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• Decision Theory
• Bayesian Statistics

• AUROC curve 

• Precision Recall Curve / F1 score

• Information Theory 

• Entropy

• KL divergence (Relative entropy)

• Joint Entropy

• Mutual Information

• Optimization 

• Parameter estimation (model fitting)

• Model identification (regularization)
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• Describes the probability of an event, based on prior 
knowledge of conditions that might be related to the event

Posterior 
distribution / new 

belief state

Marginal Likelihood

Prior distribution Likelihood
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• Assume the decision maker, or agent, has a set of possible 
actions, A, to  choose from

• Every action has cost and benefits depending on underlying 
state of nature

• Encode this information to loss function ℓ(h, a), loss when 
we incur if action a ∈ A is taken at state of nature, h ∈𝓗

• Compute posterior expected loss or risk  for each possible 
action
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• Use Bayesian decision theory to decide the optimal class 
label to predict given an observed input 𝑥 ∈ 𝑋

• Suppose the states of nature correspond to class 
labels, so 𝐻 = 𝑌 = {1,… , 𝐶}

• the actions correspond to class labels, so 𝐴 = 𝑌

• In this setting, a very commonly used loss function is the 
zero-one loss, ℓ01(𝑦

∗, ො𝑦), simply counts how many mistakes 
a hypothesis would make on training data

Mode of the posterior distribution or 
maximum a posteriori or MAP estimate
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If we have imbalanced testing data (class 0 = 100, class 1 = 10), if the model predict 
everything as class 0, accuracy = 90%

Reliable?? No

Accuracy (TP + TN) / (TP + FN + FP + TN)

Recall / True Positive Rate (TPR)  = predict 
how many disease correctly in disease cohort

TPR = TP / (TP + FN) 

False Positive Rate (FPR) = predict how many 
disease in healthy cohort

FPR =  FP / (FP + TN) 
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• Area under ROC curve is computed

• The higher the AUROC, the better the classifier
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F1 – score 

Recall / True Positive Rate (TPR)  = predict 
how many positive correctly for both positive 
and false negative

TPR = TP / (TP + FN) 

Precision = Positive Predictive Value (PPV) 
predict how many positive correctly if 
prediction is positive

PPV = TP / (TP +FP) 
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• Area under PR curve is computed

• The higher the PR AUC, the better the classifier
• F1-score



• All of machine learning revolves around optimization

• Find values for a set of variables the minimize loss function

• Regression and model selection aim to provide models for 
the available data 

• Regression → Curve fitting 

• polynomial / exponential fitting 

• Result in set of equations modelling (non)linear systems

• Linear example:

• 𝑨𝒙 = 𝒃, need to estimate the parameters of matrix A

• 𝑨𝒙 − 𝒃 2 find the best model for the given data 

• Regularization is when a penalty term is introduced in the 
optimization process to produce a solution out of the many 
possible alternatives



• Simple function that describes a trend by minimizing the 
sum-square error between the selected function f(·) and its 
fit to the data

• Consider a set of 𝑛 data points

• 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , 𝑥3, 𝑦3 ,···, (𝑥𝑛, 𝑦𝑛)

• Further, assume that we would like to find a best fit line 
through these points

• We can approximate the line by the function

• 𝑓(𝑥) = 𝛽1𝑥 + 𝛽2
where the constants β1 and β2 are chosen to minimize 
some error

• 𝑦𝑘 = 𝑓 𝑥𝑘 + 𝐸𝑘 where 𝑦𝑘 is the data value, that is 
approximated by 𝑓 𝑥𝑘 and the residual error 𝐸𝑘
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• Various error metrics can be used to fit the model

• minimize the error (norm)
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L2 loss L1 loss Huber loss

• Sensitive to 
outlier
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• Calculates the number of bits required to represent or 
transmit an average event from one distribution compared 
to another distribution

• The intuition for this definition comes if we consider a target 
or underlying probability distribution P and an 
approximation of the target distribution Q. Then the cross-
entropy of Q from P is average bits of information needed to 
identify an event drawn from the estimated probability 
distribution q, rather than the true distribution p
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• Kullback Leibler divergence, or KL divergence is a measure of 
how one probability distribution is different from a second, 
reference probability distribution (relative entropy)

Entropy;
- Max if the distribution p is 

uniform
- Zero if p is a delta function

Cross-Entropy

If KL  = 0 correctly predict the probabilities of all possible future events



average number of extra bits 
required when compressing 
data coming from p if your 
code is designed based on q 
distribution 

average bits of information needed to 
identify an event drawn from the 
estimated probability distribution q, 
rather than the true distribution p
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How similar two distributions were

Used in Clustering – to measure cluster 
quality

NMI = Normalized Mutual Information



OPTIMIZATION
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• The core problem in machine learning is parameter 
estimation (aka model fitting). 

