear models fail

• Electricity demand is often governed by complex and nonlinear 
interactions:

• Temperature and Demand

• Relationship between temperature and electricity demand 
is typically nonlinear and can exhibit a U-shaped curve

• Demand is low at moderate temperatures but increases 
sharply at high or low temperatures due to heating and 
cooling needs

• Time and Demand

• Demand patterns vary significantly throughout:

• the day (peak hours in the morning and evening)

• week (workdays vs. weekends)

• year (summer vs. winter)
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• Nonlinear models, include neural networks, SVM, tree-
based methods, etc

• Model the nonlinear relationships between demand and 
factors like temperature, capturing the U-shaped curve 
accurately

• Take into account the interactions between different 
variables, such as the combined effect of time, holidays, and 
temperature on demand

• Adapt to various patterns and changes in trends over time, 
making them more robust in dynamic environments
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• Neural Nets are universal approximators, i.e., they can learn 
to approximate any function

• Basic idea:

• Map the data into a high dimensional space (bless of 
dimensionality)

• Apply a nonlinear transformation

• Data become linearly separable

plot_3D()

:data from a lower 
dimension (2D) to a 
higher dimension 
(3D) can become 
linearly separable by 
a hyperplane
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• A Multi-Layer Perceptron (MLP) is a simple Neural Network that 
consists of at least three layers of nodes:

• An input layer
• One or more hidden layers
• An output layer

• The nodes in the hidden layers apply a nonlinear activation 
function 𝜎

• MLP are generally trained with a supervised learning technique 
called backpropagation

• The MLP’s layers are fully connected, meaning each node in one 
layer connects with a certain weight to every node in the following 
layer

• The first layer receives the input.
• The output of each layer is the input for the next layer until the 

final layer produces the output of the MLP
• The weights are stored in matrices 𝑊 and are the trainable 

parameters of the model
• The MLP can learn complex mappings from inputs to outputs to 

perform a wide range of data modeling and prediction tasks
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• Consider an example of an MLP with one input layer, two 
hidden layers (with ℎ1 and ℎ2 units respectively), and one 
output layer

• The input vectors are of size 𝑑𝑖𝑛, and the output vectors are 
of size 𝑑𝑜𝑢𝑡.
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• Input layer
• The size of the input layer corresponds to the size of the input vectors, 𝑑𝑖𝑛
• This layer simply passes the input to the first hidden layer without applying 

any transformation
• First hidden layer

• This layer has ℎ1nodes
• Each node connects to all the 𝑑𝑖𝑛 inputs.
• It applies a weight matrix 𝑊𝑖𝑛 ∈ ℝ𝑑𝑖𝑛×ℎ1that transforms the input from 

vectors in ℝ𝑑𝑖𝑛 to vectors in ℝℎ1

• Then, it applies a nonlinear activation function 𝜎, and outputs intermediate 
results

• Second hidden layer
• This layer has ℎ2 nodes
• It takes the outputs ℎ1 from the first hidden layer.
• Αpplies another set of weights and a nonlinear activation function to produce 

ℎ2 intermediate results
• Output Layer

• The output layer has 𝑑𝑜𝑢𝑡 units.
• It takes the ℎ2 outputs from the second hidden layer, applies weights and 

possibly a different activation function that depends on the task (usually, 
softmax for classification or no activation for regression)

• The final output vector is of size 𝑑𝑜𝑢𝑡
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• The MLP can be used as a windowed technique to perform 
time series forecasting

• The sequence of past values 𝑥 𝑡 − 𝑃 ,… , 𝑥(𝑡) will represent 
our input vector (𝑑𝑖𝑛 = P)

• The future value 𝑥 𝑡 + 𝜏 will be the output that the model 
will learn to predict (𝑑𝑜𝑢𝑡 = 1)

• We can also train the MLP to predict a sequence 𝑑𝑜𝑢𝑡 = 𝐻 of 
future predictions, e.g., 𝑥 𝑡 + 𝜏 , 𝑥 𝑡 + 𝜏 + 1 ,… , 𝑥 𝑡 + 𝜏 + 𝐻
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• Key for the training of the MLP is the creation of input-
output pairs {𝑥𝑖 , 𝑦𝑖} used for training

