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* Dynamical systems provide a mathematical framework to:

e describe and understand the world around us

 modeling the rich interactions between quantities that
co-evolve in time

* make predictions and take actions/ control

* Use differential equations or iterative mappings (data-
driven)

* Data is abundant, while physical laws or governing equations
remain elusive




* Dynamical System
0
= x(6) = f(x(0), t; B)

where x is the state of the system and f is a function that
models the system over time t with parameters

* Discrete-Time Dynamical Systems

Xp+1 = F(xy)

where Xy can be obtained by sampling the signal in time, i.e.
X, = x(kAt)




Desirable to work with linear dynamics of the form

0 =A
6tx_ X

Linear dynamical systems admit closed-form solutions
x(ty +t) = edtx(ty)

Real-world systems are generally nonlinear and exhibit
multi-scale behavior in both space and time

Also there is uncertainty in the equations of motion, in the
specification of parameters, and in the measurements of the
system

ldentifying unknown dynamics from data and learning
intrinsic coordinates can enable linearization of nonlinear
and uncertain dynamical systems
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CONTROL SYSTEMS



An overarching goal for many systems is the ability to
actively manipulate their behavior for a given engineering
objective

Control theory -> manipulating dynamical systems

Relies on sensor measurements (data) obtained from a
system to achieve a given objective

Helped shape modern technology

cruise control in automobiles
Position control in drones
Packet routing in the Internet
Heating/cooling ventilation

Temperature and pressure control in modern espresso
machines
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Passive control
* does not require input
* Desirable due to simplicity, reliability, and low cost

e e.g., stop signs at a traffic intersection regulate the
flow of traffic

Active control: Open-loop or closed loop depending if
sensors measurements are used to inform control

Open-loop relies on pre-programmed control sequences
» e.g. traffic signal periods set at different times of day

Closed-loop control uses sensors to measure the system
directly and then shapes the control to achieve the goal

e e.g., smart traffic lights with a control logic informed
by inductive sensors in the roadbed that measure
traffic density
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* Used for systems with uncertainty, instability, and/or
external disturbances

* Sensor measurements, y, are fed back into a controller,
which then decides on an actuation signal, u, to manipulate
the system despite model uncertainty and exogenous
disturbances
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* Exogenous disturbances w may be decomposed as

w = [Wgw,fWrT]T

where w, are disturbances to the state of the system, w,, is
measurement noise, and w;,. is a reference trajectory that
should be tracked by the closed-loop system

* System & measurement model are:

ax=f(x,u,wd)

y=gxuwy)
* and the objective (control law) is:

u=k(y,w,)
* that minimizes the cost function ] = J(x, u,w,.)




 Modern control relies heavily on techniques from
optimization

* Benefits of feed-back control
* Possible to stabilize an unstable system;
* Possible to compensate for external disturbances;

e Possible to correct for unmodeled dynamics and
model uncertainty

d
ax=Ax+Bu=(A—BK)x
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* Let u be the rate of gas fed into the engine, and let y be the

car’s speed
* Neglecting transients, a crude model is:

y=1u

* If we double the gas, we double the automobile’s speed
* Consider the closed-loop control law:

u = K(w,—y)

* sothat gas isincreased when the measured velocity is too
low, and decreased when is too high




* In practice, the model could be y = 2u, or external disturbances,
such as rolling hills, affect speed by y = u + sin(t)

 The performance of the closed-loop system is:
y = ZK(Wr - :V)
(1+ 2K)y = 2Kw,

2K
Y T1+2k""

* For K=50, the closed-loop system only has 1% steady-state
tracking error

* Similarly, an added disturbance w, will be attenuated by a factor
of 1/(2K + 1)
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e Consider a reference tracking problem

* desired reference speed of 60 mph
e modelisy=u (true systemisy=0.5u)

e disturbance in the form of rolling hills that increase
and decrease the speed by +10 mph at a frequency of
0.5 Hz.

e K=50




t = 0:.01:10;

10*sin (pi*t) ;

aModel = 1;
aTrue = .5;
uOL =
yOL

wr/aModel;

K = 50;
yCL =

60*ones (size(t)) ;

aTrue*uOL + d;
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aTrue*K/ (1+aTrue*K) *wr

# Comparison of open- and close-loop control

time

reference speed
disturbance

aModel *u
aTrue*u

y'1=
y'1=

Open-loop u based on model
Open-loop response

control gain, u=K(wr-y);
+ d/ (1+aTrue*K) ;

60

50
40
30
20
10

Speed

-10 ST

Reference
Disturbance
Open Loop
Closed Loop

* Alarge proportional gain may come at the cost of robustness
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* PID control is among the simplest and most widely used
control architectures for:

* motor position and velocity control
* tuning of various sub-systems in an automobile

e pressure and temperature controls in modern
espresso machines

* PID control additively combines three terms to form the
actuation signal, based on the error signal, its integral and
derivative in time
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* In the cruise control example

* was possible to reduce reference tracking error by
increasing the proportional control gain Kp in the
control lawu = —Kp(w, — y)

* However, increasing the gain may eventually cause
instability in some systems, and it will not completely
eliminate the steady-state tracking error

* Addition of an integral control term K; fot(wr —y)is

useful to eliminate steady-state reference tracking
error while alleviating the work required by the
proportional term




* There are formal rules for how to choose the PID gains for
various design specifications:

e fast response
* minimal overshoot
* Ringing




* Most complete theory of control has been developed for
linear systems

* Linear systems are generally obtained by linearizing a
nonlinear system about a fixed point or a periodic orbit

* However, instability may quickly take a trajectory far away
from the fixed point

* Fortunately, an effective stabilizing controller will keep the
state of the system in a small neighborhood of the fixed
point where the linear approximation is valid
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* Also many systems of interest are exceedingly high
dimensional, making them difficult to characterize/ model

* High dimensionality also limits controller robustness due to
significant computational time delays

 Reduced-order models capture the most relevant dynamics
for feedback control

* Related procedures include model reduction and system
identification (when having access only to data)
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* The goal of system identification is to identify a low-order
model of the input—output dynamics from actuation u to
measurements y.

* If we are able to measure the full state x of the system, then
this reduces to identifying the dynamics F that satisfy:

Xp+1 = F(xp, uy)

* When the dynamics are approximately linear:

Xr+1 = Axy + Buy,




* Machine learning enables complex systems to be described
by measurement data, rather than first-principles modeling

e Use ML to learn control laws (i.e., determine map from
sensors to actuators)




ML encompasses a broad range of high-dimensional,
possibly nonlinear, optimization techniques, it is natural to
apply machine learning to the control of complex, nonlinear
systems

ML methods for control include:
* Adaptive neural networks
* Genetic algorithms
* Genetic programming
 Reinforcement learning

All of these are model-free control methodologies

Model-free methods have some sort of macroscopic
objective function, typically based on sensor measurements
(past and present)

* Objectives involve some minimization or maximization of a given
guantity subject to some constraints

* Constraints may be hard, or they may involve a complex multi-
objective tradeoff



* Reinforcement learning (RL)
e attheintersection of machine learning and control

e used for generalized & generative Al, autonomous
robots, and self-driving cars

 Markov decision process (RL framework), where the
dynamics of the system and the control policy are described
in a probabilistic setting, so that stochasticity is built into the
state dynamics and the actuation strategy

* In this way, control policies are probabilistic, promoting a
balance of optimization and exploration




With RL may not always have immediate rewards

Or RL agent may receive partial information about the
effectiveness of their control strategy

 For example, when learning to play a game like tic-tac-toe or
chess, it is not clear if a specific intermediate move is responsible

for winning or losing.
* The player receives binary feedback at the end of the game as to
whether or not they win or lose
RL defines a value function, Q, for the quality of beingin a
particular state and taking a particular action
Over time, the agent learns and refines Q function, improving
their ability to make good decisions

* |nthe example of chess, an expert player begins to have intuition
for good strategy based on board position, which is a complex
value function over an extremely high-dimensional state space
(i.e., the space of all possible board configurations)

Q-learning is a model-free reinforcement learning strategy, where
the value function is learned from experience
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Environment: The world in which the agent operates

*  State: A specific situation in the environment

* Action: A move made by the agent

. Reward: Feedback from the environment based on the
action taken

 Policy: A strategy used by the agent to determine the next
action based on the current state

e Q-value: A measure of the expected future rewards for an
action taken in a specific state




* Q-learning is an off-policy RL algorithm that seeks to find the best
action to take given the current state

* Itlearns a Q-function, which is the expected utility of taking a
given action in a given state, and following the optimal policy
thereafter

 The Q-value is updated using the formula:

Q(s,a) « Q(s,a) + a [r +y max Q(s',a") — Q(s, a)]

where:

. Q(s,a) is the current Q-value
. « is the learning rate

. r is the reward

. y is the discount factor

« s'isthe next state

max Q(s’,a’) is the maximum Q-value for the next state
a




