
ΕΠΛ 428: IOT PROGRAMMING

Dr. Panayiotis Kolios
Assistant Professor, Dept. Computer Science,
KIOS CoE for Intelligent Systems and Networks
Office: FST 01, 116
Telephone: +357 22893450 / 22892695
Web: https://www.kios.ucy.ac.cy/pkolios/

Data Analytics for IoT

• Real value is in IoT data

• However, as more IoT devices added:

• The data becomes overwhelming (big data)

• Consume precious network bandwidth

• Server resources use to store, and process data

• New IoT methods implemented for this need:

• Big data technologies: Hadoop, NoSQL, MapReduce

• Edge streaming analytics: real-time, on-device

• Network analytics: support efficient functionality

D
A

TA
 D

ELU
G

E

Sensor Raw data rate

Radar 0.1-15 Mbps/sensor

LIDAR 20-100 Mbps/sensor

Camera 500-3500 Mbps/sensor

Ultrasonic <0.01 Mbps/sensor

Level 5 (full control) autonomous
vehicle >50 sensors:
• ultrasonic, surround camera, and

long- and short-range radar, long
range and stereo cameras, LiDAR,
dead reckoning

• Approx. 40 Gbps or 19 TB per hour or 5,894 TB per year
(50min driving per day)

• 1 billion cars globally -> 589,400 Yottabytes
https://blogs.sw.siemens.com/polarion/the-data-deluge-what-do-we-do-with-the-data-generated-by-avs/

• Analyzing this amount of data in the most efficient manner
possible falls under the umbrella of data analytics

• Data analytics provide knowledge and actionable insights

• Structured data follows a model that defines how the data is
represented/ organized

• relational database management system (RDBMS)

• Structured Query Language (SQL) is used to interact with RDBMS

• 80% is however unstructured data

• NoSQL do not enforce a strict schema, and they support a
complex, evolving data model; more scalable

Structured Data

Organized Formatting (e.g., Spreadsheets, Databases)

Unstructured Data

Does not Conform to a Model

(e.g., Text, Images, Video, Speech)

D
A

TA
 IN

 M
O

TIO
N

 V
S

D
A

TA
 A

T R
EST

• IoT data can be transit (“data in motion”) or stored (“data at
rest”)

• Devices generate data that is exchanged (in motion) and
acted upon (processed at the edge, fog)

• At the data center, processed also in real-time. Tools with
this sort of capability, such as Spark, Storm, and Flink; tools
part of Hadoop ecosystem

• Data at rest found in IoT brokers or storage at data center.
Myriad tools, for structured data in relational databases, also
in Hadoop

What is

happening?

Descriptive

Why did it

happen?

Diagnostic

What is likely to

happen?

Predictive

What should I

do about it?

Prescriptive

Analysis

Raw and Processed

Network/Ops Data
Mobile

Internet

Social

Media

Machine

and

Sensors

Usage Video

Relationships and

Social Influence

Events Alarms
CRM and ERP

Big Data Technologies

Collect, Integrate, Process, Aggregate, Visualize

Geolocation Email and Messaging

M
A

SSIV
ELY P

A
R

A
LLE P

R
O

C
ESSIN

G
 D

A
TA

B
A

SES

• RDBMS used for storing structured data in data warehouses

• used for longer-term archiving and data queries (take
minutes or hours to respond)

• Massively parallel processing (MPP) databases are designed
to be much faster, to be efficient, and to support reduced
query times

• MPP take advantage of multiple nodes (computers)
designed in a scale-out architecture with data processing
distributed across multiple systems

• MPPs designed to allow for fast query processing and often
have built-in analytic functions

• MPP architecture typically contains a single master node
that is responsible for the coordination of all the data
storage and processing across the cluster

• Nodes have local processing, memory, and storage

• Data storage is optimized across the nodes in a structured
SQL-like format that allows data analysts to work with the
data using common SQL tools and applications

Segment Host 1 Segment Host NSegment Host 2

Master Host Standby Master

Node NNode 1 Node 2

N
O

SQ
L D

A
TA

B
A

SES

• NoSQL an umbrella term encompassing different types of
databases:

• Document stores: Stores semi-structured data, such as XML
or JSON

• Key-value stores: Store associative arrays where a key is
paired with an associated value; easy to build and easy to
scale.

• Wide-column stores: Similar to a key-value store, but the
formatting can vary from row to row, even in the same table

• Graph stores: Organized based on the relationships between
elements. Graph stores are commonly used for social media
or natural language processing, where the connections
between data are very relevant

• NoSQL was developed to support the high-velocity, real-time
analytics that typically do not require much repeated use

• NoSQL key-value stores are capable of handling indexing
and persistence simultaneously at a high rate

• Makes them a great choice for time-series data

• Hadoop originally intended to index millions of websites and
quickly return search results; had two key elements:

• Hadoop Distributed File System (HDFS): A system for storing data
across multiple nodes

• NameNodes: Coordinate storage of data and provide data
adds, moves, deletes, reads. Also instruct DataNodes for data
replication

