
ΕΠΛ 428: IOT PROGRAMMING

Dr. Panayiotis Kolios
Assistant Professor, Dept. Computer Science,
KIOS CoE for Intelligent Systems and Networks
Office: FST 01, 116
Telephone: +357 22893450 / 22892695
Web: https://www.kios.ucy.ac.cy/pkolios/

Time series analysis:
Time series classification and
clustering

https://www.kios.ucy.ac.cy/pkolios/

• Intro to classification and clustering

• Similarity and dissimilarity measures and their impact in
classification and clustering

• Similarity measures for time series.

• Classification and clustering of time series.
Imports

import warnings

warnings.filterwarnings("ignore")

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

from matplotlib.colors import ListedColormap

⋮
from sklearn.mixture import GaussianMixture

from sklearn.neighbors import KNeighborsClassifier

from scipy.cluster.hierarchy import linkage, dendrogram, fcluster

import scipy.spatial.distance as ssd

import statsmodels.api as sm

from dtaidistance import dtw, dtw_ndim

from dtaidistance import dtw_visualisation as dtwvis

from tck.TCK import TCK

from tck.datasets import DataLoader

from reservoir_computing.reservoir import Reservoir

from reservoir_computing.tensorPCA import tensorPCA

from reservoir_computing.modules import RC_model

from reservoir_computing.utils import compute_test_scores

C
LA

SSIFIC
A

TIO
N

A
N

D
C

LU
STER

IN
G

• Classification is a supervised task: a classifier uses external
supervision to learn a task

• Use classes of information (labels)

• A classifier fits its parameters to predict the correct label

• This can be seen as learning where to put a decision
boundary that separates the classes

• Most classifiers trade an accurate fit of the training data
with generalization capabilities on out-of-sample data

• The behavior is controlled by hyperparameters that are set
through a validation procedure (and usually some
experience)

• Here we use SVC, which is a Support Vector Machine (SVM)
for classification

Generate some toy data

data = datasets.make_blobs(n_samples=800, centers=[[-5,-7], [5,5], [-3,4]],

cluster_std=[1.7, 2.5, 1.5], random_state=8)

X, y = data

X = StandardScaler().fit_transform(X)

C
LA

SSIFIC
A

TIO
N

A
N

D
C

LU
STER

IN
G

• Change gamma to investigate performance

plot_class_example(X, y, gamma=0.1)

C
LA

SSIFIC
A

TIO
N

A
N

D
C

LU
STER

IN
G

• Clustering is an unsupervised task

• It only looks at the structure of the data without using
additional information (class labels, extra data, human
knowledge, etc…)

• A clustering algorithm groups data together so that each
group is compact and separated from the others

• Clustering gives insights about the structure of the data

• The number of clusters is often not given

We use the same data (X) as before, but not the labels (y)

plot_cluster_example(X, K=2)

P
ER

FO
R

M
A

N
C

E
M

ETR
IC

S

• There are many metrics to evaluate the performance in
classification and clustering tasks

• Depend on the problem at hand

• Often use more than metric for evaluation

• Consider:

• accuracy and F1 score for classification

• NMI for clustering

P
ER

FO
R

M
A

N
C

E
M

ETR
IC

S

• Classification accuracy is the simplest way to measure of
how well a classification model performs

• Ratio of correctly predicted observations to the total
observations:

• TP: true positive, TN: true negative, FP: false positive, FN:
false negative

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃

Split the data in training and test set

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=0)

Fit the classifier

clf = svm.SVC(kernel="linear")

clf.fit(X_train, y_train)

Compute predictions and accuracy

y_pred = clf.predict(X_test)

print(f"Accuracy: {accuracy_score(y_test, y_pred):.2f}")

Accuracy: 0.99

F1
 S

C
O

R
E

• F1 Score is the harmonic mean of precision and recall,
providing a balance between them

• Used when class distribution is uneven and you need a
measure that takes both 𝐹𝑃 and 𝐹𝑁 into account

• where

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

• High accuracy score… but if we look closely, the classifier simply
assigned all labels to the majority class

• This is not acceptable in cases where the minority class is of interest

• For example in anomaly detection

Create an imbalanced dataset

n_samples_1 = 2000 # Samples of class 0

n_samples_2 = 100 # Samples of class 1

X_imb, y_imb = datasets.make_blobs(

n_samples=[n_samples_1, n_samples_2],

centers=[[0.0, 0.0], [2.0, 2.0]],

cluster_std=[1.5, 0.5],

random_state=0, shuffle=False)

Split the data in training and test set

X_tr_imb, X_te_imb, y_tr_imb, y_te_imb = train_test_split(X_imb, y_imb,

test_size=0.2, random_state=0)

Fit the classifier

clf = svm.SVC(kernel="linear", class_weight={1: 20}) # Try setting

class_weight={1: 20}

clf.fit(X_tr_imb, y_tr_imb)

Compute predictions and accuracy

y_pred_imb = clf.predict(X_te_imb)

print(f"Accuracy: {accuracy_score(y_te_imb, y_pred_imb):.2f}")

Accuracy: 0.89

Predictions of class 0: 355
Predictions of class 1: 65
F1 score: 0.45

N
O

R
M

A
LIZED

M
U

TU
A

L
IN

FO
R

M
A

TIO
N

(N
M

I)

• NMI is a normalization of the Mutual Information (MI) score
to scale the results between 0 (no mutual information) and 1
(perfect correlation)

• It measures the agreement between the cluster assignments
𝐶, and the class labels 𝑌

• where 𝐼(𝐶; 𝑌) is the MI between clusters and labels, and
𝐻 𝐶 and 𝐻 𝑌 are the entropies of X and Y

𝑁𝑀𝐼 𝐶, 𝑌 =
2 × 𝐼(𝐶; 𝑌)

𝐻 𝐶 + 𝐻(𝑌)

NMI for k-means with different values of k

clust_lab = KMeans(n_clusters=2, random_state=0, n_init="auto").fit(X).labels_

print(f"K=2, NMI: {v_measure_score(clust_lab, y):.2f}")

clust_lab = KMeans(n_clusters=3, random_state=0, n_init="auto").fit(X).labels_

print(f"K=3, NMI: {v_measure_score(clust_lab, y):.2f}")

clust_lab = KMeans(n_clusters=4, random_state=0, n_init="auto").fit(X).labels_

print(f"K=4, NMI: {v_measure_score(clust_lab, y):.2f}")

K=2, NMI: 0.73, K=3, NMI: 0.92, K=4, NMI: 0.84

S
IM

ILA
R

ITY
A

N
D

D
ISSIM

ILA
R

ITY
M

EA
SU

R
ES

Dissimilarity measures

• Quantify how different two objects are: the higher their
dissimilarity, the more different they are.

• Dissimilarity measures are crucial to distinguish between
distinct groups of data or identify outliers.

• The most common linear dissimilarity measure is the
Euclidean distance:

• Mahalanobis distance:

• which reduces to the Euclidean distance when covariance
matrix Σ−1 = 𝐼

𝑑 𝑥, 𝑦 = 𝑥 − 𝑦 2

𝑑 𝑥, 𝑦 = 𝑥 − 𝑦 𝑇Σ−1(𝑥 − 𝑦)

S
IM

ILA
R

ITY
A

N
D

D
ISSIM

ILA
R

ITY
M

EA
SU

R
ES

Similarity measures

• A similarity measure quantifies how similar two objects are:
the higher the value, the more similar the objects

• These measures are essential in algorithms that rely on the
concept of closeness or similarity to make decisions, such as
recommender systems

• An example of similarity measures is the cosine similarity:

• Another example is the Pearson correlation coefficient, used
in statistics to measure the linear correlation between two
variables:

𝑠 𝑥, 𝑦 =
𝑥1𝑦

𝑥 𝑦

𝑠 𝑥, 𝑦 =
𝑐𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦

L
IN

EA
R

A
N

D
N

O
N

-LIN
EA

R
M

EA
SU

R
ES

• The measures we described so far are linear

• It means that their computation follows a linear relationship
with respect to the data.

• Some measures, instead, are non-linear, meaning the
relationship between the measure and the data does not
follow a straight line.

• Kernels are examples of non-linear similarity measures.

• The most famous kernel is the Radial Basis Function (RBF):

• The parameter γ is the kernel width, which controls the std.
dev. of the Gaussian

• Setting it properly is crucial for defining distances: smaller
values will account for relationships between distant objects

𝑠 𝑥, 𝑦 = exp(−𝛾 𝑥 − 𝑦 2

• The choice of similarity or dissimilarity measure is critical in
classification and clustering problems

• The measure directly affects how well an algorithm can identify
the structure of the data

• An inappropriate choice might lead to poor classification or
clustering performance because the measure may not capture the
actual relationships among data points

E
FFEC

T
O

N
C

LA
SSIFIC

A
TIO

N

• Explore measures for the following example

• Compute a similarity matrix using a linear and a nonlinear
measure

• Linear measure: cosine similarity

• Non-linear measure: RBF kernel

X, y = datasets.make_circles(noise=0.2, factor=0.5, random_state=1,

n_samples=200) # Create toy data

X_train , X_test , y_train, y_test = train_test_split(X, y, random_state=0)

#Train-test split

Cosine similarity matrix

cosine_train = cosine_similarity(X_train)

RBF similarity matrix

rbf_kernel_train = pairwise_kernels(X_train, metric='rbf', gamma=0.5)

E
FFEC

T
O

N
C

LA
SSIFIC

A
TIO

N

• The two classes appear more separated when using a
nonlinear similarity

E
FFEC

T
O

N
C

LA
SSIFIC

A
TIO

N

• Next, train an SVM classifier that uses the two similarity
measures

• Look at the decision boundaries learned by the classifier and
compute the performance on the test data

• For the RBF kernel, we will use both γ=0.5 and γ=0.1
classifiers = [svm.SVC(kernel="linear"), svm.SVC(gamma=0.5), svm.SVC(gamma=0.1)]

names = ["Linear SVM", "RBF SVM ($\gamma=0.5$)", "RBF SVM ($\gamma=0.1$)"]

figure = plt.figure(figsize=(11, 4))

for i, (name, clf) in enumerate(zip(names, classifiers)):

ax = plt.subplot(1,3,i+1)

clf.fit(X_train, y_train)

score = clf.score(X_test, y_test)

DecisionBoundaryDisplay.from_estimator(

clf, X, cmap=plt.cm.RdBu, alpha=0.8, ax=ax, eps=0.5)

ax.scatter(X[:, 0], X[:, 1], c=y, cmap=cm_bright, edgecolors="k", alpha=0.6)

ax.set_xticks(()) ax.set_yticks(())

ax.set_title(name + f" - Test acc: {score:.2f}")

plt.tight_layout() plt.show()

E
FFEC

T
O

N
C

LU
STER

IN
G

• (dis)similarity measures are more profound in clustering
(unsupervised task)

• The lack of training cannot compensate for the effect of choosing
a bad (dis)similarity

• Samples get grouped very differently based on what makes
them (dis)similar

• In the next example, we look at hierarchical clustering (HC).

• HC progressively form clusters by grouping together samples
within a certain distance radius

• In the beginning, the radius is very small and many distinct
clusters are formed

• As the radius increases, further points are grouped together and
the number of clusters decreases

E
FFEC

T
O

N
C

LU
STER

IN
G

• Consider the following data and compute a squared Euclidean
distance matrix

• As HC algorithm we will use the Ward Linkage, which
gradually aggregate clusters by optimizing the minimum
variance criterion

• At each step it finds the pair of clusters that leads to minimum
increase in total within-cluster variance after merging
X, y = datasets.make_blobs(n_samples=1500, centers=4,

cluster_std=[1.7, 2.5, 0.5, 1.5], random_state=2)

X = StandardScaler().fit_transform(X) # Normalizing the data facilitates setting

the radius

Compute the distance matrix

Dist = pairwise_distances(X, metric="sqeuclidean")

distArray = ssd.squareform(Dist)

Compute the hierarchy of clusters

Z = linkage(distArray, 'ward')

• By setting a different radius (threshold) we obtain different
partitions

• For example, set thresholds t=10 and t=30

partition_1 = fcluster(Z, t=10, criterion="distance")

print("Partition 1: %d clusters"%len(np.unique(partition_1)))

partition_2 = fcluster(Z, t=30, criterion="distance")

print("Partition 1: %d clusters"%len(np.unique(partition_2)))

_, axes = plt.subplots(1,3, figsize=(14,4))

plot_clusters(X, title="Data", ax=axes[0])

plot_clusters(X, title="threshold = 10", clusters=partition_1, ax=axes[1])

plot_clusters(X, title="threshold = 30", clusters=partition_2, ax=axes[2])

