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• Dynamical systems provide a mathematical framework to:

• describe and understand the world around us

• modeling the rich interactions between quantities that 
co-evolve in time

• make predictions and take actions/ control 

• Use differential equations or iterative mappings (data-
driven)

• Data is abundant, while physical laws or governing equations 
remain elusive
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• Dynamical System

where 𝑥 is the state of the system and 𝑓 is a function that 
models the system over time 𝑡 with parameters 𝛽

• Discrete-Time Dynamical Systems

where xk can be obtained by sampling the signal in time, i.e. 
𝑥𝑘 = 𝑥(𝑘Δ𝑡)

𝜕

𝜕𝑡
𝒙 𝑡 = 𝒇(𝒙 𝑡 , 𝑡; 𝜷)

𝒙𝒌+𝟏 = 𝑭(𝒙𝒌)
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• Desirable to work with linear dynamics of the form

• Linear dynamical systems admit closed-form solutions

• Real-world systems are generally nonlinear and exhibit 
multi-scale behavior in both space and time

• Also there is uncertainty in the equations of motion, in the 
specification of parameters, and in the measurements of the 
system

• Identifying unknown dynamics from data and learning 
intrinsic coordinates can enable linearization of nonlinear 
and uncertain dynamical systems

𝜕

𝜕𝑡
𝒙 = 𝑨𝒙

𝒙 𝑡0 + 𝑡 = 𝑒𝑨𝑡𝒙 𝑡0



CONTROL SYSTEMS
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• An overarching goal for many systems is the ability to 
actively manipulate their behavior for a given engineering 
objective

• Control theory -> manipulating dynamical systems

• Relies on sensor measurements (data) obtained from a 
system to achieve a given objective

• Helped shape modern technology

• cruise control in automobiles

• Position control in drones

• Packet routing in the Internet

• Heating/cooling ventilation

• Temperature and pressure control in modern espresso 
machines
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• Passive control 

• does not require input

• Desirable due to simplicity, reliability, and low cost

• e.g., stop signs at a traffic intersection regulate the 
flow of traffic

• Active control: Open-loop or closed loop depending if 
sensors measurements are used to inform control

• Open-loop relies on pre-programmed control sequences

• e.g. traffic signal periods set at different times of day

• Closed-loop control uses sensors to measure the system 
directly and then shapes the control to achieve the goal 

• e.g., smart traffic lights with a control logic informed 
by inductive sensors in the roadbed that measure 
traffic density
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• Used for systems with uncertainty, instability, and/or 
external disturbances

• Sensor measurements, 𝑦, are fed back into a controller, 
which then decides on an actuation signal, 𝑢, to manipulate 
the system despite model uncertainty and exogenous 
disturbances



• Exogenous disturbances 𝑤 may be decomposed as

where 𝑤𝑑 are disturbances to the state of the system, 𝑤𝑛 is 
measurement noise, and 𝑤𝑟 is a reference trajectory that 
should be tracked by the closed-loop system

• System & measurement model are:

• and the objective (control law) is:

• that minimizes the cost function 𝐽 = 𝐽(𝒙, 𝒖,𝒘𝑟)

𝑤 = 𝑤𝑑
𝑇𝑤𝑛

𝑇𝑤𝑟
𝑇 𝑇

𝜕

𝜕𝑡
𝒙 = 𝒇(𝒙, 𝒖,𝒘𝑑)

𝒚 = 𝒈(𝒙, 𝒖,𝒘𝑛)

𝒖 = 𝒌(𝒚,𝒘𝑟)



• Modern control relies heavily on techniques from 
optimization

• Benefits of feed-back control

• Possible to stabilize an unstable system;

• Possible to compensate for external disturbances;

• Possible to correct for unmodeled dynamics and 
model uncertainty

𝜕

𝜕𝑡
𝒙 = 𝑨𝒙 + 𝑩𝒖 = (𝐀 − 𝐁𝐊)𝒙
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• Let 𝑢 be the rate of gas fed into the engine, and let 𝑦 be the 
car’s speed

• Neglecting transients, a crude model is:

• If we double the gas, we double the automobile’s speed

• Consider the closed-loop control law:

• so that gas is increased when the measured velocity is too 
low, and decreased when is too high

𝑦 = 𝑢

𝑢 = 𝐾(𝑤𝑟 − 𝑦)
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• In practice, the model could be 𝑦 = 2𝑢, or external disturbances, 
such as rolling hills, affect speed by 𝑦 = 𝑢 + sin(𝑡)

• The performance of the closed-loop system is:

• For K = 50, the closed-loop system only has 1% steady-state 
tracking error

• Similarly, an added disturbance 𝑤𝑑 will be attenuated by a factor 
of 1/(2K + 1)

𝑦 = 2𝐾 𝑤𝑟 − 𝑦

(1 + 2𝐾)𝑦 = 2𝐾𝑤𝑟

𝑦 =
2𝐾

1 + 2𝐾
𝑤𝑟
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• Consider a reference tracking problem 

• desired reference speed of 60 mph

• model is y = u (true system is y = 0.5u) 

• disturbance in the form of rolling hills that increase 
and decrease the speed by ±10 mph at a frequency of 
0.5 Hz. 