• This requires solving an optimization problem, where we try 
to find the values for a set of variables, 𝜃∈Θ, that minimize a 
scalar-valued loss function or cost function, ℒ(𝜃)

• The objective function is what we want to maximize or 
minimize

• The algorithm that can find an optimum of an objective 
function is often called a solver

𝜃∗ ∈ argmin
𝜃∈Θ

ℒ(𝜃)
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• A set of values in 𝜃∈Θ that satisfies argmin
𝜃∈Θ

ℒ(𝜃) is called a 

global optimum

• In general, finding global optima is computationally 
intractable 

• Alternatively, try to find a local optimum

• Set of values θ which has lower (or equal) cost than 
“nearby” points
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• Let g 𝜃 = ∇ℒ(𝜃) be the gradient vector

• Let H 𝜃 = ∇2ℒ(𝜃) be the Hessian matrix

• Consider a point 𝜃∗ ∈ ℝ𝐷

• let 𝑔∗ = 𝑔 𝜃 ห𝜃∗be the gradient at that point

• 𝐻∗ = 𝐻 𝜃 ห𝜃∗be the corresponding Hessian

• Every local minimum:

• Necessary condition: 𝑔∗ = 0 and 𝐻∗must be positive 
semi-definite

• Sufficient condition: If 𝑔∗ = 0 and 𝐻∗ is positive 
definite, then 𝜃∗ is a local optimum

• A zero gradient is not sufficient, since a stationary point 
could be a local minimum, maximum or saddle point, which 
is a point where some directions point downhill, and some 
uphill
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• In addition to the objective function we often have a set of 
constraints on the allowable values

• Set of constraints 𝐶 separated into 

• inequality constraints, 𝑔𝑗(𝜃) ≤ 0 for 𝑗 ∈ 𝐽

• equality constraints, ℎ𝑘(𝜃) = 0 for 𝑘 ∈ 𝐾

• A common strategy for solving constrained problems is to 
create penalty terms that measure how much we violate 
each constraint

• We then add these terms to the objective function and solve 
an unconstrained optimization problem

• The Lagrangian is one such combined objective

𝜃∗ ∈ argmin
𝜃∈𝐶

ℒ(𝜃)
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• If too many constrained → empty feasible sets

• The task of finding any point (regardless of its cost) in the 
feasible set is called a feasibility problem; this can be a hard 
subproblem in itself
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• In convex optimization, we require the objective to be a 
convex function defined over a convex set

• A convex set 𝑆 includes 𝑥, 𝑥′ ∈ 𝑆

• That is, if we draw a line from x to x′, all points on the line lie  
inside the set

𝜆𝑥 + 1 − 𝜆 𝑥′ ∈ 𝑆, ∀𝜆 ∈ [0,1]
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• We say f is a convex function if its epigraph (the set of points 
above the function) defines a convex set

• Function 𝑓(𝑥) is convex if it is defined on a convex set and if 
for any 𝑥, 𝑦 and for any 𝜆 we have:

Straight line between (x, f(x)) and 
(y, f(y)) as a function of λ

Y-axis value that fell 
between the domain 
from x and y

𝑓 𝜆𝑥 + 1 − 𝜆 𝑦 ≤ 𝜆𝑓 𝑥 + 1 − λ 𝑓 y
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• A function 𝑓(𝑥) is concave if −𝑓(𝑥) is convex

Convex Concave

𝑓 𝜆𝑥 + 1 − 𝜆 𝑦 ≤ 𝜆𝑓 𝑥 + 1 − λ 𝑓 y
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Strictly convex Strictly 
concave

Neither convex 
nor concave →

saddle point

Convex but not 
strictly
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of the objective function or the constraints is not well-defined

• Could partition the objective in 2 parts: one with the smooth 
(differentiable) objective and a part with the nonsmooth terms

• Composite objective:

Discontinuity 
/ sharp turn

Lipschitz constant – quantify 
the degree of smoothness

𝑓 𝑥1 − 𝑓(𝑥2) ≤ 𝐿 𝑥1 − 𝑥2

ℒ(𝜃)=ℒ𝑠 𝜃 + ℒ𝑟(𝜃)
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• Gradient descent 

• Step size/ learning rate

• Convergence rate

• Momentum Method
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• Iterative optimization methods that leverage first-order 
derivatives of the objective function, i.e., they compute 
which directions point “downhill”, but they ignore curvature 
information

• Steepest descent will have global convergence iff the step 
size satisfies

λmax = max eigenvalue

Updated 
parameter Step size

Descent 
direction
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• Consider a quadratic objective:

• The condition number measures how “skewed” the space is, 
in the sense of being far from a symmetrical “bowl”             
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• Gradient descent can move very slowly along flat regions of 
the loss landscape

• A solution to this problem is using momentum
• move faster along directions that were previously good, and to 

slow down along directions where the gradient has suddenly 
changed

momentum

• Normally β=0.9
• If β = 0 → gradient descent

Thinking like a ball rolling downward. 
At flat surface, it roll down slowly. At 
sharp region, roll down faster. 
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• Consider we want to minimize this loss function, 𝑓 𝜃 =
1

20
𝜃4 −

2

5
𝜃 + 1

• We know the min point is at 𝜃 * = 1.5 (compute f’(𝜃) = 0)

• What if we use line search (iterative method to find 𝜃 *)
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• Start with random number, 𝜃𝑡

𝜃𝑡

Compute the gradient at 𝜃𝑘

𝑓′(𝜃𝑡) =
𝑓 𝜃 − 𝑓 𝜃𝑡

𝜃 − 𝜃𝑡

If 𝑓′ 𝜃𝑡 is negative, move 𝜃𝑡 to the right
If 𝑓′ 𝜃𝑡 is positive, move 𝜃𝑡 to the left 

𝜃𝑡+1 = 𝜃𝑡 − α 𝑓′(𝜃𝑡)

Large step size, α will overshoot
Small step size, α will be very slow

Slow to converge
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𝜃𝑘

Compute the second derivative 
at 𝜃𝑘

𝑓′′(𝜃𝑘) =
𝑓 𝜃 − 𝑓 𝜃𝑘

𝜃 − 𝜃𝑘

Approximate with non linear graph

𝜃𝑡+1 = 𝜃𝑘 − α
1

𝑓′′ 𝜃𝑘
𝑓′(𝜃𝑘)

Using some algebra, the update formula is   

𝜃𝑡+1 = 𝜃𝑘 − α 𝑓′(𝜃𝑘)

• Faster convergence



S
EC

O
N

D
O

R
D

ER
M

ETH
O

D
–

N
EW

TO
N

M
ETH

O
D

• Second-order optimization methods incorporate curvature 
in various ways (e.g., via the Hessian), which may yield faster 
convergence

• Newton’s method:

H = Hessian matrix 
ρ = step size
gt = gradient 
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Batch Gradient Descent

𝑓 𝜃 =
1

2𝑚


𝑖=1

𝑚

(ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 )2

Need to compute for all data, 
if you have sample size, m = 1million
Very slow to update θ

𝜃𝑡+1 = 𝜃𝑡 − 𝛼 𝑓′ 𝜃

Stochastic Gradient Descent

𝑐𝑜𝑠𝑡 𝜃, (𝑥 𝑖 , 𝑦 𝑖 ) =
1

2
(ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 )2

1. Random Shuffle Data
2. Repeat {

for i = 1, ... , m {

}
}                

𝜃𝑡+1
= 𝜃𝑡

− 𝛼
𝜕

𝜕𝜃𝑡
𝑐𝑜𝑠𝑡 𝜃, (𝑥 𝑖 , 𝑦 𝑖 )

Update θ using only one data point. 