• Possible to visualize the hierarchy generated by HC or to
color the branches based on the threshold value

• Useful tool to examine the structure in the data at different
resolutions

• Partitions that persist for broad ranges of values of the
threshold are those that characterize the dataset the most
fig = plt.figure(figsize=(20, 10))

dn = dendrogram(Z, color_threshold=30, above_threshold_color='k',

show_leaf_counts=False)

plt.xticks([])

plt.show()

• Examine different distance metrics

• e.g. RBF kernel and a Mahalanobis distance that weights
each feature differently

Compute the RBF (note that we must convert it to a distance)

rbf_kernel = pairwise_kernels(X, metric='rbf', gamma=1.0) # compute the rbf

similarity

rbf_kernel = rbf_kernel + rbf_kernel.T # make symmetric

rbf_kernel /= rbf_kernel.max() # normalize to [0, 1]

rbf_dist = 1.0 - rbf_kernel # convert to distance

np.fill_diagonal(rbf_dist, 0) # due to numerical errors, the diagonal might not

be 0

Compute the partition

distArray = ssd.squareform(rbf_dist)

Z = linkage(distArray, 'ward')

partition_3 = fcluster(Z, t=3, criterion="distance")

Mahalanobis distance that assigns different weights to the features

weights = np.array([1, 0.1])

Dist = pairwise_distances(X, metric="mahalanobis", VI=np.diag(1/weights**2))

Compute the partition

distArray = ssd.squareform(Dist)

Z = linkage(distArray, 'ward')

partition_4 = fcluster(Z, t=30, criterion="distance")

• Distance measure greatly impacts both classification and
clustering

_, axes = plt.subplots(1,3, figsize=(14,4))

plot_clusters(X, title="Data", ax=axes[0])

plot_clusters(X, title="RBF-based distance", clusters=partition_3, ax=axes[1])

plot_clusters(X, title="Weighted Mahalanobis distance", clusters=partition_4,

ax=axes[2])

T
IM

E
SER

IES
SIM

ILA
R

ITY

• Investigate 3 families of approaches to compute a distance
between time series:

• Alignment-based metrics

• Time series kernels

• Vector distance on time series embeddings

• Each approach comes with pros and cons

• We will look at one approach from each family

M
U

LTIV
A

R
IA

TE
T

IM
E

S
ER

IES
(M

TS)

• An MTS is represented by a matrix 𝑋 ∈ ℝ𝑇×𝑉, where 𝑇 is the
number of time steps and 𝑉 is the number of variables

• The whole dataset can be represented by a 3-dimensional
array 𝑥 of size [𝑁, 𝑇, 𝑉]

• In a classification setting, the 𝑖-th MTS X[i,:,:] is associated
with with a class label y[i]

U
W

A
V

E
M

TS D
A

TA
SET

• Accelerometer-based personalized gesture recognition
(uWave)

• Each MTS represents the measurements of an
accelerometer wore when doing one of the following
gestures

• The dot is the starting point, the arrow the end point

https://ieeexplore.ieee.org/document/4912759

def plot_uwave():

X, Y, _, _ = DataLoader().get_data('UWAVE')

_, axes = plt.subplots(3, 8, figsize=(15, 5), subplot_kw={'projection':

'3d'})

for i in range(len(np.unique(Y))):

idx = np.where(Y == i+1)[0][:3]

for j, id in enumerate(idx):

axes[j,i].plot(X[id, :, 0], X[id, :, 1], X[id, :, 2],

color=plt.cm.tab10(i))

axes[j,i].set_xticks(())

axes[j,i].set_yticks(())

axes[j,i].set_zticks(())

axes[j,i].spines[['right', 'left', 'top',

'bottom']].set_visible(False)

if j == 0:

axes[j,i].set_title(f"Class {i+1}")

plt.tight_layout()

plt.show()

A
LIG

N
M

EN
T-B

A
SED

M
ETR

IC: D
YN

A
M

IC
T

IM
E

W
A

R
P

IN
G

(D
TW

)• An alignment-based metric relies on a temporal alignment of
two time series to assess their similarity

• One of the most prominent representatives of this class is
Dynamic Time Warping (DTW)

• The idea of DTW is to first align two time series and then
compute a Euclidean distance between the matched
elements

• Naive approach: Compute distance of raw time series

𝑑 𝑥, 𝑦 = ෍

𝑡=1

min(𝑇𝑥,𝑇𝑦)

𝑥 𝑡 − 𝑦(𝑡) 2

If the two time series are very
similar but slightly disaligned,
it will produce a large distance.

• DTW disregards the exact timestamps at which the
observations occur

• DTW seeks for the temporal alignment (a matching between
time indexes of the two time series) that minimizes
Euclidean distance between the aligned series

D
TW

 A
LG

O
R

ITH
M

• DTW solves the following optimization problem:

• π is an alignment path of length Κ, i.e., a sequence of index
pairs

• P(𝑥, 𝑦) is the set of all admissible paths
• An admissible path should satisfy the following conditions:

1. The beginning and the end of 𝑥, 𝑦 are matched together 𝜋1 =
(1,1), 𝜋𝐾 = (𝑇𝑥, 𝑇𝑦)

2. The sequence is monotonically increasing in both 𝑖 and 𝑗 and all
time series indexes should appear at least once 𝑖𝑘−1 ≤ 𝑖𝑘 ≤
𝑖𝑘−1 + 1, 𝑗𝑘−1 ≤ 𝑗𝑘 ≤ 𝑗𝑘−1 + 1

𝐷𝑇𝑊 𝑥, 𝑦 = min
𝜋∈P(𝑥,𝑦)

෍

𝑖,𝑗 ∈π

𝑑 𝑥 𝑖 , 𝑦 𝑗

The two time series are matched together Sequence is monotonically increasing

• The DTW path can be represented by a binary matrix 𝑃𝜋
whose non-zero entries are those corresponding to a
matching between time series elements:

• Using the matrix notation, DTW can be rewritten as:

• where the (𝑖, 𝑗)𝑡ℎelement of 𝐷𝑥,𝑦 ∈ ℝ𝑇𝑥,𝑇𝑦 stores the

distance 𝑑 𝑥 𝑖 , 𝑦 𝑗

𝑃𝜋 = ቊ
1 = 𝑖𝑓 𝑖, 𝑗 ∈ 𝜋
0 = 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐷𝑇𝑊 𝑥, 𝑦 = min
π∈P(x,y)

