
ΕΠΛ 428: IOT PROGRAMMING

Dr. Panayiotis Kolios
Assistant Professor, Dept. Computer Science,
KIOS CoE for Intelligent Systems and Networks
Office: FST 01, 116
Telephone: +357 22893450 / 22892695
Web: https://www.kios.ucy.ac.cy/pkolios/

Time series analysis:
Nonlinear time series analysis

https://www.kios.ucy.ac.cy/pkolios/

• Dynamical systems and nonlinear dynamics

• Chaotic systems

• Higher-dimensional continuous-time systems

• Phase (state) space of a system

• Fractal dimensions

• Phase space reconstruction and Taken’s embedding
theorem

• Forecasting nonlinear time series

N
O

N
LIN

EA
R

TIM
E

SER
IES

A
N

A
LYSIS

import numpy as np

import matplotlib.pyplot as plt

import plotly.graph_objects as go

from scipy.integrate import solve_ivp

from sklearn.neighbors import NearestNeighbors

from sklearn.ensemble import RandomForestRegressor

from sklearn.metrics import mean_squared_error

from sklearn.decomposition import PCA

from reservoir_computing.reservoir import Reservoir

from reservoir_computing.utils import make_forecasting_dataset

from tsa_course.lecture11 import computeLE, plot_bifurcation_diagram

np.random.seed(0)

D
YN

A
M

IC
A

L
S

YSTEM
S

• A dynamic system is a set of functions (rules, equations) specifying how
variables change over time

• For example:

• Here, 𝑥 and 𝑦 represent the variables of a 2-dimensional system, while
𝑎, 𝑏, 𝑐 are the parameters

• Variables change over time, parameters do not

• In a discrete system the variables are restricted to integer values

• In a continuous system, variables can assume real values

• The system can be stochastic (one set of rules, many realizations) or
deterministic (one set of rules, one realization)

• The state of a dynamic system at time is specified by the current value of
its variables 𝑥(𝑡), 𝑦(𝑡), …

• The process of calculating the new state of a discrete system is called
iteration

• To evaluate how a system behaves, we need the functions, the
parameter values, and the initial conditions, e.g., 𝑥(0), 𝑦(0), …

𝑥 𝑡 + 1 = 𝑎 · 𝑥 𝑡 + 𝑏 · 𝑦(𝑡)

D
YN

A
M

IC
A

L
S

YSTEM
S

• Let’s consider a classic example: alpha model

• It specifies how 𝑞(𝑡), the probability of making an error on trial, changes
from one trial to the next:

• The new error probability is diminished by 𝛽 ∈ (0,1)

𝑞 𝑡 + 1 = 𝛽𝑞(𝑡)

def alpha(beta, q):

return beta * q # Sytem equation

beta = 0.9 # System parameter

q = [1] # Initial condition

for _ in range(20):

q.append(alpha(beta, q[-1])) # Iteration

fig = plt.figure(figsize=(4, 2.5))

plt.plot(q, 'o-')

plt.xlabel('Trial (t)')

plt.ylabel('Error probability ($q(t)$)')

plt.show()

N
O

N
-LIN

EA
R

D
YN

A
M

IC
A

L
S

YSTEM
S

• Linear systems are those with linear state updates
equations, i.e., something of the form 𝑦 𝑡 = 𝑎𝑥 𝑡 + 𝑏

• The alpha model is linear

• Do not be confused by the non-linear curve we plot above:
that is the behavior of the system, not the functions that
specify its changes

• Logistic map

• Is a very famous equation to describe the growth of a
population

• Is a non-linear model

• Is often used to introduce the notion of chaos

LO
G

ISTIC
 M

A
P

• Let’s first use a simple linear model to describe the
population growth 𝑥 𝑡 + 1 = 𝑟𝑥 𝑡 , with 𝑟 the growth rate

• If 𝑟 > 1, the population grows exponentially without limit

def simple_growth(r, x):

return r * x

r = 1.5 # Each year x is increased by 50%

x = [16] # Initial number of individuals

for _ in range(20):

x.append(simple_growth(r, x[-1]))

fig = plt.figure(figsize=(4, 2.5))

plt.plot(x, 'o-')

plt.xlabel('Years (t)')

plt.ylabel('Population size ($x(t)$)')

plt.show()

LO
G

ISTIC
 M

A
P

• Logistic Map prevents unlimited growth by inhibiting growth
whenever it achieves a high level

• This is achieved by introducing an additional term (1 −
𝑥(𝑡))

• The growth measure 𝑥 is also rescaled so that the maximum
value that 𝑥 can achieve is 1

• So if the maximum size is 8 billions, 𝑥 is the proportion of
that maximum

• The new growth model is

• and 1 − 𝑥 𝑡 inhibits the growth because

• as 𝑥 𝑡 approaches 1, 1 − 𝑥 𝑡 approaches 0

𝑥 𝑡 + 1 = 𝑟𝑥 𝑡 1 − 𝑥 𝑡 , 𝑟 ∈ [0,4]

LO
G

ISTIC
 M

A
P

• Let’s first use a simple linear model to describe the
population growth 𝑥 𝑡 + 1 = 𝑟𝑥 𝑡 , with 𝑟 the growth rate

• If 𝑟 > 1, the population grows exponentially without limit
def logistic(r, x):

return r * x * (1 - x)

x = np.linspace(0, 1)

fig, ax = plt.subplots(1, 1, figsize=(4, 3))

ax.plot(x, logistic(2, x), 'k')

ax.set_title('Logistic map')

ax.set_xlabel('$x(t)$')

ax.set_ylabel('$x(t+1)$')

plt.show()

LO
G

ISTIC
 M

A
P

• logistic map changes drastically its behavior depending the
the value of the parameter 𝑟

• Regime 𝑟 < 1

• the system x will go toward 0 (one-point attractor)

fig, ax = plt.subplots(1, 1, figsize=(4, 3))

plot_time_series(r=0.25, x0=0.1, n=20, color='tab:blue', ax=ax)

plot_time_series(r=0.5, x0=0.1, n=20, color='tab:red', ax=ax)

plot_time_series(r=0.75, x0=0.1, n=20, color='tab:green', ax=ax)

LO
G

ISTIC
 M

A
P

• See a current state 𝑥(𝑡) relates to previous state 𝑥(𝑡 − 1)

fig, ax = plt.subplots(1, 1, figsize=(6, 5.5))

plot_system(r=0.75, x0=.6, n=20, ax=ax)