• Given the input 𝑥𝑖 the model must learn to predict the 
output 𝑦𝑖

• This is done by adapting the model weights to minimize the 
discrepancy between the prediction ො𝑦𝑖 and the desired 
output 𝑦𝑖

• The weights are modified according to the gradient taken 
with respect to a loss function ℒ(ො𝑦𝑖 , 𝑦𝑖) such that the MSE, 

e.g., 𝑊 ←𝑊 + δ
𝜕ℒ

𝜕𝑊
is a small constant defining the gradient 

step (learning rate)



M
LP

 FO
R

TIM
E

SER
IES

FO
R

EC
A

STIN
G

• Training samples are generated from chunks of time series

• Each input-output pair consists of: 

• a window of past time series values 𝑥 𝑡 − 𝑃 ,… , 𝑥(𝑡)

• a window of future values 𝑥 𝑡 + 𝜏 ,… , 𝑥 𝑡 + 𝜏 + 𝐻
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• Consider a time series of electricity consumption registered 
on a backbone of the energy distribution network of Rome

• The original time series has 10min resolution

• For this example, we will resample it to 1h resolution as it 
will become more smooth (and easier to predict)

• To train our models faster, we will consider only the first 
3000 samples
ts_full = PredLoader().get_data('ElecRome')

# Resample the time series to hourly frequency

ts_hourly = np.mean(ts_full.reshape(-1, 6), axis=1)

# Use only the first 3000 time steps

time_series = ts_hourly[0:3000]

time_steps = np.arange(0, len(time_series))

# Split the time series into training and test sets

train_size = int(0.9*len(time_series))

tr = time_series[:train_size]

te = time_series[train_size:]
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• Next, we define the function to create input-output pairs.

• For example, we create as input windows of size 𝑃 = 12 by 
specifying window_size=12

• Similarly, we create as output windows of size 
forecast_horizon=12

• If we are interested in predicting only one sample, e.g., 𝜏 =
12 and 𝐻 = 1, we simply take the last element of the output

def create_windows(data, window_size, forecast_horizon):

X, y = [], []

for i in range(len(data) - window_size - forecast_horizon + 1):

X.append(data[i:(i + window_size)])

y.append(data[i + window_size:i + window_size + forecast_horizon])

return np.array(X), np.array(y)

# Define window size and forecast horizon

window_size = 12

forecast_horizon = 12

# Create input-output pairs

X_train, y_train = create_windows(tr, window_size, forecast_horizon)

X_test, y_test = create_windows(te, window_size, forecast_horizon)
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• Input-output pair visualization (blue input, orange output)

• 𝑃 = 12 𝜏 = 12
# Plot some pairs of input-output

fig, axes = plt.subplots(5,1,figsize=(10,8))

for i in range(5):

axes[i].scatter(range(i, window_size+i), X_train[i], color='tab:blue', 

edgecolor='k')  # Input

axes[i].scatter(range(window_size+i, i+window_size+forecast_horizon-1), 

y_train[i,:-1], color='lightgray', edgecolor='k') 

axes[i].scatter(i+window_size+forecast_horizon-1, y_train[i,-1], 

color='tab:orange', edgecolor='k')

axes[i].set_xlim(-1,28)

plt.xlabel('Time step')

plt.show()
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• Predict energy consumption 1-day ahead by looking at the 
consumption of the previous 12 hours, forecast_horizon = 24

• Most neural nets, including the MLP, want the data to be 
normalized in a small range

• Apply StandardScaler() from the sklearn library

• scaler.fit_transform(X_train) will subtract from X_train
its mean and divide by its variance

• scaler.transform(X_test) will subtract from X_test the 
mean of X_train and divide by the variance of X_train

# Define window size and forecast horizon

window_size = 12

forecast_horizon = 24

# Create input-output pairs

X_train, y_train = create_windows(tr, window_size, forecast_horizon)

X_test, y_test = create_windows(te, window_size, forecast_horizon)

# We are only interested in the last time step of the horizon

y_train = y_train[:, -1]  

y_test = y_test[:, -1] 

# Normalize the data

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)
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• Next, we define the MLP

• Specify the size of the hidden layers as ℎ1 = 16 and 
ℎ2 = 8

• Using larger values increases the model capacity, but 
can lead to overfit

• As the activation function we use a ReLU

• As the algorithms to compute the gradients and update the 
values of the parameters 𝑊 we use Adam

• Finally, we train the model for 1000 iterations

# Define and train the neural network

mlp = MLPRegressor(hidden_layer_sizes=(16,8), activation='relu', solver='adam', 

max_iter=1000)

mlp.fit(X_train_scaled, y_train)
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• Once the model is trained, we can compute the prediction on 
the test set

• We can also compute predictions beyond the whole dataset 
that we have available

• In this case, we do not have a way to check how well the 
model is doing since we do not have the actual data available

• However, it reflects a realistic forecasting scenario where we, 
indeed, do not know the future

# Predict on the test set

y_pred = mlp.predict(X_test_scaled)

# Forecast beyond the dataset using the model

last_window = time_series[-window_size:]

last_window_scaled = scaler.transform(last_window.reshape(1, -1))

next_step_pred = mlp.predict(last_window_scaled)

print(f"The next time step prediction is {next_step_pred[0]:.2f}")
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• To check the performance of the model we can compute the 
MSE on the predictions of the test set

• We can also visualize the predictions against the real data

# Check performance with MSE

mse = mean_squared_error(y_test, y_pred)

print(f"Mean Squared Error: {mse:.2f}")

plt.figure(figsize=(14, 4))

plt.plot(time_steps[2500:], time_series[2500:], label="Actual")

plt.plot(time_steps[-len(y_test):], y_pred, label="Predicted")

plt.title("Time Series Forecast")

plt.xlabel("Time Step")

plt.ylabel("Value")

plt.grid()

plt.legend()

plt.show()

Mean Squared Error: 23.67
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• Compare the performance against a simple baseline

• In this case, we are making a prediction at a forecast horizon 
equal to the main seasonality of the time series

• The most natural baseline is to use the values of the previous 
day as the prediction for the next day
# Compute the mse between the original time series and the time series shifhted

by 24 time steps

mse = mean_squared_error(y_test[24:], y_test[:-24])

print(f"Mean Squared Error: {mse:.2f}")

plt.figure(figsize=(7, 3))

plt.plot(y_test[24:])

plt.plot(y_test[:-24])

plt.grid()

plt.show()

Mean Squared Error: 27.14
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• What is the optimal value of 𝑃?

• If 𝑃 is fixed, how can we deal with different temporal 
dependencies?

In the first case, we need to go back 4 time steps to retrieve the 
information we need. In the second, 9 steps.

• How to set 𝑃? What is the maximum memory we will ever need?

• As discussed previously, setting 𝑃 too high will smooth our data 
too much

• Finding a good tradeoff is difficult…
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• RNNs are a class of neural networks designed to recognize 
patterns in sequences of data, such as time series data

• Unlike traditional neural networks, RNNs have a memory 
that captures information about what has been calculated so 
far, essentially allowing them to make predictions based on 
past inputs

• As an RNN processes a sequence 𝑥 maintains information in 
a hidden state ℎ

• This process allows the RNN to use previous computations as 
a context for making decisions about new data
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• BPTT is the algorithm used for training RNNs

• It involves unfolding the RNN through time to obtain a 
standard feed-forward neural network (like an MLP)

• After unfolding, one can apply the standard backpropagation 
algorithm

• BPTT computes gradients for each parameter across all time 
steps of the input sequence



C
H

A
LLEN

G
ES

A
N

D
SH

O
R

TC
O

M
IN

G
S

IN
R

N
N

S

• In BPTT the gradient has to go through all time steps and, due to 
the presence of nonlinearities, it can become too small and not 
reach distant time steps

• This creates the problem called vanishing gradient

• Opposed, yet similar, is the problem of exploding gradient 
occurring when the gradients grow across the sequence.

• The vanishing gradient problem makes it hard for RNNs to learn 
long-range dependencies because updates to the weights become 
insignificantly small, causing the learning to stall

• Conversely, exploding gradients can cause weights to oscillate or 
diverge

• Techniques such as gradient clipping and gated units (e.g., LSTM, 
GRU) have been developed to mitigate these issues

• Another important limitation of the RNNs is that they fail to 
exploit hardware acceleration like other neural nets

• This is due to their recurrent nature that requires computations to 
be done sequentially rather than in parallel
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• RC is a family of randomized RNNs, popularized in machine 
learning by Echo State Networks (ESNs)

• RC and ESNs are terms often used interchangeably

• There are two main differences that separate an ESN from an 
RNN:

• The output weights 𝑊𝑜 is the only part of the ESN that is 
trained
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• Optimizing 𝑊𝑜 can be done with a simple linear regression 
algorithm

• The workflow is as follows:

• Generate a sequence of reservoir states 𝐻 = {ℎ 0 ,… , ℎ 𝑡 }

• This is done by applying the state update equation

• for each time step 𝑡 = 1, 2,… , 𝑇 of the input sequence

• The nonlinearity 𝜎 is usually a hyperbolic tangent (tanh ).

• Apply a linear regression algorithm to compute a linear 
mapping 𝑔(. ) between the reservoir states and the desired 
output sequence 𝑦 = {𝑦(1), 𝑦(2),… , 𝑦(𝑇)}

• The function 𝑔(. ) is called readout

• In a forecasting setting, 𝑦(𝑡) correspond to a future value of 
the input, e.g., 𝑦 𝑡 = 𝑥(𝑡 + 𝜏)

ℎ𝑡 = 𝜎(𝑊𝑖𝑥 𝑡 +𝑊ℎℎ 𝑡 − 1 )
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• The readout 𝑔(. ) is usually implemented through a linear 
regression model, e.g., Ridge Regression

• In this case 𝑔(. ) corresponds to a weight matrix 𝑊𝑜

• However, any other regression model can be used to 
implement the readout, including an ML
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• Fitting an MLP to the readout states is different from the 
window approach we saw before

• Window approach:

• The model predicts a future value from the fixed 
amount of temporal information contained in the 
window

• Reservoir approach:

• The model predicts a future value from a single 
Reservoir state

𝑥 𝑡 + 𝜏 = 𝑔(ℎ 𝑡 )

𝑥 𝑡 + 𝜏 = 𝑔([𝑥 𝑡 − 𝑃 ,… , 𝑥 𝑡 ])
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• The Reservoir extracts a rich pool dynamical features from 
the time series

• These are embedded into the high-dimensional Reservoir 
state ℎ 𝑡

• Contrary to a fixed window, ℎ 𝑡 maintains a memory of all 
the previous inputs, back to the origin of the series 𝑥 0

• Some of the features are relevant for the task at hand, while 
others are not

• The task of the readout is to select those features relevant 
for the task
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• Say, we want make a forecast 𝜏1 steps ahead

• The readout will select a certain combination of dynamical 
features from the Reservoir

• To predict at a different horizon 𝜏2 the readout will select a 
different group of features

• Note that in both cases the Readout produces always the 
same pool of features!
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• The Readout is untrained and its states are generated 
without supervision, i.e., without an external guidance.

• Since it does not know what task it will have to solve, the 
Readout is configured to produce a pool of dynamic features 
that is most rich and varied as possible.

• In other words, the Readout trades the lack of training with a 
redundancy of generated features
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Spectral radius

• More recent inputs must have a stronger influence on the 
current state

• So Reservoir should gradually forget its past states

• This is the echo state property

• It ensures to not model noise, to forget sporadic shocks, and 
the initial state that is uninformative

• In control theory, this translate in having dynamics that are 
contractive (two initially different states eventually 
converge)

• On the other hand, we want the Reservoir to produce a rich 
pool of features

• Does not happen if the dynamics of the Reservoir are too 
conctractive

• Need a sweet spot by tuning a parameter called spectral 
radius
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• The spectral radius is the largest eigenvalue of the state transition matrix 
𝑊ℎ

• We can set the spectral radius by computing the largest eigenvalue 𝜆𝑚𝑎𝑥

of 𝑊ℎ and then letting 𝑊ℎ = 𝜌
𝑊ℎ

𝜆𝑚𝑎𝑥

• A rule of thumb is to set 𝜌 just below 1

• However, to achieve good performance it is often necessary to fine-tune 
𝜌 to values that can be lower or even higher than 1

• Another way of determining a good value of 𝜌 is to look at the transient 
phase of the Reservoir

• This is how much time it takes to forget the initialization

• Assume two different initializations of the Reservoir state: ℎ1(0) and 
ℎ2(0)

• If the Reservoir dynamics is contractive, the effect of the different 
initializations will eventually fade

• If it is chaotic, it will persist

ℎ𝑡 = 𝜎(𝑊𝑖𝑥 𝑡 +𝑊ℎℎ 𝑡 − 1 )
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• Two initializations: ℎ1 0 = [0,… , 0] and ℎ2 0 = [1,… , 1]

• Set the input 𝑥 to be always zero to not let it affect the 
evolution of the Reservoir state
# Initial states

initial_state_0 = np.zeros((1, 100), dtype=float) 

initial_state_1 = np.ones((1, 100), dtype=float)

x = np.zeros((1, 100, 1)) # Zero input, it does not contribute to the state

rhos = [.3, 0.99, 1.3]    # We will use three different spectral radii

plot_states_evolution(x, rhos, initial_state_0, initial_state_1)
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Input scaling
• Another critical value is the input scaling 𝜔𝑖𝑛

• It multiplies the input weights 𝑊𝑖, changing their magnitude

• This is key to control the amount of nonlinearity in the model

• Reservoir units are usually equipped with a tanh activation

• A small value 𝜔𝑖𝑛 maps the Reservoir inputs towards the centre of the 
tanh where is more linear

• A small 𝜔𝑖𝑛 reduces the amount of 
nonlinearity

• A large 𝜔𝑖𝑛 translates into a more 
nonlinear behavior as the tanh is 
closer to saturation

• Good starting value around 0.1
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Reservoir units
• Another hypeparameter 𝑁ℎ
• A larger value can give better performance at the cost of higher 

computation time

• A good starting point is usually 𝑁ℎ = 300, to be increased until there is 
no more gain in performance

Readout Sparsity
• There are also other hyperparameters in the ESN, such as the sparsity of 

the Readout and an optional noise to inject in the state update equation

• These are usually less critical than 𝜌 and 𝜔𝑖𝑛, and can be left to their 
default value in most cases

• Tuning hyperparameters in randomized architectures such as the ESN is 
much more important than in trainable neural networks, since there is no 
training that can compensate for poorly initialized models
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• Use the Python library reservoir-computing

• Tasks in the library include classification, clustering, and 
forecasting

• Set input and target data Xtr and Ytr

• Use test data Xte and Yte to test the model 

• Validation data Xval and Yval for hyperparameters tuning

# Load energy data set

ts_full = PredLoader().get_data('ElecRome')

# Resample the time series to hourly frequency

ts_hourly = np.mean(ts_full.reshape(-1, 6), axis=1)[:, None]

# Use only the first 3000 time steps

time_series = ts_hourly[0:3000, :]
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• Given data X, the function forecasting_datasets computes:
1. Splits the dataset in consecutive chunks: train, val and test.

• The size of the chunks is given by the values val_percent
and test_percent

• If we do not need validation data, set val_percent=0 
(default) and the validation data will not be created

2. Create input data X and target data Y by shifting the data horizon 
time steps, where horizon is how far we want to predict
• For example:

• Xtr = train[:-horizon,:]
• Ytr = train[horizon:,:]

• Normalizes the data using a scaler from 
sklearn.preprocessing

• If no scalers are passed, a StandardScaler is created
• The scaler is fit on Xtr and then used to transform Ytr, Xval, 

and Xte
• Note that Yval and Yte are not transformed
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# Generate training and test datasets

Xtr, Ytr, Xte, Yte, scaler = make_forecasting_dataset(time_series,

horizon=24, # forecast 

horizon of 24h ahead

test_percent = 0.1)

print(f"Xtr shape: {Xtr.shape}\nYtr shape: {Ytr.shape}\nXte shape: 

{Xte.shape}\nYte shape: {Yte.shape}")

• Define the Reservoir hyperparameters and initialize

• Compute the sequence of the Reservoir states

• Drop the initial states used for initialization ℎ 0

res= Reservoir(n_internal_units=900,

spectral_radius=0.99,

input_scaling=0.1,

connectivity=0.25)

n_drop=10

states_tr = res.get_states(Xtr[None,:,:], n_drop=n_drop, bidir=False)

states_te = res.get_states(Xte[None,:,:], n_drop=n_drop, bidir=False)

print(f"states_tr shape: {states_tr.shape}\nstates_te shape: {states_te.shape}")
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• Fit a linear readout implemented by Ridge regressor

• Use it to predict 𝑌𝑡𝑒

# Fit the ridge regression model

ridge = Ridge(alpha=1.0) 

time_start = time.time()

ridge.fit(states_tr[0], Ytr[n_drop:,:])

print(f"Training time: {time.time()-time_start:.4f}s")

# Compute the predictions

time_start = time.time()

Yhat = ridge.predict(states_te[0])

print(f"Test time: {time.time()-time_start:.4f}s")

# Evaluate performance

mse = mean_squared_error(scaler.inverse_transform(Yhat), Yte[n_drop:,:])
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• Reservoir states contain a rich, yet often redundant, pool of 
dynamics

• The readout job is to select only the dynamics that are useful 
for the task at hand

• However, training a readout on high-dimensional states is 
computational demanding, especially when using a 
sophisticated readout

• Also working with high dimensional data can increase the 
risk of multicollinearity, which destabilizes certain models, 
and overfitting

• May need to limit redundancy in the Reservoir states

• This can be done with an unsupervised dimensionality 
reduction procedure

• The most common and efficient dimensionality reduction 
procedure is PCA
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• PCA is a statistical procedure that utilizes an orthogonal 
transformation to convert a set of observations of possibly 
correlated variables into a set of values of linearly 
uncorrelated variables called principal components

• The number of principal components is less than or equal to 
the number of original variables

• By using a few components, PCA reduces the dimensionality 
of large data sets, by projecting the data onto a lower-
dimensional space with minimal loss of information

• Our data is a sequence of length 𝑇 Reservoir states, each 
one of size 𝑁ℎ

• They can be arranged in a matrix 𝐻 ∈ ℝ𝑇×𝑁ℎ
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• To illustrate the procedure, let’s first consider a toy example 
with only 𝑁ℎ = 3 features

• In addition, we will create some structure in the data, by 
dividing the samples in 4 groups/clusters

• This will help us to see how PCA preserves the structure in 
the data
# Generate 4 clusters of points in 3 dimensions

T = 300 # number of samples

N_h = 3 # number of features

H, clust_id = make_blobs(n_samples=T, n_features=N_h, 

centers=4, cluster_std=1.5, random_state=1)

plot_data(H, clust_id, interactive=False) 
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Reducing the data dimensionality with PCA invole the following 
steps:

1. Standardization

• Scale the data so that each feature has a mean of 0 and a 
standard deviation of 1

• This is important because PCA is affected by scale

2. Covariance matrix computation:

• Calculate the empirical covariance matrix 𝐻𝑇𝐻

• The matrix shows how changes in one variable are 
associated with changes in another variable

3. Eigenvalues and eigenvectors computation

• The eigenvectors of the covariance matrix represent the 
directions of maximum variance

• In the context of PCA, the eigenvectors are the principal 
components

• The eigenvalues indicate the variance explained by each 
principal component.
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4. Sorting eigenvectors:

• The eigenvectors are sorted by decreasing 
eigenvalues

• The top-𝑘 eigenvectors are selected, where 𝑘 is the 
number of dimensions we want to keep

• In our case, we keep 𝑘 = 2 dimensions

5. Projection onto the new feature space:

• The original data are projected onto the selected 
principal components

• In our case, the 3-dimensional data are projected 
onto the plane spanned by the first two principal 
components

• The projected data are the reduced-dimensional data
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# Apply PCA to reduce to 2 components

pca = PCA(n_components=2)

H_pca = pca.fit_transform(H)

v1, v2 = pca.components_

# Plot the hyperplane spanned by the first two principal components

plot_pca_plane(H, clust_id, v1, v2, interactive=False)

# Plot the 2D projection

plt.figure(figsize=(4, 4))

plt.scatter(H_pca[:, 0], H_pca[:, 1], c=clust_id, cmap='viridis', alpha=0.7)

plt.xticks([], []), plt.yticks([], [])

plt.show()



P
R

IN
C

IP
A

L
C

O
M

P
O

N
EN

T
A

N
A

LYSIS
(P

C
A

)

• Can further reduce the number of dimensions

• In this case, we can go down to 1 dimension

• It boils down to projecting the data into the direction of 
maximum variation
H_pca_1d = PCA(n_components=1).fit_transform(H)