〈𝑃π, ൿ𝐷𝑥,𝑦

F
IN

D
IN

G
TH

E
O

P
TIM

A
L

D
TW

 P
A

TH

• Compute cost matrix 𝐷𝑥,𝑦

• Then, traverse the matrix from the top-left corner (1,1) to
the bottom-right one (𝑇𝑥, 𝑇𝑦)

• Excluding the borders, at each step we have three options to
decide where to move with a different cost

• The optimal path is the one with minimum cost

• Need to compute the cost for each possible path

• For 𝑇𝑥 , 𝑇𝑦 the total number of paths is Ο
3+2 2

𝑇𝑥

𝑇𝑥

• That is a big number: calculating all of them is intractable

• There are many paths that share the same sections

• To make the problem tractable, we must avoid recomputing
the same paths over and over

• Use recursion, a dynamic programming technique that
breaks down a complex problem into simpler subproblems

• Each subproblem is solved just once and the solution is
stored in memory

• When a subproblem is encountered again, its solution is
retrieved instead of being recomputed

• This significantly reduces the number of computations
cutting the redundancies

• The recursive algorithm has complexity Ο 𝑇𝑥𝑇𝑦 and is

formulated as follow:
def DTWDistance(x, y):

for i in range(len(x)):

for j in range(len(y)):

DTW[i, j] = d(x[i], y[j])

if i > 0 or j > 0:

DTW[i, j] += min(

DTW[i-1, j] if i > 0 else inf,

DTW[i , j-1] if j > 0 else inf,

DTW[i-1, j-1] if (i > 0 and j > 0) else inf

)

return DTW[-1, -1]

• Basic idea is that each block (𝑖, 𝑗) recursively ask its
predecessors 𝑖 − 1, 𝑗 , (𝑖, 𝑗 − 1) and (𝑖 − 1, 𝑗 − 1) the cost
to reach them

• The request is propagated back to the origin which returns
the first answer

• The answer is then propagated forward to all the requesters,
which update the answer with their own cost

D
TW

 P
R

O
P

ER
TIES

• Example shows how the DTW changes when two curves are
translated and stretched/squeezed at the same time

• DTW is invariant to translation

D
TW

 EX
A

M
P

LE

• Example by generating two groups of time series using two
different AR(1) processes

T = 100 # Length of the time series

N = 30 # Time series per set

Generate the first set of time series

Y1 = np.zeros((T, N))

for i in range(N):

Y1[:,i] = sm.tsa.arma_generate_sample(ar=[1, -.9], ma=[1], nsample=T,

scale=1)

Generate the second set of time series

Y2 = np.zeros((T, N))

for i in range(N):

Y2[:,i] = sm.tsa.arma_generate_sample(ar=[1, .9], ma=[1], nsample=T, scale=1)

fig, axes = plt.subplots(2,1, figsize=(10, 5))

axes[0].plot(np.mean(Y1, axis=1))

axes[0].fill_between(range(T), np.mean(Y1, axis=1) - np.std(Y1, axis=1),

np.mean(Y1, axis=1) + np.std(Y1, axis=1), alpha=0.3)

axes[0].set_title("First set")

axes[1].plot(np.mean(Y2, axis=1))

axes[1].fill_between(range(T), np.mean(Y2, axis=1) - np.std(Y2, axis=1),

np.mean(Y2, axis=1) + np.std(Y2, axis=1), alpha=0.3)

axes[1].set_title("Second set")

plt.show()

• Visualize the path π on the cost matrix 𝐷𝑥,𝑦 for the time series we

generated

• First, we let 𝑥, 𝑦 be two time series from the same group

• Notice how the path π crosses the darker areas, corresponding to smaller
dissimilarity values

s1 = Y2[:,1]

s2 = Y2[:,2]

fig = plt.figure(figsize=(5, 5))

d, paths = dtw.warping_paths(s1, s2)

best_path = dtw.best_path(paths)

dtwvis.plot_warpingpaths(s1, s2, paths, best_path, figure=fig);

• Then, we select x and y from two different groups

• We see how the dissimilarity is much higher in this case and the path changes significantly

s1 = Y1[:,1]

s2 = Y2[:,1]

fig = plt.figure(figsize=(5, 5))

d, paths = dtw.warping_paths(s1, s2)

best_path = dtw.best_path(paths)

dtwvis.plot_warpingpaths(s1, s2, paths, best_path, figure=fig);

• Compute the DTW distance between all the time series in the
two sets
Concatenate the two sets of time series

Y = np.concatenate((Y1, Y2), axis=1).T

Compute the distance matrix

dtw_dist = dtw.distance_matrix_fast(Y)

Plot the distance matrix

plt.figure(figsize=(4,4))

plt.imshow(dtw_dist, cmap='viridis')

plt.colorbar()

plt.show()

• For comparison, compute the Euclidean distance between the time
series

• This time the dissimilarity matrix is less structured and is harder to see
the division in two groups

• As expected, the Euclidean distance is less suitable for these type of data

compute euclidean distance between the time series

euc_dist = pairwise_distances(Y, metric="sqeuclidean")

plt.figure(figsize=(4,4))

plt.imshow(euc_dist, cmap='viridis')

plt.colorbar()

plt.show()

C
LA

SSIFIC
A

TIO
N

W
ITH

D
TW

• Will use Japanese Vowels dataset in the next example
DataLoader().available_datasets()

Xtr, Ytr, Xte, Yte = DataLoader().get_data('Japanese_Vowels’)

Concatenate X and Xte

X = np.concatenate((Xtr, Xte), axis=0)

Y = np.concatenate((Ytr, Yte), axis=0)

Compute the dissimilarity matrix

dtw_dist = dtw_ndim.distance_matrix_fast(X)

print("dist shape:", dtw_dist.shape)

Loaded Japanese_Vowels dataset.
Number of classes: 9
Data shapes:

Xtr: (270, 29, 12)
Ytr: (270, 1)
Xte: (370, 29, 12)
Yte: (370, 1)

dist shape: (640, 640)

• Note that we have concatenated the training and test set
before computing the distances

• In the following, we will use an SVC with a pre-computed
kernel, i.e., a custom similarity matrix

• There are two sets of distances we need to compute to
provide the information to the classifier

• For training, we need the distances between elements in the
training set

• Let’s call the matrix containing these distances tr-tr

• For testing, we need the distances between the training and
test set elements

• These distances are in the matrix te-tr

• Unfortunately, dtw_ndim.distance_matrix_fast does not
compute distances across two different sets, meaning that it
cannot compute te-tr explicitly

• In our case, since the dataset is small, we can compute the
whole distance matrix and keep only the parts we need

• Note that some computations (tr-te and te-te) are wasted

• If the computing resources are limited or the dataset is too
large, it’s better to iterate through the elements of the
training and test set and compute only the distances that we
actually need

• The kernel is a similarity matrix with elements in [0,1]

• We can obtain it with the following transformation

dtw_sim = 1.0 - dtw_dist/dtw_dist.max()

Plot the similarity matrix

idx_sorted = np.argsort(Y[:,0])

dtw_sim_sorted = dtw_sim[:,idx_sorted][idx_sorted,:]

fig = plt.figure(figsize=(4,4))

plt.imshow(dtw_sim_sorted);

Extract only kernels that we need

sim_trtr = dtw_sim[:Xtr.shape[0], :Xtr.shape[0]]

print(sim_trtr.shape)

sim_tetr = dtw_sim[Xtr.shape[0]:, :Xtr.shape[0]]

print(sim_tetr.shape)

(270, 270)
(370, 270)

clf = svm.SVC(kernel='precomputed', C=1).fit(sim_trtr, Ytr.ravel())

y_pred = clf.predict(sim_tetr)

accuracy = accuracy_score(Yte.ravel(), y_pred)

print(f"Accuracy: {accuracy*100:.2f}%")

Accuracy: 97.30%

K-N
N

 C
LA

SSIFIER

• Once computed, the distance/similarity matrix can
seamlessly be used with other classifiers

• One example is the classic k-NN classifier, which simply
implements a majority vote:

• A test sample is assigned the most frequent class
among its nearest neighbors (k-NN) in the training set

• In our case, the neighbors are identified based on the DTW
distance

In this case we use the DTW distance directly

dtw_trtr = dtw_dist[:Xtr.shape[0], :Xtr.shape[0]]

dtw_tetr = dtw_dist[Xtr.shape[0]:, :Xtr.shape[0]]

neigh = KNeighborsClassifier(n_neighbors=3, metric='precomputed') # specify k=3

neigh.fit(dtw_trtr, Ytr.ravel())

y_pred = neigh.predict(dtw_tetr)

accuracy = accuracy_score(Yte.ravel(), y_pred)

print(f"Accuracy: {accuracy*100:.2f}%")

Accuracy: 96.49%

C
LU

STER
IN

G
W

ITH
D

TW

• To perform clustering we can use HC

• As before, we will use Ward Linkage to generate the
hierarchy Z

• We need to pass the DTW dissimilarity matrix

• To obtain the actual clusters we need to put a threshold

• To select the threshold, we look at the hierarchy Z with a
dendrogram plot

distArray = ssd.squareform(dtw_dist)

Z = linkage(distArray, 'ward')

fig = plt.figure(figsize=(20, 10))

dn = dendrogram(Z, color_threshold=50, above_threshold_color='k',

show_leaf_counts=False)

plt.xticks([]);

D
EN

D
R

O
G

R
A

M
P

LO
T

• A value between 50 and 60 seems to give a stable partition

partition = fcluster(Z, t=55, criterion="distance")

print(f"Found {len(np.unique(partition))} clusters")

print(f"DTW-based clustering NMI: {v_measure_score(partition, Y.ravel()):.2f}")

Found 9 clusters

DTW-based clustering NMI: 0.95

V
ISU

A
LIZA

TIO
N

TH
R

O
U

G
H

D
IM

EN
SIO

N
A

LITY
R

ED
U

C
TIO

N

• We have 𝑁 samples, each one representing a multivariate
time series of size 𝑇 × 𝑉

• Visualizing them directly is impossible

• Use PCA to reduce the data dimensionality

• Reducing data to 2 or 3 dimension would make
visualization possible

• If the data are vectors, i.e., 𝑋 ∈ ℝ𝑁×𝑉, PCA first computes
the empirical correlation matrix 𝑋𝑇𝑋 ∈ ℝ𝑉×𝑉that captures
the covariance among the features in the dataset

• PCA uses this information to project the data onto the
directions (principal components) that maximize variance

• Unfortunately, the empirical correlation is meaningless if the
data are time series because we are not interested in the
correlation of individual time steps

• The problem further complicates if the time series are
multivariate

• Thankfully PCA can compute principal components also
through the eigendecomposition of the Gram matrix 𝑋𝑋𝑇 ∈
ℝ𝑁×𝑁

• The Gram matrix is a covariance matrix, i.e., a similarity
matrix that captures linear relationships between data
samples

• As with the Euclidean distance, a linear covariance
matrix is not suitable for time series

• However, we can replace the covariance with another
kernel matrix, such as the one derived from DTW

• The PCA algorithm that uses kernel matrices is called
KernelPCA

Kernel PCA

kpca = KernelPCA(n_components=2, kernel='precomputed')

embeddings_pca = kpca.fit_transform(dtw_sim)

fig = plt.figure(figsize=(8,6))

plt.scatter(embeddings_pca[:,0], embeddings_pca[:,1], c=Y.ravel(), s=10,

cmap='tab20')

plt.title("Kernel PCA embeddings")

plt.gca().spines[['right', 'left', 'top', 'bottom']].set_visible(False)

plt.xticks(())

plt.yticks(());

• KernelPCA maps each

time series to a 2D point

• The DTW-based

similarity caputures well

the structure of the data

and the relationships

among the time series

• As a result, KernelPCA

projects the classes in

relatively well-separated

groups

T
IM

E-SER
IES

K
ER

N
ELS

• A kernel for time series data is a mathematical function used
to measure the similarity between two time series

• Consider the Time Series Cluster Kernel (TCK), which offers
the following advantages:

• Suitable for multi-variate time series

• Can deal with missing data

• Robust to hyperparameters selection

• TCK combines Gaussian Mixture Models (GMM) with an
ensemble learning approach to build a kernel

𝑘(𝑥, 𝑦) ≥ 0

TC
K

G
A

U
SSIA

N
M

IX
TU

R
E

M
O

D
ELS

(G
M

M
)

• A GMM assumes that all the data points are generated from a
mixture of 𝐶 Gaussian distributions (components) with
unknown parameters {μ𝑐 , Σ𝑐}𝑐=1

𝐶

• GMMs are used for clustering

• Each cluster is modeled by a Gaussian distribution.

Create toy data

X, y = datasets.make_classification(n_samples=950, n_features=2, n_informative=2,

n_redundant=0, n_clusters_per_class=1,

random_state=4,

n_classes=3, class_sep=1.5, flip_y=0.1)

_, axes = plt.subplots(1, 3, figsize=(18, 6))

for i, n in enumerate([2, 3, 4]):

plot_gmm(X, n, ax=axes[i])

axes[i].set_title(f"GMM with C={n} components")

G
M

M• Mathematically, a GMM is defined as:

• 𝜋𝑐 is the mixing coefficient of the c-th Gaussian, with 0 ≤
𝜋𝑐 ≤ 1 and ∑𝑐=1

𝐶 𝜋𝑐 = 1

• 𝜋𝑐 indicates how much a data point x belongs to the c-th

Gaussian Ν 𝑥ห𝜇𝑐 , Σ𝑐

𝑝 𝑥 =෍

𝑐=1

𝐶

𝜋𝑐Ν 𝑥ห𝜇𝑐 , Σ𝑐

C
LU

STER
IN

G
W

ITH
G

M
M

• Clustering with GMM involves estimating the parameters 𝜋𝑐,
𝜇𝑐 , Σ𝑐 using the Expectation-Maximization (EM) algorithm:

1. iteratively assigns data points to clusters (expectation
step)

2. Then, updates the parameters to maximize the
likelihood of the data given the current clusters
(maximization step)

• In the end, each data point is assigned with a probability of
belonging to each cluster

• The output is a soft clustering where points can belong to
multiple clusters with different probabilities

• The output can be represented by a soft cluster assignment
matrix Π ∈ ℝ𝑁×𝐶

• The (𝑖, 𝑐)-th element of is the membership of the MTS 𝑖 to

cluster 𝑐: Π 𝑖, 𝑐 = 𝜋𝑐
(𝑖)

• The 𝑖-th row of Π represent all the memberships of the -th

MTS: Π 𝑖, : = Π(𝑖)

• Crisp cluster assignments (cells in gray in the figure) are

obtained by taking the maximum value in Π(𝑖)

G
M

M
 FO

R
TIM

E
SER

IES
W

ITH
M

ISSIN
G

D
A

TA

• TCK modifies the standard GMM model in two ways

1. To handle time series data, the means of the GMM model
become multi-variate time series.

• Standard GMM: 𝜇𝑐 ∈ ℝ𝑉

• TCK GMM: 𝜇𝑐 ∈ ℝ𝑇×𝑉

2. To handle missing values, TCK puts priors on the GMM
parameters and replaces the EM algorithm with Maximum
a-posteriori (MAP) estimation.

• EM: ොμ, ෠Σ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜇,Σ𝑝 𝑋|𝜇,Σ

• MAP with priors ොμ, ෠Σ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜇,Σ𝑝 𝑋|𝜇,Σ 𝑝 𝜇, Σ

• The resulting means are smoother and the parameters are
similar to the overall mean and covariance in clusters with
few samples

G
M

M
 FO

R
TIM

E
SER

IES
W

ITH
M

ISSIN
G

D
A

TA

• The resulting means are smoother and the parameters are
similar to the overall mean and covariance in clusters with
few samples

E
N

SEM
B

LE
LEA

R
N

IN
G

• Ensemble approach: combine many weak models to obtain a
more powerful one.

• Reduces the sensitivity to hyperparameters selection.

• Can produce a well-defined kernel

• The ensemble of GMMs is obtained by fitting 𝐺 different
GMMs on:

• A subset of the 𝑁 ΜTS in the dataset

• A subset of the V variables

• A segment of indices of length ≤ 𝑇 in the time series

The kernel matrix is obtained by combining the clustering results from the 𝐺
GMMs in the ensemble

Specifically, 𝑘(𝑥, 𝑦) is proportional to how many times 𝑥 and 𝑦 are assigned
to the same GMM:

𝑘 𝑥, 𝑦 = ෍

𝑔∈𝐺

Π 𝑥 (𝑔)𝑇Π 𝑦 (𝑔)

C
LA

SSIFIC
A

TIO
N

W
ITH

TC
K

• Create a TCK kernel with G=30 GMMs, each with C=15
components

• Higher G the better the performance but the higher
the computation time

• C controls the model complexity. Too low underfit, too
high overfit.

• Then, fit TCK on the training data

• As in the DTW case, we compute the two kernels 𝐾𝑡𝑟−𝑡𝑟 and
𝐾𝑡𝑟−𝑡𝑒 to train and test our classifier

Load the data

Xtr, Ytr, Xte, Yte = DataLoader().get_data('Japanese_Vowels’)

Randomly remove 40% to show how TCK handles missing values

mask_tr = np.random.choice([0, 1], size=Xtr.shape, p=[0.6, 0.4])

Xtr[mask_tr == 1] = np.nan

mask_te = np.random.choice([0, 1], size=Xte.shape, p=[0.6, 0.4])

Xte[mask_te == 1] = np.nan

• Even with 40% of missing data, with TCK we maintain a good classification
performance

tck = TCK(G=30, C=15)

Ktr = tck.fit(Xtr).predict(mode='tr-tr')

Kte = tck.predict(Xte=Xte, mode='tr-te').T

print(f"Ktr shape: {Ktr.shape}\nKte shape: {Kte.shape}")

The dataset contains missing data

Training the TCK using the following parameters:
C = 15, G = 30
Number of MTS for each GMM: 216 - 270 (80 - 100 percent)
Number of attributes sampled from [2, 11]
Length of time segments sampled from [6, 23]

Ktr shape: (270, 270)
Kte shape: (370, 270)

clf = svm.SVC(kernel='precomputed').fit(Ktr, Ytr.ravel()) # Train

Ypred = clf.predict(Kte) # Test

print(f" Test accuracy: {accuracy_score(Yte, Ypred):.2f}")

Test accuracy: 0.92

T
IM

E-SER
IES

EM
B

ED
D

IN
G

• Another approach is to embed the whole MTS into a real-
valued vector

• Allows us to use standard (dis)similarity measures for
vectorial data (cosine similarity, Euclidean distance, etc)

• The key problem is how to embed the temporal information
into a static vector in a meaningful way

• There are many approaches for extracting static features
from a time series

• Here we will use Reservoir Computing (RC) to generate
embeddings of MTS

R
C

 FR
A

M
EW

O
R

K

• A RC framework consisting of 4 modules:

• Reservoir module

• Dimensionality reduction module

• MTS representation module

• Readout module

R
ESER

V
O

IR
M

O
D

U
LE

• This module generates a sequence of Reservoir states from a
given MTS 𝑥

• If we have 𝑁 MTS they can be processed in parallel by the
Reservoir and generate the sequence of states

• with 𝐻 𝑡 ∈ ℝ𝑁×𝐻

• The Reservoir can operate in two modalities:

• Unidirectional

• Bidirectional

ℎ 𝑡 = 𝜎 𝑊𝑖𝑥 𝑡 +𝑊ℎℎ 𝑡 − 1

𝐻 1 ,𝐻 2 ,… ,𝐻 𝑇

U
N

ID
IR

EC
TIO

N
A

L
R

ESER
V

O
IR

• This is the same Reservoir we saw previously

• Input: MTS data X of shape [N, T, V]

• Output: a sequence of states H of shape [N, T, H].

B
ID

IR
EC

TIO
N

A
L

R
ESER

V
O

IR

• This Reservoir processes the time series also backwards

• Allows to retrieve context from both past and future data
points capture more complex and longer temporal
dependencies

• A Bidirectional Reservoir is not causal: it cannot be used for
forecasting but is suitable for classification and clustering

• Input: MTS data X of
shape [N, T, V].

• Output: a sequence of
states H of shape [N, T,
2*H].

EX
A

M
P

LE

Xtr, Ytr, Xte, Yte = DataLoader().get_data('Japanese_Vowels’)

H_uni = Reservoir(n_internal_units=300).get_states(Xtr, bidir=False)

print(f"Unidir\n H: {H_uni.shape}")

H_bi = Reservoir(n_internal_units=300).get_states(Xtr, bidir=True)

print(f"Bidir\n H: {H_bi.shape}")

Unidir
H: (270, 29, 300)

Bidir
H: (270, 29, 600)

D
IM

EN
SIO

N
A

LITY
R

ED
U

C
TIO

N
M

O
D

U
LE

• This module reduces the dimensionality of the Reservoir
states from [N,T,H] (or [N,T,2*H]) to [N,T,R]

• Dramatically speeds up computations especially when using
more advanced representations

• Dimensionality reduction can be implemented by:

• Standard PCA

• Tensor PCA

• Standard PCA
• Only works on uni-dimensional data

• Reshape H from [N,T,H] to [N*T,H]

• Apply PCA and keep the first R components

• Reshape [N*T,R] back to [N,T,R]

• Tensor PCA
• Compute the following covariance matrix

• where 𝐻𝑛 ∈ ℝ𝐻×𝐻 is obtained as H[n,:,:] and ഥ𝐻 =
1

𝑁
∑𝑛=1
𝑁 𝐻𝑛 ∈ ℝ𝑇×𝐻

• This allows to compute the variations across the Reservoir
dimension by keeping sample- and time-dimension separated

• Then take the first 𝑅 eigenvectors of 𝑆: 𝐷 =
[𝑢1, 𝑢2, … , 𝑢𝑅] ∈ ℝ𝐻×𝑅 and the reduced state ෡𝐻𝑛 = 𝐻𝑛𝐷

𝑆 =
1

𝑁 − 1
෍

𝑛=1

𝑁

𝐻𝑛 − ഥ𝐻 𝑇(𝐻𝑛 − ഥ𝐻) ∈ ℝ𝐻×𝐻

H_red = tensorPCA(n_components=75).fit_transform(H_bi)

print(f"H_red: {H_red.shape}")

H_red: (270, 29, 75)

R
EP

R
ESEN

TA
TIO

N
M

O
D

U
LE

• This module is responsible of transforming the sequence of
Reservoir states into a vectorial representation 𝑟𝑥

• The Reservoir extracts and separates the dynamical features

• In addition, it keeps a memory of all the past input

• Therefore, in some cases, is sufficient to keep only the last
Reservoir state to represent the whole MTS

rx_last = H_red[:,-1,:]

print(f"rx_last: {rx_last.shape}")

rx_last: (270, 75)

O
U

TP
U

T
M

O
D

EL
SP

A
C

E

• A more effective representation is obtained as follows

• Train a linear readout to predict the MTS one step-
ahead

• The parameters of the linear model

• become the 𝑟𝑥

𝑥 𝑡 + 1 = ℎ 𝑡 𝑊0 + 𝑤0

𝜃0 = [𝑣𝑒𝑐 𝑊0 ; 𝑤0] ∈ ℝ𝑉(𝑅+1)

out_pred = Ridge(alpha=1.0)

If we use a bidirectional Reservoir we also need to predict the time series

backwards

X = np.concatenate((Xtr, Xtr[:, ::-1, :]), axis=2)

coeff, biases = [], []

for i in range(X.shape[0]):

out_pred.fit(H_red[i, 0:-1, :], X[i, 1:, :])

coeff.append(out_pred.coef_.ravel())

biases.append(out_pred.intercept_.ravel())

rx_out = np.concatenate((np.vstack(coeff), np.vstack(biases)), axis=1)

print(f"rx_out: {rx_out.shape}") # [N, 2*V*(R+1)]

rx_out: (270, 1824)

R
ESER

V
O

IR
M

O
D

EL
SP

A
C

E

• A similar approach is to use the coefficients of a linear model
that predicts the next state of the Reservoir

• The MTS representation 𝑟𝑥 becomes 𝜃ℎ =

[𝑣𝑒𝑐 𝑊ℎ ; 𝑤ℎ] ∈ ℝ𝑅(𝑅+1)

ℎ 𝑡 + 1 = ℎ 𝑡 𝑊ℎ +𝑤ℎ

res_pred = Ridge(alpha=1.0)

coeff, biases = [], []

for i in range(H_red.shape[0]):

res_pred.fit(H_red[i, 0:-1, :], H_red[i, 1:, :])

coeff.append(res_pred.coef_.ravel())

biases.append(res_pred.intercept_.ravel())

rx_res = np.concatenate((np.vstack(coeff), np.vstack(biases)), axis=1)

print(f"rx_res: {rx_res.shape}") # [N, R*(R+1)]

rx_res: (270, 5700)

• In principle, the Reservoir model space θℎ provides a better
representation than the Output model space θ0

• The Reservoir generates a large pool of dynamics but only
few are needed to predict the input at a specific forecast
horizon, i.e., 1 if we predict 𝑥(𝑡 + 1)

• Not being useful for the task, the other dynamics are
discarded even if they are still useful to characterize the MTS

• On the other hand, to predict the next Reservoir state ℎ(𝑡 +
1) is necessary to consider all Reservoir dynamics

• This makes θℎ a more powerful representation as it fully
characterizes the MTS

R
EA

D
O

U
T

M
O

D
U

LE

• The readout module is responsible to classify or cluster the
MTS representations

• Being each representation 𝑟𝑥 a vector, any standard classifier
for vectorial data can be used

• Similarly, we can use standard (dis)similarity measures for
vectorial data

• For example, clustering can be done using the Linkage
aglorithm on the Euclidean distances between MTS
representations

C
LA

SSIFIC
A

TIO
N

W
ITH

R
C

 EM
B

ED
D

IN
G

S

• We can use the high-level function RC_model to perform the
classification

• The function takes as input the hyperparameters to
configure:

1. the Reservoir module,

2. the dimensionality reduction module,

3. the representation module,

4. the readout module

Store the hyperparameters in a Python dictionary

config = {}

Hyperarameters of the reservoir

config['n_internal_units'] = 450 # size of the reservoir

config['spectral_radius'] = 0.9 # largest eigenvalue of the reservoir

config['leak'] = None # amount of leakage in the reservoir

state update (None or 1.0 --> no leakage)

config['connectivity'] = 0.25 # percentage of nonzero connections in

the reservoir

config['input_scaling'] = 0.1 # scaling of the input weights

config['noise_level'] = 0.01 # noise in the reservoir state update

config['n_drop'] = 5 # transient states to be dropped

config['bidir'] = True # if True, use bidirectional reservoir

config['circle'] = False # use reservoir with circle topology

Dimensionality reduction hyperparameters

config['dimred_method'] = 'tenpca' # options: {None (no dimensionality

reduction), 'pca', 'tenpca'}

config['n_dim'] = 75 # number of resulting dimensions after

the dimensionality reduction procedure

Type of MTS representation

config['mts_rep'] = 'reservoir' # MTS representation: {'last', 'mean',

'output', 'reservoir'}

config['w_ridge_embedding'] = 10.0 # regularization parameter of the ridge

regression

Type of readout

config['readout_type'] = 'lin' # readout used for classification:

{'lin', 'mlp', 'svm'}

config['w_ridge'] = 5.0 # regularization of the ridge regression

readout

• Create a RC classifier by passing the configuration parameters

• The RC model expects class labels to be one-hot-encoded, e.g.

• 1 → 1,0,0,0, … , 0 , 2 → 0,1,0,0, … , 0 , 3 → [0,0,1,0, … , 0], etc

classifier = RC_model(**config)

Xtr, Ytr, Xte, Yte = DataLoader().get_data('Japanese_Vowels')

One-hot encoding for labels

onehot_encoder = OneHotEncoder(sparse_output=False)

Ytr = onehot_encoder.fit_transform(Ytr)

Yte = onehot_encoder.transform(Yte)

Train the model

tr_time = classifier.fit(Xtr, Ytr)

Compute predictions on test data

pred_class = classifier.predict(Xte)

accuracy, f1 = compute_test_scores(pred_class, Yte)

print(f"Accuracy = {accuracy:.3f}, F1-score = {f1:.3f}")

Accuracy = 0.978, F1-score = 0.978

C
LU

STER
IN

G
W

ITH
R

C
 EM

B
ED

D
IN

G
S

• We will perform the following steps:

1. Generate the vectorial representations for all MTS

2. Compute a dissimilarity matrix

3. Perform clustering with the distance-based HC
algorithm Linkage

• Since we are doing clustering, we do not need the train/test
split.

• Can concatenate the data from both sets together

Xtr, Ytr, Xte, Yte = DataLoader().get_data('Japanese_Vowels')

X = np.concatenate((Xtr, Xte), axis=0)

Y = np.concatenate((Ytr, Yte), axis=0)

• Can re-use the same RC_model as before

• The only difference is that we do not want to apply the
readout module

• Instead, it should return the MTS representations

• This is achieved by setting 'readout_type'to None

config['readout_type'] = None # We update this entry from the previous config

dict

Instantiate the RC model

rcm = RC_model(**config)

Generate representations of the input MTS

rcm.fit(X)

mts_representations = rcm.input_repr

• Then compute the distance matrix using standard metrics
for vectorial data

• For example, use the Euclidean or a Cosine distance

• The latter is often preferred in high-dimensional spaces
because Euclidean distance can become inflated and less
meaningful (“curse of dimensionality”)

Compute Dissimilarity matrix

Dist = cosine_distances(mts_representations)

distArray = ssd.squareform(Dist)

Hierarchical clustering

Z = linkage(distArray, 'ward')

clust = fcluster(Z, t=4.0, criterion="distance")

print(f"Found {len(np.unique(clust))} clusters")

Evaluate the agreement between class and cluster labels

nmi = v_measure_score(Y[:,0], clust)

print(f"Normalized Mutual Information (v-score): {nmi:.3f}")

Found 9 clusters
Normalized Mutual Information (v-score): 0.906

SU
M

M
A

R
Y

• Introduced the problem of classification and clustering

• The importance of choosing a proper measure for computing
(dis)similarities

• Introduced three approaches to compute (dis)similarities across
multivariate time series

1. DTW, an alignment based-metric

2. TCK, a kernel similarity

3. RC embeddings, an approach to embed time series into
vectorial data

• These (dis)similarity measures are the cornerstone in time series
classification and clustering

• Once computed, we saw how they can be easily plugged into the
same classification and clustering method we saw for vectorial
data

• We conclude by highlighting the main pros and cons of the three
approaches to compute MTS (dis)similarity

DTW
In most cases, works well with default hyperparameters
Invariant to translations in time
Slow
Does not account for complex dynamical features

TCK
Hyperparameters are easy to set
Handles missing data
Very slow

RC-embedding
Fast
Captures complex dynamical features
Many hyperparameters to set.

• Each approach can achieve better or worse performance
depending on the data and the problem at hand.

• Selecting the optimal (dis)similarity measure,
classification/clustering algorithm, and hyperparameters is
often a difficult procedure.

• It requires experience and should be performed with
systematic approaches such as cross-validation