• K = 50
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• A large proportional gain may come at the cost of robustness

# Comparison of open- and close-loop control

t = 0:.01:10; % time

wr = 60*ones(size(t)); % reference speed

d = 10*sin(pi*t); % disturbance

aModel = 1; % y = aModel*u

aTrue = .5; % y = aTrue*u

uOL = wr/aModel; % Open-loop u based on model

yOL = aTrue*uOL + d; % Open-loop response

K = 50; % control gain, u=K(wr-y);

yCL = aTrue*K/(1+aTrue*K)*wr + d/(1+aTrue*K);
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• PID control is among the simplest and most widely used 
control architectures  for:

• motor position and velocity control 

• tuning of various sub-systems in an automobile

• pressure and temperature controls in modern 
espresso machines

• PID control additively combines three terms to form the 
actuation signal, based on the error signal, its integral and 
derivative in time



• In the cruise control example 

• was possible to reduce reference tracking error by 
increasing the proportional control gain 𝐾𝑃 in the 
control law 𝑢 = −𝐾𝑃(𝑤𝑟 − 𝑦)

• However, increasing the gain may eventually cause 
instability in some systems, and it will not completely 
eliminate the steady-state tracking error

• Addition of an integral control term 𝐾𝐼 ∫0
𝑡
(𝑤𝑟 − 𝑦) is 

useful to eliminate steady-state reference tracking 
error while alleviating the work required by the 
proportional term



• There are formal rules for how to choose the PID gains for 
various design specifications:

• fast response 

• minimal overshoot 

• Ringing
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• Most complete theory of control has been developed for 
linear systems

• Linear systems are generally obtained by linearizing a 
nonlinear system about a fixed point or a periodic orbit

• However, instability may quickly take a trajectory far away 
from the fixed point

• Fortunately, an effective stabilizing controller will keep the 
state of the system in a small neighborhood of the fixed 
point where the linear approximation is valid
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• Also many systems of interest are exceedingly high 
dimensional, making them difficult to characterize/ model

• High dimensionality also limits controller robustness due to 
significant computational time delays

• Reduced-order models capture the most relevant dynamics 
for feedback control

• Related procedures include model reduction and system 
identification (when having access only to data)
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• The goal of system identification is to identify a low-order 
model of the input–output dynamics from actuation 𝑢 to 
measurements 𝑦. 

• If we are able to measure the full state 𝑥 of the system, then 
this reduces to identifying the dynamics 𝑭 that satisfy:

• When the dynamics are approximately linear:

𝒙𝒌+𝟏 = 𝑭(𝒙𝒌, 𝒖𝒌)

𝒙𝒌+𝟏 = 𝐴𝒙𝒌 +𝑩𝒖𝒌
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• Machine learning enables complex systems to be described 
by measurement data, rather than first-principles modeling 

• Use ML to learn control laws (i.e., determine map from 
sensors to actuators)



• ML encompasses a broad range of high-dimensional, 
possibly nonlinear, optimization techniques, it is natural to 
apply machine learning to the control of complex, nonlinear 
systems

• ML methods for control include:
• Adaptive neural networks

• Genetic algorithms

• Genetic programming

• Reinforcement learning

• All of these are model-free control methodologies 

• Model-free methods have some sort of macroscopic 
objective function, typically based on sensor measurements 
(past and present) 

• Objectives involve some minimization or maximization of a given 
quantity subject to some constraints

• Constraints may be hard, or they may involve a complex multi-
objective tradeoff



• Reinforcement learning (RL)

• at the intersection of machine learning and control 

• used for generalized & generative AI, autonomous 
robots, and self-driving cars

• Markov decision process (RL framework), where the 
dynamics of the system and the control policy are described 
in a probabilistic setting, so that stochasticity is built into the 
state dynamics and the actuation strategy

• In this way, control policies are probabilistic, promoting a 
balance of optimization and exploration



• With RL may not always have immediate rewards

• Or RL agent may receive partial information about the 
effectiveness of their control strategy

• For example, when learning to play a game like tic-tac-toe or 
chess, it is not clear if a specific intermediate move is responsible 
for winning or losing.

• The player receives binary feedback at the end of the game as to 
whether or not they win or lose

• RL defines a value function, Q, for the quality of being in a 
particular state and taking a particular action

• Over time, the agent learns and refines Q function, improving 
their ability to make good decisions

• In the example of chess, an expert player begins to have intuition 
for good strategy based on board position, which is a complex 
value function over an extremely high-dimensional state space 
(i.e., the space of all possible board configurations)

• Q-learning is a model-free reinforcement learning strategy, where 
the value function is learned from experience
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• Environment: The world in which the agent operates

• State: A specific situation in the environment

• Action: A move made by the agent

• Reward: Feedback from the environment based on the 
action taken

• Policy: A strategy used by the agent to determine the next 
action based on the current state

• Q-value: A measure of the expected future rewards for an 
action taken in a specific state
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• Q-learning is an off-policy RL algorithm that seeks to find the best 
action to take given the current state

• It learns a Q-function, which is the expected utility of taking a 
given action in a given state, and following the optimal policy 
thereafter

• The Q-value is updated using the formula:

where:

• 𝑄(𝑠, 𝑎) is the current Q-value

• 𝛼 is the learning rate

• 𝑟 is the reward

• 𝛾 is the discount factor

• 𝑠′ is the next state

• max
𝑎′

𝑄 𝑠′, 𝑎′ is the maximum Q-value for the next state

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎


