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* Decision Theory

* Bayesian Statistics
* AUROC curve
* Precision Recall Curve / F1 score

* Information Theory
* Entropy
» KL divergence (Relative entropy)
* Joint Entropy
* Mutual Information
* Optimization
* Parameter estimation (model fitting)
 Model identification (regularization)




* Describes the probability of an event, based on prior
knowledge of conditions that might be related to the event

Prior distribution Likelihood

= =
e .

Posterior
distribution / new
belief state

Marginal Likelihood
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* Assume the decision maker, or agent, has a set of possible
actions, A, to choose from

* Every action has cost and benefits depending on underlying
state of nature

* Encode this information to loss function £(h, a), loss when
we incur if action a € A is taken at state of nature, h € I

 Compute posterior expected loss or risk for each possible
action




* Use Bayesian decision theory to decide the optimal class
label to predict given an observed input x € X

e Suppose the states of nature correspond to class
labels,soH =Y ={1, ... ,C}
* the actions correspond to class labels,s0 A = Y
* In this setting, a very commonly used loss function is the

zero-one loss, 41 (y™,¥), simply counts how many mistakes
a hypothesis would make on training data

In this case, the posterior expected loss is Mode of the posterior distribution or
maximum a posteriori or MAP estimate

R(glz) =p(§ # y"|x) =1 - p(y" = g|x)




Accuracy (TP+TN) /(TP + FN + FP + TN)

Recall / True Positive Rate (TPR) = predict TPR=TP /(TP + FN)
how many disease correctly in disease cohort

False Positive Rate (FPR) = predict how many  FPR= FP /(FP + TN)
disease in healthy cohort

Predicted condition |
Total population . i
Positive (PP) Negative (PN)
=P+N
. False negative (FN),

E . True positive (TP), )
= Positive (P) hit type Il error, miss,
E underestimation
(%]
— False positive (FP),
g ) - (FF) True negative (TN),
T Negative (N) type | error, false alarm, o
T . correct rejection

overestimation

If we have imbalanced testing data (class 0 = 100, class 1 = 10), if the model predict
everything as class 0, accuracy = 90%

Reliable?? No




* Area under ROC curve is computed

* The higher the AUROC, the better the classifier




F1 — score

Recall / True Positive Rate (TPR) = predict TPR=TP /(TP + FN)
how many positive correctly for both positive
and false negative

Precision = Positive Predictive Value (PPV) PPV =TP / (TP +FP)
predict how many positive correctly if
prediction is positive

Predicted condition |
Total population . X
Positive (PP) Negative (PN)
=P+N
. False negative (FN),
o True positive (TP), )
Positive (P) hit type Il error, miss,

underestimation

False positive (FP),
Negative (N) type | error, false alarm,
overestimation

True negative (TN),
correct rejection

Actual condition




* Area under PR curve is computed

* The higher the PR AUC, the better the classifier
* Fl-score




All of machine learning revolves around optimization
Find values for a set of variables the minimize loss function

Regression and model selection aim to provide models for
the available data

Regression — Curve fitting
* polynomial / exponential fitting
Result in set of equations modelling (non)linear systems
Linear example:
e Ax = b, need to estimate the parameters of matrix A
* ||Ax — b||, find the best model for the given data

Regularization is when a penalty term is introduced in the
optimization process to produce a solution out of the many
possible alternatives



Simple function that describes a trend by minimizing the
sum-square error between the selected function f(:) and its
fit to the data

Consider a set of n data points
* (X1, y1), (x2,¥2), (x3,¥3),, (X, Yn)

Further, assume that we would like to find a best fit line
through these points

We can approximate the line by the function
* f(x) = Bix + 5,
where the constants B1 and B2 are chosen to minimize
some error

* vy, = f(xy) + E; where y, is the data value, that is
approximated by f(x;) and the residual error E}
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* Various error metrics can be used to fit the model
* minimize the error (norm)

L2 loss L1 loss Huber loss

* Sensitive to
outlier
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e C(Calculates the number of bits required to represent or
transmit an average event from one distribution compared
to another distribution

* The intuition for this definition comes if we consider a target
or underlying probability distribution P and an
approximation of the target distribution Q. Then the cross-
entropy of Q from P is average bits of information needed to
identify an event drawn from the estimated probability
distribution q, rather than the true distribution p




* Kullback Leibler divergence, or KL divergence is a measure of
how one probability distribution is different from a second,
reference probability distribution (relative entropy)

L(pllg) = ) ply 10g )
yey
Entropy;
- Max if the distribution p is
< uniform

- Zeroif p is a delta function

- Cross-Entropy

——=0

If KL =0 correctly predict the probabilities of all possible future events




+

/

average number of extra bits
required when compressing
data coming from p if your
code is designed based on ¢
distribution

AN

average bits of information needed to
identify an event drawn from the
estimated probability distribution q,
rather than the true distribution p




The joint entropy of two random variables X and Y is defined as

H(X,Y) Zp(w, ) log, p(z, y)




How similar two distributions were

The mutual information between rv’s X and Y is defined as follows:

1(X;Y) 2 KL (p(z, ) lp(@)p) = 3 > pla,y)log =S5 (&)

s S p(z) p(y)

Used in Clustering — to measure cluster
qguality

NMI = Normalized Mutual Information




OPTIMIZATION



* The core problem in machine learning is parameter
estimation (aka model fitting).

* This requires solving an optimization problem, where we try
to find the values for a set of variables, 6€0, that minimize a
scalar-valued loss function or cost function, L(0)

0" € argmin L(0)
e

* The objective function is what we want to maximize or
minimize

* The algorithm that can find an optimum of an objective
function is often called a solver




* Aset of values in €0 that satisfies argmin L(8) is called a

)
global optimum

* In general, finding global optima is computationally
intractable

e Alternatively, try to find a local optimum

* Set of values 8 which has lower (or equal) cost than
“nearby” points




* Letg(@) = VL(O) be the gradient vector
« Let H(8) = V2L(6) be the Hessian matrix
« Consider a point 8* € RP

* letg® = g(0)|0"be the gradient at that point
« H* = H(8)|0"be the corresponding Hessian
* Every local minimum:

* Necessary condition: g* = 0 and H*must be positive
semi-definite

 Sufficient condition: If g* =0 and H™ is positive
definite, then 8™ is a local optimum

* A zero gradient is not sufficient, since a stationary point
could be a local minimum, maximum or saddle point, which
is a point where some directions point downhill, and some
uphill
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In addition to the objective function we often have a set of
constraints on the allowable values

Set of constraints C separated into
* inequality constraints, g;(6) < Oforj €]
* equality constraints, h;(0) = Ofork € K
0" € argmin L(6)
6eC

A common strategy for solving constrained problems is to
create penalty terms that measure how much we violate
each constraint

We then add these terms to the objective function and solve
an unconstrained optimization problem

The Lagrangian is one such combined objective

NOILVZINILAO LNIVYLSNOD



* |If too many constrained = empty feasible sets

* The task of finding any point (regardless of its cost) in the
feasible set is called a feasibility problem; this can be a hard
subproblem in itself




* In convex optimization, we require the objective to be a
convex function defined over a convex set

* AconvexsetSincludesx,x' €S
Ax+ (1 —-2A)x" €S, vAe[01]

 Thatis, if we draw a line from x to x’, all points on the line lie
inside the set




We say f is a convex function if its epigraph (the set of points
above the function) defines a convex set

Function f (x) is convex if it is defined on a convex set and if
for any x, y and for any A we have:

fOx+ (1= 0y) < A£G + (1= D)

Y-axis value that fell ) )
between the domain Straight line between (x, f(x)) and
from x and y (v, f(y)) as a function of A




* A function f(x) is concave if —f (x) is convex

fAx+ (1A =Dy) = Af(x) + (1 =Df(y)

Convex Concave







Strictly convex

Convex but not
strictly

Strictly
concave

Neither convex
nor concave =
saddle point




Discontinuity

O / sharp turn

f(x1) = f(x2)| < ﬁlxl — X3

Lipschitz constant — quantify
the degree of smoothness

Nonsmooth function with at least some points where the gradient
of the objective function or the constraints is not well-defined

Could partition the objective in 2 parts: one with the smooth
(differentiable) objective and a part with the nonsmooth terms

Composite objective:

L(6)=L; (6) + L, (6)




* Gradient descent
» Step size/ learning rate
* Convergence rate

e Momentum Method




* lterative optimization methods that leverage first-order
derivatives of the objective function, i.e., they compute
which directions point “downhill”, but they ignore curvature

information
7 \ S~
Updated . Descent
parameter Step sizé  Girection

» Steepest descent will have global convergence iff the step
size satisfies

L£(8)=10TAB + b0 + c with A > 0.

Amax = max eigenvalue




* Consider a quadratic objective:
L£(8)=10"A0+b'0 +cwith A =~ 0.

* The condition number measures how “skewed” the space is,
in the sense of being far from a symmetrical “bowl”




* Gradient descent can move very slowly along flat regions of
the loss landscape

* A solution to this problem is using momentum

* move faster along directions that were previously good, and to
slow down along directions where the gradient has suddenly

changed
Thinking like a ball rolling downward.
At flat surface, it roll down slowly. At
momentum sharp region, roll down faster.
~a

* Normally B=0.9
* |If B =0 - gradient descent




 Consider we want to minimize this loss function, f(8) = 2—1064 — %0 +1

* We know the min pointisat 8 * = 1.5 (compute f(8) = 0)
* What if we use line search (iterative method to find 6 *)




 Start with random number, 6;

Compute the gradient at 0,

0) —f(0
o0 ==L

If £'(8;) is negative, move 8, to the right
If £'(8;) is positive, move 0, to the left

Ory1 = 60— a f'(6;)

Large step size, a will overshoot
Small step size, a will be very slow

Slow to converge




Approximate with non linear graph

Compute the second derivative

at Hk 9) — 0
Fro0 =L ;_;f 2

Orr1 = Ok — a f'(6)

Using some algebra, the update formula is

0t+1 = 9k - af”(ek) f,(ek)

» Faster convergence




e Second-order optimization methods incorporate curvature
in various ways (e.g., via the Hessian), which may yield faster

convergence
e Newton’s method:
H = Hessian matrix

p = step size
g, = gradient




Batch Gradient Descent

1 < | |
f(6) = %Z(he (x(z)) — y(l))z
i=1

Ory1 = 0 — a f'(6)

Need to compute for all data,
if you have sample size, m = 1million
Very slow to update 6

Stochastic Gradient Descent

o 1 _ ,
cost (6, (x®,y®)) = 5 (he(x D) — y(©y2

1. Random Shuffle Data
2. Repeat {

fori=1,.., m
b M

= 0,

0 N
— a —cost(8, (x@,y®))

Updat§ 0 using only one data point.
Faster




Batch Gradient Descent Stochastic Gradient Descent




* All of machine learning revolves around optimization
* Regression -> curve fitting

* polynomial & exponential fitting

 SolvingAx =0>b
* Model selection frameworks

 Underdetermined (no sol.) or overdetermined (infinite
number of solutions)

* Solving |Ax — b||, — Ag(x)
* Penalty g(x) used to find a solution (regularization)

* Regression on non-linear models can be solved using
gradient descent




* Regression attempts to estimate the relationship among
variables using a variety of statistical tools

* Specifically, one can consider the general relationship
between independent variables X, dependent variables Y,
and some unknown parameters [3:

Y=f(X5)

* Minimize the sum-square error between the selected
function f (:) and its fit to the data




* Consider a set of n data points
(X1, Y1), (X2, ¥2), (X3, ¥3), «oes (X, Yn)

* Need to find a best fit line through these points
* Approximate the line by the function

f(x) = B1x + p;

* where the parameters [5; and 3, are chosen to minimize
some error associated with the fit

* Linear regression model

f(xk) = yi + Ex

* where vy, is the data value and E}, is the error of the fit
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e Various error metrics can be minimized when approximating
with a given function f(x)

* The choice of error metric, or norm, used to compute a
goodness-of-fit £, (least-squares), 1 , and o0 nOorms

* Ingeneral, £p-norm )
P

1 n
Ep(F) == ) 1f i) = il
k=1
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* When fitting a curve to a set of data, the root-mean square
(RMS) error is often chosen to be minimized

* This is called a least-squares fit
* Example depicting fits that minimize errors Ewo, E,, E;

* Eoo error line fit is strongly influenced by the one data
point which does not fit the trend

 E,, E; line fit nicely through the bulk of the data,
although their slopes are quite different in comparison

to when the data has no outliers
4

—E




* Least-squares fitting to linear models has critical advantages
over other norms and metrics.

* Specifically, the optimization is inexpensive, since the error
can be computed analytically

t egfork f@) = Bix + B
1
2

1 n n
B (f) = 5;|f<xk>—yk|2 =;|ﬂ1xk+ﬂz—yk|2

* Minimizing this sum requires differentiation

dE, dE,
—2=0 =—2=0
051 a5,




n
oE,
T 0 Z 2(Brxx + B2 = Yi)x =0
. k=1

—==0 22(,31xk+,32—}’k)=0
k=1

k=1 k=1 (.31) (Z=1xk3Ik)
\zxk . / B2 k=1Yk




* General theory of nonlinear regression assumes that the fitting
function takes the general form

f(x) =fxp),p €R”

* as before  coefficients used to minimize error

Ez(ﬁ)=z|f(xk»ﬁ)—yk|2 —.=0,j= e, M
k=1

Z(ﬂxk,ﬁ) 70 35 =0
J

* no general methods available for solving such nonlinear systems
e and thus gradient descent methods are employed