Faster
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Batch Gradient Descent Stochastic Gradient Descent



• All of machine learning revolves around optimization 

• Regression -> curve fitting 

• polynomial & exponential fitting 

• Solving 𝑨𝒙 = 𝒃

• Model selection frameworks

• Underdetermined (no sol.) or overdetermined (infinite 
number of solutions) 

• Solving 𝑨𝒙 − 𝒃 2 − 𝜆𝑔(𝑥)

• Penalty 𝑔(𝑥) used to find a solution (regularization)

• Regression on non-linear models can be solved using 
gradient descent
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• Regression attempts to estimate the relationship among 
variables using a variety of statistical tools

• Specifically, one can consider the general relationship 
between independent variables 𝑋, dependent variables 𝑌, 
and some unknown parameters 𝛽:

• Minimize the sum-square error between the selected 
function f (·) and its fit to the data

Y = 𝑓(𝑋, 𝛽)
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• Consider a set of n data points

• Need to find a best fit line through these points

• Approximate the line by the function

• where the parameters 𝛽1 and 𝛽2 are chosen to minimize 
some error associated with the fit

• Linear regression model

• where 𝑦𝑘 is the data value and 𝐸𝑘 is the error of the fit

𝑥1, 𝑦1 , 𝑥2, 𝑦2 , 𝑥3, 𝑦3 , … , (𝑥𝑛, 𝑦𝑛)

𝑓 𝑥 = 𝛽1𝑥 + 𝛽2

𝑓 𝑥𝑘 = 𝑦𝑘 + 𝐸𝑘
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• Various error metrics can be minimized when approximating 
with a given function f(x)

• The choice of error metric, or norm, used to compute a 
goodness-of-fit ℓ2 (least-squares), ℓ1 , and ℓ∞ norms

• In general, ℓ𝑃-norm 

𝐸𝑃 𝑓 =
1

𝑛


𝑘=1

𝑛

𝑓 𝑥𝑘 − 𝑦𝑘
𝑃

1
𝑃



• When fitting a curve to a set of data, the root-mean square 
(RMS) error is often chosen to be minimized

• This is called a least-squares fit

• Example depicting fits that minimize errors 𝐸∞, 𝐸2, 𝐸1
• 𝐸∞ error line fit is strongly influenced by the one data 

point which does not fit the trend

• 𝐸2, 𝐸1 line fit nicely through the bulk of the data, 
although their slopes are quite different in comparison 
to when the data has no outliers
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• Least-squares fitting to linear models has critical advantages 
over other norms and metrics.

• Specifically, the optimization is inexpensive, since the error 
can be computed analytically

• e.g. for 𝐸2

• Minimizing this sum requires differentiation

𝑓 𝑥 = 𝛽1𝑥 + 𝛽2

𝐸2 𝑓 =
1

𝑛


𝑘=1

𝑛

𝑓 𝑥𝑘 − 𝑦𝑘
2

1
2

= 

𝑘=1

𝑛

𝛽1𝑥𝑘 + 𝛽2 − 𝑦𝑘
2

𝜕𝐸2
𝜕𝛽1

= 0
𝜕𝐸2
𝜕𝛽2

= 0



𝜕𝐸2
𝜕𝛽1

= 0

𝜕𝐸2
𝜕𝛽2

= 0



𝑘=1

𝑛

2 𝛽1𝑥𝑘 + 𝛽2 − 𝑦𝑘 𝑥𝑘 = 0



𝑘=1

𝑛

2 𝛽1𝑥𝑘 + 𝛽2 − 𝑦𝑘 = 0



𝑘=1

𝑛

𝑥𝑘
2 

𝑘=1

𝑛

𝑥𝑘



𝑘=1

𝑛

𝑥𝑘 𝑛

𝛽1
𝛽2

=
∑𝑘=1
𝑛 𝑥𝑘 𝑦𝑘
∑𝑘=1
𝑛 𝑦𝑘
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• General theory of nonlinear regression assumes that the fitting 
function takes the general form

• as before 𝛽 coefficients used to minimize error

• no general methods available for solving such nonlinear systems

• and thus gradient descent methods are employed

𝑓 𝑥 = 𝑓 𝑥, 𝛽 , 𝛽 ∈ ℝm

𝐸2 𝛽 = 

𝑘=1

𝑛

𝑓 𝑥𝑘 , 𝛽 − 𝑦𝑘
2

𝜕𝐸2
𝜕𝛽𝑗

= 0, 𝑗 = 1,… ,𝑚



𝑘=1

𝑛

𝑓 𝑥𝑘 , 𝛽 − 𝑦𝑘
𝜕𝑓

𝜕𝛽𝑗
= 0