LO
G

ISTIC
 M

A
P

• Regime 1 < 𝑟 < 3

• still a one-point attractor, but now the shape changes
with the value of 𝑟

• As before, the initial state is inconsequential and its
effect is washed-out eventually

fig, ax = plt.subplots(1, 1, figsize=(4, 3))

plot_time_series(r=1.25, x0=0.1, n=20, color='tab:blue', ax=ax)

plot_time_series(r=2.0, x0=0.1, n=20, color='tab:red', ax=ax)

plot_time_series(r=2.75, x0=0.1, n=20, color='tab:green', ax=ax)

LO
G

ISTIC
 M

A
P

• As we get closer to 𝑟 = 3 the state oscillates more and more
before settling down to its attractor

fig, ax = plt.subplots(1, 1, figsize=(6, 5.5))

plot_system(r=2.9, x0=.1, n=30, ax=ax)

LO
G

ISTIC
 M

A
P

• Regime 𝑟 > 3

• system starts oscillating between two points

• We have a two-point attractor

• The phenomenon called bifurcation, or period-doubling
fig, ax = plt.subplots(1, 1, figsize=(5, 3))

plot_time_series(r=3.2, x0=0.1, n=30, color='tab:blue', ax=ax)

LO
G

ISTIC
 M

A
P

• At 𝑟 = 3.54

• We have another bifurcation, 4-point attractor

• Number of bifurcations keeps growing as 𝑟 increases

• Results to N-point attractor that looks “unstable”

fig, ax = plt.subplots(1, 1, figsize=(5, 3))

plot_time_series(r=3.54, x0=0.1, n=30, color='tab:blue', ax=ax)

LO
G

ISTIC
 M

A
P

• This a characterizing property of chaotic systems.

fig, ax = plt.subplots(1, 1, figsize=(5, 3))

plot_time_series(r=3.99, x0=0.1, n=30, color='tab:blue', ax=ax)

B
IFU

R
C

A
TIO

N
D

IA
G

R
A

M
S

• A bifucation is a period-doubling, i.e., a change from an 𝑁-
point attractor to a 2𝑁-point attractor

• In the Logistic map, it occurs when the control parameter r
changes

• A bifurcation diagram is a visual summary of the succession
of period-doubling produced as the control parameter
changes

B
IFU

R
C

A
TIO

N
D

IA
G

R
A

M
S

• To compute the bifurcation diagram of the logistic map.

• On the x-axis, we have the value of 𝑟

• On the y-axis, we have the number of distinct points
the system settles down to

def bifuracion_diagram(r, ax, iterations=1000, last=100):

x = 1e-5 * np.ones_like(r)

for i in range(iterations):

x = logistic(r, x)

if i >= (iterations - last): # plot only the 'last' last iterations

ax.plot(r, x, ',k', alpha=.25)

ax.set_title("Bifurcation diagram")

ax.set_xlabel("r")

ax.set_ylabel("x")

r = np.linspace(0, 4.0, 30000)

fig, ax = plt.subplots(1, 1, figsize=(15, 7), dpi=250)

bifuracion_diagram(r, ax)

ax.vlines(3.569945, 0, 1, 'tab:red', linestyles='--', alpha=0.5, label='Edge of

Chaos (Feigenbaum point)')

plt.legend()

plt.show()

• We see that for 𝑟 < 1, zero is the one point attractor.
• For 1 < 𝑟 < 3 we still have one-point attractors, but the ‘attracted’ value of

𝑥 increases as r increases
• Bifurcations occur at 𝑟 = 3, 3.45, 3.54, 3.564, 3.569, etc
• Approximately at 𝑟 = 3.57 our system becomes chaotic
• However, the system is not chaotic for all values of 𝑟 greater than 3.57

B
IFU

R
C

A
TIO

N
D

IA
G

R
A

M
S

• At several values of 𝑟 > 3.57 there are regions where a small number of 𝑥-values are visited

• These regions produce the white spaces in the diagram

• For example, at 𝑟 = 3.83 there is a three-point attractor

• Between 3.57 and 4 there is a rich interleaving of chaos and order

• A small change in 𝑟 can make a stable system chaotic, and vice-versa

n = 30000 # number of values of r

r = np.linspace(3.5, 4.0, n)

fig, ax = plt.subplots(1, 1, figsize=(15, 7), dpi=250)

bifuracion_diagram(r, ax)

plt.show()

C
H

A
O

TIC
SYSTEM

S

• Many real-world phenomena are chaotic, particularly those
that involve nonlinear interactions among many agents
(complex systems)

• Examples can be found in meteorology, economics, biology,
and other disciplines

C
H

A
O

TIC
SYSTEM

P
R

O
P

ER
TIES

• Sensitivity to initial conditions

• A characterizing feature of chaotic systems is their
sensitivity to initial conditions

• Logistic map for 𝑟 = 3.99

• We will start from two very close initial conditions:

• 𝑥 0 = 0.1 and 𝑥(0) = 0.101

fig, ax = plt.subplots(1, 1, figsize=(10, 3))

plot_time_series(r=3.99, x0=0.1, n=50, color='tab:blue', ax=ax)

plot_time_series(r=3.99, x0=0.101, n=50, color='tab:red', ax=ax)

C
H

A
O

TIC
SYSTEM

P
R

O
P

ER
TIES

• Sensitivity to initial conditions

• Even for two really close points 𝑥 0 = 0.1 and
𝑥(0) = 0.100001

• Hence in a chaotic system, no matter how close the initial conditions
are, if they are different, the trajectories will eventually diverge

fig, ax = plt.subplots(1, 1, figsize=(10, 3))

plot_time_series(r=3.99, x0=0.1, n=50, color='tab:blue', ax=ax)

plot_time_series(r=3.99, x0=0.100001, n=50, color='tab:red', ax=ax)

C
H

A
O

TIC
SYSTEM

P
R

O
P

ER
TIES

Detecting chaos

• How do we determine if a system has a contractive or
chaotic dynamics?

• There are several tools

1. Measure the sensitivity to initial conditions

• The Lyapunov exponent

2. Return maps

3. Power Spectrum

L
YA

P
U

N
O

V
EX

P
O

N
EN

T

• The Lyapunov exponent quantifies the rate at which nearby
trajectories in the system diverge or converge over time

• It tells us how sensitive a system is to its initial conditions, a
property often associated with chaotic behavior

• There are actually several Lyapunov exponents for a given
system, corresponding to different directions in the system’s
phase space

• The largest Lyapunov exponent is most commonly used to
detect chaos

• A system is considered chaotic if it has at least one positive
Lyapunov exponent

L
YA

P
U

N
O

V
EX

P
O

N
EN

T

• Let a dynamical system be defined as:

• where

• �̇� is the time derivative of 𝑥

• 𝑓(𝑥, 𝑡) is the function defining the system’s evolution
over time

• Consider two nearby points in the system’s phase space 𝑥0
and 𝑥0 + 𝛿𝑥0, where δ𝑥0 is a small perturbation

• Their trajectories diverge over time according to

• where

• 𝛿𝑥(𝑡) is the separation between the two trajectories at
time 𝑡

• 𝜆 is the Lyapunov exponent

�̇� = 𝑓(𝑥, 𝑡)

𝛿𝑥(𝑡) ≈ 𝛿𝑥0𝑒
𝜆𝑡

L
YA

P
U

N
O

V
EX

P
O

N
EN

T

• The exponent is calculated as follows:

• This limit, if it exists, gives the average rate of exponential
divergence (if 𝜆 > 0) or convergence (if 𝜆 < 0) of trajectories
starting from infinitesimally close initial conditions

• The exponent can often be computed analytically

• Otherwise, computed numerically by observing how small
perturbations evolve over time

• A positive Lyapunov exponent implies that small differences
in initial conditions lead to exponential divergence of
trajectories

• This makes long-term predictions very difficult despite the
system being deterministic

• This sensitivity to initial conditions is often referred to as the
butterfly effect in the context of chaos theory

𝜆 = lim
𝑡→∞

lim
𝛿𝑥0 →0

1

𝑡
ln

𝛿𝑥 𝑡

𝛿𝑥0

L
YA

P
U

N
O

V
EX

P
O

N
EN

T

• Function to plot the Lyapunov exponent in the logistic map
as we increase 𝑟

• We will color in red values of 𝑟 associated with 𝜆 > 0 , which
indicates that the system has a chaotic behavior

• To check if the Lyapunov exponent works as a chaos
detector, we will compare it with the bifurcation map

def lyapunov(r, ax, iterations=1000):

x = 1e-5 * np.ones_like(r)

lyapunov = np.zeros_like(r)

for i in range(iterations):

x = logistic(r, x)

lyapunov += np.log(abs(r - 2 * r * x)) # Partial sum of the Lyapunov exponent

ax.axhline(0, color='k', lw=.5, alpha=.5)

Negative Lyapunov exponent

ax.plot(r[lyapunov < 0],

lyapunov[lyapunov < 0] / iterations,

'.k', alpha=.5, ms=.5)

Positive Lyapunov exponent

ax.plot(r[lyapunov >= 0],

lyapunov[lyapunov >= 0] / iterations,

'.', color='tab:red', alpha=.5, ms=.5)

ax.set_ylim(-2, 1)

ax.set_title("Lyapunov exponent")

L
YA

P
U

N
O

V
EX

P
O

N
EN

T

r = np.linspace(2.8, 4.0, 30000)

fig, axes = plt.subplots(2, 1, figsize=(15, 12), dpi=250)

bifuracion_diagram(r, axes[0])

axes[0].vlines(3.569945, 0, 1, 'tab:red', linestyles='--', alpha=0.5, label='Edge of

Chaos')

axes[0].legend()

lyapunov(r, axes[1])

plt.show()

R
ETU

R
N

M
A

P
S

• Another important distinction is between chaos and
randomness

• At first glance, a chaotic and a stochastic processes
look alike

• Consider the time series of samples generated by:

• a uniform distribution,

• a normal distribution,

• the Logistic map for 𝑟 = 3.99

uniform_data = np.random.uniform(low=0, high=1, size=300) # Random uniform

normal_data = np.random.randn(300) # Random normal

lgt_data = np.empty(300) # Logistic map

lgt_data[0] = 0.1

for i in range(1, len(lgt_data)):

lgt_data[i] = logistic(3.99, lgt_data[i-1])

R
ETU

R
N

M
A

P
S

• Tools to determine if a system is chaotic or random

• return map is one of them

• Simply plotting the current value 𝑥(𝑡) against the next one
𝑥(𝑡 + 1)

• if random, no or little structure seen as the next value
is uncorrelated with the current one

• if chaotic, a well-defined structure seen

fig, axes = plt.subplots(1,3,figsize=(15, 3))

axes[0].plot(uniform_data)

axes[1].plot(normal_data)

axes[2].plot(lgt_data)

plt.tight_layout()

plt.show()

R
ETU

R
N

M
A

P
S

def return_map(series, ax, title):

ax.plot(series[:-1], series[1:], 'o', alpha=0.2)

ax.set_xlabel('$x(t)$')

ax.set_ylabel('$x(t+1)$')

ax.set_title(title)

fig, axes = plt.subplots(1,3,figsize=(10, 3))

return_map(uniform_data, axes[0], "Random uniform")

return_map(normal_data, axes[1], "Random normal")

return_map(lgt_data, axes[2], "Logistic map")

plt.tight_layout()

plt.show()

H
IG

H
ER-D

IM
EN

SIO
N

A
L

C
O

N
TIN

O
U

S-TIM
E

SYSTEM
S

• Logistic map had only one variable: 𝑥(𝑡)

• In general, we can have systems with two or more variables

• The number of variables defines the dimensionality of the system

• The state of a system is the current values of its variables

• Most of the time series we saw originated from discrete-time systems that
evolve at specific intervals in time

• The time variable 𝑡 takes values from a discrete set, often integers, indicating
distinct time steps or periods

• The dynamics of discrete-time systems are described using difference equations,
e.g., 𝑥(𝑡 + 1) = 𝑓(𝑥(𝑡))

• Discrete-time systems are common in DSP, computer algorithms, and any context
where observations or changes occur at well-defined intervals

• In continuous-time systems, the time variable 𝑡 can take any value in a range of
real numbers

• The dynamics of continuous-time systems are described using differential
equations that model how the state variables change with respect to continuous

time, e.g.,
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥)

• Many physical and natural processes are modeled as continuous-time
systems, such as the motion of planets, electrical circuits, and fluid
dynamics

2
D

 -
L

O
TK

A-V
O

LTER
R

A
EQ

U
A

TIO
N

S

• The Lotka-Volterra equations are used to model the predator-prey population
system

• It extends the logistic map by modeling the interactions between two species: a
predator and its prey

• The growth of the two species is affected by the presence of the other speciemen

• The Logistic map is a discrete-time, univariate model represented by a single
equation

• The predator-prey model is a continuous-time, bivariate system

• The Lotka-Volterra equations for predator-prey dynamics are given by:

• where x, y is the prey/predator populations,
𝑑𝑥

𝑑𝑡
and

𝑑𝑦

𝑑𝑡
are rate of change over 𝑡

• 𝛼 is the natural growth rate of prey in the absence of predators

• 𝛽 is the death rate of prey due to predation

• 𝛿 is the efficiency of converting consumed prey into predator offspring

• 𝛾 is the natural death rate of predators in the absence of food (prey)

𝑑𝑥

𝑑𝑡
= 𝛼𝑥 − 𝛽𝑥𝑦

𝑑𝑦

𝑑𝑡
= 𝛿𝑥𝑦 − 𝛾𝑦

2
D

 -
L

O
TK

A-V
O

LTER
R

A
EQ

U
A

TIO
N

S

• This system can exhibit a variety of dynamics, including stable limit cycles, where
the populations of predators and prey oscillate in a regular, periodic fashion

• The attractor in the Lotka-Volterra system, in this case, is typically a closed loop,
reflecting the cyclic nature of the predator-prey interactions

2
D

 -
L

O
TK

A-V
O

LTER
R

A
EQ

U
A

TIO
N

S

• Define the system of differential equations

• Compute the system values, using numerical solver scipy.integrate.solve_ivp

• Solver takes a single state variable, so define z = [x, y]

• Note that the variable 𝑡 is not used in the function we define, but is
necessary to the solver

• Use a function lokta_volterra_attractor that:

• Runs the solver computing the sequence of states over time

• Plots the time series of the state variables and attractor

Lotka-Volterra equations

def lotka_volterra(t, z, alpha, beta, delta, gamma):

x, y = z

dxdt = alpha * x - beta * x * y

dydt = delta * x * y - gamma * y

return [dxdt, dydt]

def lokta_volterra_attractor(z0, t, alpha=2, beta=1.25, gamma=1.5, delta=0.75,

ax1=None, ax2=None):

Solve the differential equations

sol = solve_ivp(lotka_volterra, [t.min(), t.max()], z0,

args=(alpha, beta, delta, gamma), t_eval=t)

2
D

 -
L

O
TK

A-V
O

LTER
R

A
EQ

U
A

TIO
N

S

t = np.linspace(0, 200, 10000)

_, axes = plt.subplots(1, 2, figsize=(12,4))

z0 = [0.43, 1.36]

lokta_volterra_attractor(z0, t, ax1=axes[0], ax2=axes[1])

2
D

 -
L

O
TK

A-V
O

LTER
R

A
EQ

U
A

TIO
N

S

_, ax = plt.subplots(1, 1, figsize=(5, 5))

z0 = [0.9, 0.9]

lokta_volterra_attractor(z0, t, ax2=ax)

z0 = [0.4, 0.4]

lokta_volterra_attractor(z0, t, ax2=ax)

z0 = [0.2, 0.2]

lokta_volterra_attractor(z0, t, ax2=ax)

plt.tight_layout()

plt.show()

R
Ö

SSLER
SYSTEM

• The Rössler system is notable for its chaotic behavior, which
emerges from a simple set of non-linear ordinary differential
equations (ODEs)

• x, y and z are the system states over time t, and a, b and c,
and are parameters that determine the system’s behavior

• Typical values that lead to chaotic behavior are 𝑎 = 0.2, 𝑏 =
0.2, and c = 5.7, though chaos can be observed for other
values as well

𝑑𝑥

𝑑𝑡
= −𝑦 − 𝑧

𝑑𝑦

𝑑𝑡
= 𝑥 + 𝑎𝑦

𝑑𝑧

𝑑𝑡
= 𝑏 + 𝑧(𝑥 − 𝑐)

R
Ö

SSLER
SYSTEM

as
Define the Rössler attractor system of equations

def rossler_system(t, y, a, b, c):

x, y, z = y

dxdt = -y - z

dydt = x + a*y

dzdt = b + z*(x - c)

return [dxdt, dydt, dzdt]

Parameters

a, b, c = 0.2, 0.2, 5.7

y0 = [0.0, 2.0, 0.0] # Initial conditions

T = 500 # Final time

t_span = [0, T] # Time span for the integration

Solve the differential equations

solution = solve_ivp(rossler_system, t_span, y0, args=(a, b, c),

dense_output=True)

t = np.linspace(0, T, int(5e4))

ross_sol = solution.sol(t)

R
Ö

SSLER
SYSTEM

Plot time series

fig, ax = plt.subplots(1,1,figsize=(10, 3))

ax.plot(t, ross_sol[0], label="x(t)")

ax.plot(t, ross_sol[1], label="y(t)")

ax.plot(t, ross_sol[2], label="z(t)")

ax.set_xlabel("Time")

ax.set_xlim(0, 150)

plt.legend()

plt.show()

R
Ö

SSLER
SYSTEM

def plot_attractor(data, title="", interactive=False):

xt, yt, zt = data[0], data[1], data[2]

if interactive:

fig = go.Figure(data=[go.Scatter3d(x=xt, y=yt, z=zt, mode='lines',

line=dict(color='black', width=1))])

fig.update_layout(title=title, scene=dict(xaxis_title='x(t)',

yaxis_title='y(t)', zaxis_title='z(t)'),

autosize=False, width=800, height=600,

margin=dict(l=0, r=0, b=0, t=0))

fig.show()

else:

fig = plt.figure(figsize=(8, 8))

ax = fig.add_subplot(111, projection='3d')

ax.plot(xt, yt, zt, linewidth=0.2, alpha=0.7, color='k')

ax.set_title(title)

plt.show()

Plot the Rössler attractor

plot_attractor(ross_sol, title="Rössler Attractor", interactive=False)

L
O

R
EN

Z
SYSTEM

• The Lorenz system was one of the first examples to demonstrate the
phenomenon of deterministic chaos

• Like the other chaotic systems, this one exhibits sensitive dependence on initial
conditions

• Also, it generates apparently random and unpredictable patterns, despite being
governed by deterministic laws

• The study of the Lorenz system has had profound implications across numerous
fields, from meteorology and climate science to engineering.

L
O

R
EN

Z
SYSTEM

• It challenged previous notions of predictability in physical
systems and contributed to the development of chaos theory:

• deepening the understanding of complex systems,

• highlighting the limitations of current prediction models
in systems with chaotic dynamics,

• inspiring new approaches in the analysis and control of
such systems.

• The Lorenz system is defined by the following set of non-
linear ODEs:

• Typical values at which the Lorenz system shows a chaotic
behavior are 𝜎 = 10, 𝜌 = 28, and 𝛽 = 8/3

𝑑𝑥

𝑑𝑡
= 𝜎(𝑦 − 𝑥)

𝑑𝑦

𝑑𝑡
= 𝑥 𝜌 − 𝑧 − 𝑦

𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝛽𝑧

L
YA

P
U

N
O

V
EX

P
O

N
EN

TS
IN

H
IG

H
ER

D
IM

EN
SIO

N
A

L

C
O

N
TIN

U
O

U
S

SYSTEM
S

• Previously, we introduced the largest Lyapunov exponent 𝜆 as
a tool for detecting chaos

• For the Logistic map, we showed that when 𝜆 > 0 the
dynamic of the system is chaotic

• In higher dimensional continuous systems, the analysis of
Lyapunov exponents remains a crucial method for
understanding the system’s dynamics

• In particular, they can still be used to determine stability and
the onset of chaos

• However, in this setting things become more complicated

L
YA

P
U

N
O

V
EX

P
O

N
EN

TS
IN

H
IG

H
ER

D
IM

EN
SIO

N
A

L

C
O

N
TIN

U
O

U
S

SYSTEM
S

• In one-dimensional discrete systems like the Logistic map,
there is typically one Lyapunov exponent

• In a continuous system of dimension, there are usually
Lyapunov exponents

• Calculating these exponents involves complex numerical
methods to handle the evolving tangent space dynamics

• Calculating them is also computationally expensive and
sensitive to numerical precision

L
YA

P
U

N
O

V
EX

P
O

N
EN

TS
IN

H
IG

H
ER

D
IM

EN
SIO

N
A

L

C
O

N
TIN

U
O

U
S

SYSTEM
S

• Additionally, the initial conditions and parameter values have
a stronger influence on the Lyapunov spectrum

• Positive exponents indicate directions in which the system exhibits
sensitive dependence on initial conditions, a characteristic of
chaotic dynamics

• Zero exponents suggest neutral stability along certain directions,
often associated with conserved quantities or symmetries in the
system

• Negative exponents reflect directions of convergence, indicating
stability in those dimensions

• The largest Lyapunov exponent is still the most important in
predicting the overall system behavior, particularly chaos

• However, the entire spectrum can provide insights into more
complex dynamics like:

• mixed modes (simultaneous stable and chaotic behaviors),

• hyperchaotic systems (systems with more than one positive
Lyapunov exponent)

L
YA

P
U

N
O

V
EX

P
O

N
EN

TS
IN

H
IG

H
ER

D
IM

EN
SIO

N
A

L

C
O

N
TIN

U
O

U
S

SYSTEM
S

• To compute the Lyapunov spectrum we use the function
computeLE(func, func_jac, x0, t, p)

• The arguments of the function are:

• func, which specifies the differential equations of the dynamical
system,

• func_jac, which is the Jacobian of the system, i.e., the partial
derivatives,

• x0, which represents the initial conditions,

• t, the time vector specifying the time steps along which the
trajectory of the system is computed,

• p, the parameters of the system.

• For the Lorenz system, func is defined as follows

def lorenz(t, x, sigma, rho, beta):

res = np.zeros_like(x)

res[0] = sigma*(x[1] - x[0])

res[1] = x[0]*(rho - x[2]) - x[1]

res[2] = x[0]*x[1] - beta*x[2]

return res

JA
C

O
B

IA
N

M
A

TR
IX

• The Jacobian of the system is the matrix of the partial derivatives

• Consider a general dynamical system with three variables 𝑥, 𝑦 and 𝑧

• Jacobian is:

• For the Lorenz system:

ቐ

�̇� = 𝑓 𝑥, 𝑦, 𝑧
�̇� = 𝑔(𝑥, 𝑦, 𝑧)
�̇� = ℎ(𝑥, 𝑦, 𝑧)

𝐽 =

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦

𝜕𝑓

𝜕𝑧
𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑦

𝜕𝑔

𝜕𝑧
𝜕ℎ

𝜕𝑥

𝜕ℎ

𝜕𝑦

𝜕ℎ

𝜕𝑧

𝐽𝐿𝑜𝑟𝑒𝑛𝑠 =

−𝜎 𝜎 0
𝜌 − 𝜁 −1 −𝑥
𝑦 𝑥 −𝛽

JA
C

O
B

IA
N

M
A

TR
IX

• Jacobian of the Lorenz system:

• Specify the initial conditions 𝑥0, the time vector 𝑡, and parameters
𝑝 (𝜎, 𝜌, 𝛽) for the Lorenz system

• One of the Lyapunov exponents is positive

• This suggests that the Lorenz system configured with the specific values of
exhibits a chaotic behavior along one direction

def lorenz_jac(t, x, sigma, rho, beta):

res = np.zeros((x.shape[0], x.shape[0]))

res[0,0], res[0,1] = -sigma, sigma

res[1,0], res[1,1], res[1,2] = rho - x[2], -1., -x[0]

res[2,0], res[2,1], res[2,2] = x[1], x[0], -beta

return res

x0 = np.array([1.5, -1.5, 20.])

t = np.arange(0, 1000, 1e-2)

sigma, rho, beta = 10., 28., 8/3

p = (sigma, rho, beta)

LEs, hist = computeLE(lorenz, lorenz_jac, x0, t, p=p)

print(f"Lyapunov Exponents: {LEs}")

Lyapunov Exponents: [9.06320944e-01 -2.38039941e-03 -1.45705049e+01]

B
IFU

R
C

A
TIO

N
D

IA
G

R
A

M
S

IN
H

IG
H

ER
D

IM
EN

SIO
N

A
L

C
O

N
TIN

U
O

U
S

SYSTEM
S

• Bifurcation diagrams also for higher dimensional continuous
systems

• With 2 differences compared to unidimensional discrete
systems

1. Since we have more system’s parameters, we should
change one at the time

2. System variables assume values in a continuous
interval
• In the continuum we cannot plot all the values assumed by

the time series

• To detect period-doubling we can plot the local maxima and
minima of the time series

• In a contractive regime, the time series will oscillate between
a limited number of local minima/maxima

• At the onset of chaos, the number of local minima/maxima
will start to grow

B
IFU

R
C

A
TIO

N
D

IA
G

R
A

M
S

IN
H

IG
H

ER
D

IM
EN

SIO
N

A
L

C
O

N
TIN

U
O

U
S

SYSTEM
S

• As for the Lyapunov exponent, we will use a function from the companion
code of this course, plot_bifurcation_diagram

• The function takes the following arguments:

• func, func_jac, x0, time_vector are the same as before

• parameters is the set of parameters we want to try. Only one
parameter should vary, while the others remain constant

• p_idx is the index of the parameter that changes in parameters.

• max_time is the number of time steps from time_vector used to
estimate the Lyapunov exponents. If left to None all time steps will
be used. Since this function takes a lot of time, it’s a good idea to
set a limit.

• Example to compute the bifurcation diagram for Lorenz system as we vary
the parameter 𝜌 ∈ [1, 100]

• The other parameters are kept fixed: 𝜎 = 10 and 𝛽 = 8/3

B
IFU

R
C

A
TIO

N
D

IA
G

R
A

M
S

IN
H

IG
H

ER
D

IM
EN

SIO
N

A
L

C
O

N
TIN

U
O

U
S

SYSTEM
S

• # Specify the parameters to try

sigma, beta = 10, 8/3

r_values = np.arange(20, 100, 0.05)

params = np.array([np.tile(sigma, len(r_values)), r_values, np.tile(beta,

len(r_values))]).T

x0 = [1.5, -1.5, 20.] # Initial conditions

t = np.arange(0, 10, 0.002) # Time vector

plot_bifurcation_diagram(func=lorenz, func_jac=lorenz_jac,

x0=x0, time_vector=t,

parameters=params, p_idx=1, max_time=500)

P
H

A
SE

SP
A

C
E

• Current state of a system is treated as a point in the phase space or state
space

• The phase space represents all the possible states of a system

• It defines how system variables 𝑥, 𝑦, 𝑧 interact and evolve

• Phase space gives us complete knowledge about the current state of
system

• We are particularly interested its trajectory (or orbit) over time

• Knowing it, allows us to make predictions about future states of the
system

• Clearly, this of key importance in time series forecasting

P
H

A
SE

SP
A

C
E

• To identify the trajectory of the system in the phase space, we have to
identify properties of its attractor

• One of these properties, is its dimentionality

• To determine the dimensionality of an attractor, especially strange
attractors of chaotic systems, we have to revise our concept of
dimensionality

F
R

A
C

TA
L

D
IM

EN
SIO

N
S

• We commonly understand dimensions from a geometric perspective:
length, width, depth

• Common geometrical objects such as a line, a square, or a cube require an
increasing number of dimensions to contain them

• The concept of dimensions is also tied to common measures on these
objects such as their perimeter, area, and volume, which require an
increasing number of dimensions to express them

• In this perspective, dimensions are integers and the idea of a fractional
dimension, e.g., 𝑑 = 1.26 makes little sense

F
R

A
C

TA
L

D
IM

EN
SIO

N
S

• Scaling perspective

• Think at dimensions as how much they scale up some quantity

• For example, let’s double the edge of a square

• The perimeter will grow by a factor of 2, while the area by a factor
of 4

• If we double the edge of a cube its volume gets 8 times bigger

• Similarly, we can divide an edge into 𝑟 pieces and counting how
many parts we obtain

• Let 𝑟 be the scaling factor and N the number of pieces we obtain

• For the line is straightforward:

• Easily derive the following rule: N = 𝑟𝐷 with 𝐷 = 1 for the line

F
R

A
C

TA
L

D
IM

EN
SIO

N
S

• N = 𝑟𝐷 with 𝐷 = 2 for the square

• N = 𝑟𝐷 with 𝐷 = 3 for the cube

F
R

A
C

TA
L

D
IM

EN
SIO

N
S

• Fractal object (or Koch curve or snowflake)

• Approximate the length of the curve with segments of decreasing length

F
R

A
C

TA
L

D
IM

EN
SIO

N
S

• N = 𝑟𝐷 is key to find the dimensionality of the fractal object

• Intuition
• need a bit more “dimensionality” to contain this object than what

we need to contain a line, but less than what we need to contain
an area

• Sierpinski triangle example

• Need more “dimensionality” to contain this object than the Koch curve,
but, due to all the “holes”, still less than an area

4 = 3𝐷 → log 4 = log 3 · 𝐷 → 𝐷 =
log 4

log 3
≈ 1.26

𝐷 =
log 3

log 2
≈ 1.58

C
H

A
O

S
A

N
D

F
R

A
C

TA
LS

• There is a deep and ubiquitous connection between chaos and fractals

• For example, some bifurcation diagrams are self-similar

• If we zoom-in on the value 𝑟 ≈ 3.83 of the bifurcation diagram of the
Logistic map, the situation nearby looks like a shrunk and slightly
distorted version of the whole diagram

• The same is true for all other non-chaotic points

C
H

A
O

S
A

N
D

F
R

A
C

TA
LS

• Mandelbrot Set and the bifurcation map of the Logistic map

• the trajectory of a strange attractor fills in a fraction of the phase space

• i.e., the dimensionality of the attractor of a chaotic system is fractal

• Determining such dimensionality is key to reconstruct the phase space

P
H

A
SE

SP
A

C
E

R
EC

O
N

STR
U

C
TIO

N

• Dynamical systems are often governed by the evolution of several
interacting variables 𝑥1, 𝑥2, … , 𝑥𝐷

• In reality we can only observe (measure) a subset of the system’s
variables or a function of them 𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝐷)

• Examples

• In the Lorenz system, we might observe only the variable 𝑦(𝑡)

• In weather forecasting, meteorologists often have access only to
partial observations of a subset of variables such as temperature,
pressure, humidity, wind patterns, and geographic features.
However, there are many other variables that are inaccessible
such as detailed atmospheric conditions, microclimates, oceans’
temperatures, currents, the presence of pollutants, etc.

P
H

A
SE

SP
A

C
E

R
EC

O
N

STR
U

C
TIO

N

• Can we reconstruct the trajectory of the system in the state space from
partial observations?

• If we are able to do so, we can predict the future states of the systems,
including the observed time series

• Takens’ Embedding Theorem

• Assume a dynamical system with an unknown or partially known
state space

• Takens’ Embedding Theorem says that it is possible to reconstruct
the dynamics of the whole system using a series of observations
from a single variable

• This means that even if we cannot observe the entire state of a system
directly, we can still understand its dynamics through proper analysis of a
single observable variable

T
IM

E-D
ELA

Y
EM

B
ED

D
IN

G
V

EC
TO

R

• Time-delay embedding vector

• Let 𝑥(𝑡) be the observed time series

• Let embedding vector 𝑒 𝑡 = [𝑒1, 𝑒2, … , 𝑒𝑁] defined as:

• Here, 𝜏 is a chosen time delay and 𝑚 is the embedding dimension

𝑒1 𝑡 = 𝑥(𝑡)
𝑒2 𝑡 = 𝑥(𝑡 + 𝜏)
𝑒3 𝑡 = 𝑥 𝑡 + 2𝜏

…
𝑒𝑚 𝑡 = 𝑥(𝑡 + (𝑚 − 1)𝜏)

def takens_embedding(data, delay, dimension):

embedding = np.array([data[0:len(data)-delay*dimension]])

for i in range(1, dimension):

embedding = np.append(embedding, [data[i*delay:len(data) -

delay*(dimension - i)]], axis=0)

return embedding.transpose()

T
IM

E-D
ELA

Y
EM

B
ED

D
IN

G
V

EC
TO

R

• t = np.linspace(0, 10*np.pi, 400)

x = np.sin(t) # time series

tau = 3 # time delay

N = 7 # embedding dimension

emb = takens_embedding(x, tau, N) # compute embeddings

cmap = plt.get_cmap('inferno')

fig, ax = plt.subplots(1,1, figsize=(10,3))

for i in range(N):

_label = f"$x(t + {i}*\\tau)$" if i > 0 else f'$x(t)$'

ax.plot(emb[:,i], label=_label, color=cmap(i / (N - 1)))

plt.legend()

plt.title('Time-delay embedding vectors')

plt.show()

T
IM

E-D
ELA

Y
EM

B
ED

D
IN

G
V

EC
TO

R
Theorem formulation

• Takens’ theorem does not specify how to choose 𝑚 and 𝜏

• It only asserts that for a system with an attractor of (fractional) dimension

• 𝐷, an embedding dimension 𝑚 > 2𝐷 is sufficient to ensure a
diffeomorphic (topologically equivalent) embedding under generic
conditions

• Intuitively, the embedding dimension must be large enough to unfold the
attractor fully in the reconstructed phase space, capturing its dynamics
without self-intersections

T
IM

E-D
ELA

Y
EM

B
ED

D
IN

G

Estimating time delay, 𝜏
• We can rely on mutual information (MI) to compute 𝜏

• MI quantifies the amount of information between two
random variables
• Here computing MI between time series and its lagged

version
• MI like a powerful autocorrelation that captures also non-

linear relationships

• When MI reaches its minimum for a certain lag 𝜏, the
observations are sufficiently independent while still retaining
meaningful information about the dynamics of the system

T
IM

E-D
ELA

Y
EM

B
ED

D
IN

G

1. Compute the minimum 𝑥𝑚𝑖𝑛 and maximum 𝑥𝑚𝑎𝑥 of the
time series

2. Split the interval [𝑥𝑚𝑖𝑛 𝑥𝑚𝑎𝑥] into 𝑛𝑏𝑖𝑛𝑠bins
3. Denote 𝑝𝑡(ℎ) the probability that an element of 𝑥(𝑡) is in

the ℎ-bin
4. Denote 𝑝𝑡+𝜏 𝑘 the probability that an element of 𝑥(𝑡 + 𝜏)

is in the 𝑘-th bin
5. Denote the probability 𝑝𝑡,𝑡+𝜏 ℎ, 𝑘 that 𝑥(𝑡) is in the ℎ-th

bin, while 𝑥(𝑡 + 𝜏) is in the 𝑘-th bin
6. Define the MI as:

7. Compute 𝜏∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜏𝐼(τ)

𝐼 𝜏 = −

ℎ=1

𝑛𝑏𝑖𝑛𝑠

𝑘=1

𝑛𝑏𝑖𝑛𝑠

𝑝𝑡,𝑡+𝜏 (ℎ, 𝑘) log
𝑝𝑡,𝑡+𝜏(ℎ, 𝑘)

𝑝𝑡(ℎ) · 𝑝𝑡+𝜏(𝑘)

T
IM

E-D
ELA

Y
EM

B
ED

D
IN

G

Parameters

a, b, c = 0.2, 0.2, 5.7

y0 = [0.0, 2.0, 0.0] # Initial conditions

T = 1500 # Final time

t_span = [0, T] # Time span for the integration

Solve the differential equations

solution = solve_ivp(rossler_system, t_span, y0, args=(a, b, c),

dense_output=True)

t = np.linspace(0, T, int(5e3))

ross_sol = solution.sol(t)

ross_ts = ross_sol[0]

plt.figure(figsize=(14,3))

plt.plot(ross_ts[:500])

plt.grid()

plt.show()

• Calculate MI for different values of τ, display it, and find its
first minimum (optimal embedding delay)

T
IM

E-D
ELA

Y
EM

B
ED

D
IN

G

def mutual_information(data, delay, n_bins):

"""

Calculate the mutual information for a given delay using histograms.

"""

Prepare delayed data

delayed_data = data[delay:]

original_data = data[:-delay]

Compute histograms

p_x, bin_edges = np.histogram(original_data, bins=n_bins, density=True)

p_y, _ = np.histogram(delayed_data, bins=bin_edges, density=True)

p_xy, _, _ = np.histogram2d(original_data, delayed_data, bins=bin_edges,

density=True)

Calculate mutual information

mutual_info = 0

for i in range(n_bins):

for j in range(n_bins):

if p_xy[i, j] > 0 and p_x[i] > 0 and p_y[j] > 0:

mutual_info += p_xy[i, j] * np.log(p_xy[i, j] / (p_x[i] *

p_y[j]))

return mutual_info

MI = []

for i in range(1,25):

MI = np.append(MI,[mutual_information(ross_ts,i,50)])

plt.figure(figsize=(6,3))

plt.plot(range(1,25), MI)

plt.xlabel('delay’) plt.ylabel('mutual information')

plt.grid() plt.show()

• Optimal value τ=4 or 5
• Things change quite a lot if data are sampled with different frequencies
• In this example we used t = np.linspace(0, 1500, int(5e3)).
• Try to see how things change for t = np.linspace(0, 500, int(5e4)) the

time vector we used before to draw the attractor in the Rössler system
• The result is also influenced by the value of n_bins
• Choosing these kind of hyperparameters is often a sensitive choice in

estimators for information theoretical quantities such as the MI

T
IM

E-D
ELA

Y
EM

B
ED

D
IN

G

Estimating the embedding dimension 𝑚

• We can estimate 𝑚 by using a measure called false nearest
neighbours (FNN)

• The false neighbors are points that appear close in lower
dimensions due to projection, but are not actually close in
the higher-dimensional space

• The main idea behind FNN is to increase the embedding
dimension until the fraction of false neighbors falls below a
certain threshold

T
IM

E-D
ELA

Y
EM

B
ED

D
IN

G

1. Start with a low embedding dimension 𝑚 = 1

2. For each point in the reconstructed phase space, identify its
nearest neighbor

3. Calculate the distance between each point and its nearest
neighbor in the current embedding dimension 𝑚 and then
in the next higher dimension 𝑚 + 1

4. Determine if the neighbor is ‘false’ by checking if the
distance between the point and its nearest neighbor
increases significantly when moving from dimension 𝑚 to
𝑚 + 1. A neighbor is considered false if:

• where 𝑅𝑚is the distance between the point and its nearest
neighbor in dimension 𝑚

• 𝑅𝑡𝑜𝑡𝑎𝑙threshold for deciding if the increase is significant

T
IM

E-D
ELA

Y
EM

B
ED

D
IN

G

𝑅𝑚+1 − 𝑅𝑚
𝑅𝑚

> 𝑅𝑡𝑜𝑙

5. Compute the fraction of false nearest neighbors for the
current dimension

6. Repeat the process by increasing 𝑚 until the fraction of
false nearest neighbors a sufficiently low value indicating
that the attractor is completely unfolded

T
IM

E-D
ELA

Y
EM

B
ED

D
IN

G

def calculate_fnn(data, delay, max_emb_dim, R_tol=10):

fnn_proportions = []

for m in range(1, max_emb_dim + 1):

Compute embeddings in m and m+1

emb_m = takens_embedding(data, delay, m)

emb_m_plus_one = takens_embedding(data, delay, m + 1)

Compute the nearest neighbors in m

nbrs = NearestNeighbors(n_neighbors=2).fit(emb_m[:-delay])

distances, indices = nbrs.kneighbors(emb_m[:-delay])

n_false_nn = 0

for i in range(0, len(distances)):

Nearest neighbor of i in m and distance from it

neighbor_index, R_m = indices[i, 1], distances[i, 1]

Dinstance in m+1 from the nearest neighbor in m

R_m_plus_one = np.linalg.norm(emb_m_plus_one[i] -

emb_m_plus_one[neighbor_index])

fNN formula

if abs(R_m_plus_one - R_m) / R_m > R_tol:

n_false_nn += 1

fnn_proportion = n_false_nn / len(indices)

fnn_proportions.append(fnn_proportion)

return fnn_proportions

T
IM

E-D
ELA

Y
EM

B
ED

D
IN

G

nFNN = calculate_fnn(ross_ts, delay=5, max_emb_dim=6)

plt.figure(figsize=(6,3))

plt.plot(range(1,len(nFNN)+1),nFNN);

plt.xlabel('Embedding dimension')

plt.ylabel('Fraction of fNN')

plt.grid()

plt.show()

• The fraction of fNN drops to zero for 𝑚 = 3

• This makes sense, since we know that the Rössler system
has 3 state variables and its attractor is contained in more
than 2 dimensions

T
IM

E-D
ELA

Y
EM

B
ED

D
IN

G

emb = takens_embedding(ross_ts, delay=5, dimension=3)

plot_attractor(emb.T, title="Reconstructed Rössler Attractor",

interactive=False)

• Reconstructing the attractor

• The reconstruction closely
resemble the original
attractor

• Remember that the
reconstructed attractor needs
not to be equal to the actual
attractor but only
diffeomorphic (topologically
equivalent)

F
O

R
EC

A
STIN

G
N

O
N

LIN
EA

R
TIM

E
SER

IES

• Regression on the Taken’s embeddings
• Taken’s embeddings are related to the windowed

approach for forecasting
• Example of the relationship

• Given a time series 𝑥(𝑡), a time delay 𝜏, and an
embedding dimension 𝑚, the matrix Ε of Takens’
embeddings can be represented as:

• Each row should contain enough information to describe the
dynamics of the system at a certain time step

• Use this information to make future predictions
• For example, we can use the first row to predict the next value

𝑥(𝑡 + 𝑚𝜏)

Ε =

𝑥(𝑡) 𝑥(𝑡 + 𝜏) 𝑥(𝑡 + 2𝜏) … 𝑥(𝑡 − 𝑚 − 1 𝜏)

𝑥(𝑡 + 1) 𝑥(𝑡 + 𝜏 + 1) 𝑥(𝑡 + 2𝜏 + 1) … 𝑥(𝑡 − 𝑚 − 1 𝜏 + 1)

𝑥(𝑡 + 2)
⋮

𝑥(𝑇 − 𝑚 − 1 𝜏)

𝑥(𝑡 + 𝜏 + 2)
⋮

𝑥(𝑇 − (𝑚 − 2)𝜏)

𝑥(𝑡 + 2𝜏 + 2) … 𝑥(𝑡 − 𝑚 − 1 𝜏 + 2)
⋮ ⋱ ⋮

𝑥(𝑇 − 𝑚 − 3 𝜏) … 𝑥 𝑇

1. Compute the embeddings using as dimension 𝑚+ 1

2. Then, use as input all the columns of Ε except the last one,
emb[:,:-1], which will be the target

• This corresponds to taking a window of size 𝑚 samples
taken every 𝜏 time steps and making a prediction 𝜏 steps
ahead
def forecast_on_phase_space(y, delay, dimension, test_prop):

Compute embeddings

emb = takens_embedding(y, delay=delay, dimension=dimension)

Create input and target

X = emb[:, :-1]

y = emb[:, -1]

Divide into train and test

test_size = int(len(y)*test_prop)

X_train = X[:-test_size, :]

y_train = y[:-test_size]

X_test = X[-test_size:, :]

y_test = y[-test_size:]

Fit the regressor on the training data

rf = RandomForestRegressor().fit(X_train, y_train)

Predict the test data

preds = rf.predict(X_test)

print(f'MSE: {mean_squared_error(y_test, preds):.3f}')

plt.figure(figsize=(14,3))

plt.plot(y_test, label='True') plt.plot(preds, label='Prediction')

plt.grid() plt.legend() plt.show()

MSE: 0.215

U
SE E

C
H

O
S

TA
TE

N
ETW

O
R

K

• Instead of time embeddings, use states of the Reservoir of
an Echo State Network as input for our regression model

• Perform the same prediction 𝜏-steps ahead

Xtr, Ytr, Xte, Yte, scaler = make_forecasting_dataset(ross_ts[:,None],

horizon=5,

test_percent = 0.1)

print(f"Xtr shape: {Xtr.shape}\nYtr shape: {Ytr.shape}\nXte shape:

{Xte.shape}\nYte shape: {Yte.shape}")

initialize the Reservoir and compute the states

res= Reservoir(n_internal_units=900,

spectral_radius=0.99,

input_scaling=0.1,

connectivity=0.25)

n_drop=10

states_tr = res.get_states(Xtr[None,:,:], n_drop=n_drop, bidir=False)

states_te = res.get_states(Xte[None,:,:], n_drop=n_drop, bidir=False)

print(f"states_tr shape: {states_tr.shape}\nstates_te shape: {states_te.shape}")

reduce the dimensionality of the Reservoir states with PCA

pca = PCA(n_components=3)

states_tr_pca = pca.fit_transform(states_tr[0])

states_te_pca = pca.transform(states_te[0])

print(f"states_tr shape: {states_tr_pca.shape}\nstates_te shape:

{states_te_pca.shape}")

U
SE E

C
H

O
S

TA
TE

N
ETW

O
R

K

Fit the regression model

rf = RandomForestRegressor().fit(states_tr_pca, Ytr[n_drop:,:].ravel())

Compute the predictions

Yhat_pca = rf.predict(states_te_pca)[...,None]

Compute the mean squared error

mse = mean_squared_error(scaler.inverse_transform(Yhat_pca), Yte[n_drop:,:])

print(f"MSE: {mse:.2f}")

MSE: 0.18

• ESN is particular good in predicting non-linear time series and chaotic
systems in general

• Reservoir manages very well to reproduce the dynamics in the
underlying system