# Plot the 1D projection

plt.figure(figsize=(4, 1.5))

plt.scatter(H_pca_1d, np.zeros_like(H_pca_1d), c=clust_id, cmap='viridis', 

alpha=0.7)

plt.xticks([], []), plt.yticks([], [])

plt.show()
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• PCA for Reservoir states

• Since n_internal_units=900, we end up with a sequence of 
length 𝑇 of vectors with size 900

• PCA used to reduce the dimensions to 75
# PCA for Reservoir states

pca = PCA(n_components=75)

states_tr_pca = pca.fit_transform(states_tr[0])

states_te_pca = pca.transform(states_te[0])

print(f"states_tr shape: {states_tr_pca.shape}\nstates_te shape: 

{states_te_pca.shape}")

# Fit the ridge regression model

ridge = Ridge(alpha=1.0) 

time_start = time.time()

ridge.fit(states_tr_pca, Ytr[n_drop:,:])

print(f"Training time: {time.time()-time_start:.4f}s")

# Compute the predictions

time_start = time.time()

Yhat_pca = ridge.predict(states_te_pca)

print(f"Test time: {time.time()-time_start:.4f}s")

# Compute the mean squared error

mse = mean_squared_error(scaler.inverse_transform(Yhat_pca), Yte[n_drop:,:])

print(f"Mean Squared Error: {mse:.2f}")

Training time: 0.0018s

Test time: 0.0001s

Mean Squared Error: 20.90

Performance was not impacted a lot but 
training and testing time reduced significantly
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• Mapping the Reservoir states to the desired output is a standard 
regression problem, which can be solved by one of the many standard 
regression models in scikit-learn

• For example, we can use a Gradient Boost Regression Tree 
(GBRT), which gives us predictions for different quantiles

• In this way, we can compute confidence intervals in our 
predictions

• This is a very simple way to implement probabilistic forecasting

• In the following example, we will fit a different model for the 0.5, 0.05 
and 0.95 quantiles

• The 0.5 quantile will give us the most likely prediction for the future 
values

• The 0.05 and 0.95 quantiles together will us a 90% confidence interval 
for our prediction
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time_start = time.time()

# Quantile 0.5

max_iter = 100

gbrt_median = HistGradientBoostingRegressor(

loss="quantile", quantile=0.5, max_iter=max_iter)

gbrt_median.fit(states_tr[0], Ytr[n_drop:,0])

median_predictions = gbrt_median.predict(states_te[0])

# Quantile 0.05

gbrt_percentile_5 = HistGradientBoostingRegressor(

loss="quantile", quantile=0.05, max_iter=max_iter)

gbrt_percentile_5.fit(states_tr[0], Ytr[n_drop:,0])

percentile_5_predictions = gbrt_percentile_5.predict(states_te[0])

# Quantile 0.95

gbrt_percentile_95 = HistGradientBoostingRegressor(

loss="quantile", quantile=0.95, max_iter=max_iter)

gbrt_percentile_95.fit(states_tr[0], Ytr[n_drop:,0])

percentile_95_predictions = gbrt_percentile_95.predict(states_te[0])

print(f"Training time: {time.time()-time_start:.2f}s")



• Without PCA training time: 3.37s

• With PCA training time: 1.19s
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time_start = time.time()

# Quantile 0.5

max_iter = 100

gbrt_median = HistGradientBoostingRegressor(

loss="quantile", quantile=0.5, max_iter=max_iter)

gbrt_median.fit(states_tr_pca, Ytr[n_drop:,0])

median_predictions = gbrt_median.predict(states_te_pca)

# Quantile 0.05

gbrt_percentile_5 = HistGradientBoostingRegressor(

loss="quantile", quantile=0.05, max_iter=max_iter)

gbrt_percentile_5.fit(states_tr_pca, Ytr[n_drop:,0])

percentile_5_predictions = gbrt_percentile_5.predict(states_te_pca)

# Quantile 0.95

gbrt_percentile_95 = HistGradientBoostingRegressor(

loss="quantile", quantile=0.95, max_iter=max_iter)

gbrt_percentile_95.fit(states_tr_pca, Ytr[n_drop:,0])

percentile_95_predictions = gbrt_percentile_95.predict(states_te_pca)

print(f"Training time: {time.time()-time_start:.2f}s")