• DataNodes: Servers that store data

• MapReduce: A distributed processing engine that splits a large
task into smaller ones that can be run in parallel

H
A

D
O

O
P

 EC
O

SYSTEM

• Hadoop includes > 100 software packages addressing every
element in the data lifecycle:

• from collection, to storage, to processing, to analysis and
visualization

• Apache Kafka is a distributed publisher-subscriber
messaging system designed to accept data from origin and
deliver the data to stream-processing engines; broker

• distributed nature run in a clustered configuration

• can handle many producers and consumers simultaneously

Consumers

Kafka

Cluster

Topic

Message Broker 1

Message Broker 2

Message Broker 3

Message Broker 4

Spark

Streaming

Storm

Hadoop

Producer

• Apache Spark

• An in-memory distributed data analytics platform

• At each stage of a MapReduce operation processing is moved
into memory to lower latency batch processing

• Lambda architecture
• Querying both streaming and data at rest (batch processing)

Kafka
Merged

View
Serving

Layer

Spark
Streaming

Real-Time
Views

Pre-Compute
Views

Storm Flink

HDFS MapReduce

Hadoop

Batch Layer

ED
G

E STR
EA

M
 A

N
A

LYTIC
S

• In IoT, vast quantities of data are generated on the fly and
often need to be analyzed and responded to in real-time

• High volume live stream IoT data that needs to be analysed
to detect patterns or anomalies

• Volume of data generated at the edge immense— bandwidth
requirements to the cloud are very high

• Time sensitivity precludes waiting for deep analysis in the cloud

CREATE STREAM Temp (

ts TIMESTAMP CQTIME USER,

device TEXT,

temp NUMERIC(5,2)

);

SELECT cq_close(*), device, avg (temp)

FROM Temp <VISIBLE ‘2 min’ ADVANCE ‘1 min’>

GROUP BY device;

2016-01-08 04:05:06 Sensor_5 23.45 2016-01-08 04:07:00 Sensor_5 23.45

2016-01-08 04:07:00 Sensor_3 27.062016-01-08 04:06:45 Sensor_3 27.22

2016-01-08 04:06:54 Sensor_3 26.89 2016-01-08 04:08:00 Sensor_5 23.00

2016-01-08 04:08:00 Sensor_3 27.06

2016-01-08 04:08:00 Sensor_2 25.01

2016-01-08 04:07:07 Sensor_2 25.01

2016-01-08 04:07:33 Sensor_5 23.00

2016-01-08 04:08:10 Sensor_5 23.02 2016-01-08 04:09:00 Sensor_5 23.01

2016-01-08 04:09:00 Sensor_2 25.012016-01-08 04:09:01 Sensor_2 25.02

Defining Streams and Windows

D
A

TA
 C

O
R

R
ELA

TIO
N

• Streaming data analytics most useful when multiple data
streams are combined from different types of sensors or
different time periods

• For example, in a hospital, several vital signs are measured
for patients, including body temperature, blood pressure,
heart rate, and respiratory rate

• When this data is combined and analyzed, it provides an
invaluable picture of the health of the patient at any given time.

• Alternatively, historical data may include the patient’s past
medical history, such as blood test results

• Combining historical data gives the live streaming data a
powerful context and promotes more insights into the current
condition of the patient

Correlate
...ABBC

…011011

…010101

…011010

…011100

Filter Transform

Historical Data

D
ISTR

IB
U

TED
A

N
A

LYTIC
S

S
YSTEM

S

• Streaming analytics may be performed directly at the edge,
in the fog, or in the cloud data center

• Value of data when aggregated increases massively

• But there is also value in retracking from the edge to the
network to gain a wider understanding of largescale systems

• Fog analytics allows to see beyond one device

Data Center

Cloud processing

Network Nodes

Fog Processing

Edge Location

Device Processing

Dashboard

Data Lake

Data

Virtualization

Broker

Broker

Broker Broker

Streaming

Analytics

Streaming

Analytics

MQTT Communication

N
ETW

O
R

K
 A

N
A

LYTIC
S

• Network analytics is concerned with discovering patterns in
the communication flows from network traffic

• Analyze details of communications patterns made by
protocols and correlate this across the network

• Understand what is normal behavior and identify anomalies
• Connectivity and routing issues

• Cyberattacks / Emergency situations
Multi-Services

Site #1

Multi-Services

Site #2

Multi-Services

Site #3

Network Operations Management

Public Key Infrastructure

Flexible Netflow

DHCP Services

Network Management

SCADA Headend

Headend

Potential Flexible Netflow

Collector Points

(IPv4 and IPv6 Traffic,

IP Addresses,

TCP/UDP Port Numbers, etc.)

N
ETW

O
R

K
 A

N
A

LYTIC
S

• Enable capabilities to cope with
• capacity planning for scalability

• security monitoring

• Drivers of the adoption of standardize architectures

• Flow statistics can be collected:
• Network traffic monitoring and profiling: Flow collection from

the network layer provides global and distributed near-real-time
monitoring capabilities

• Application traffic monitoring and profiling: Gain detailed time-
based view of IoT access services, such as the application-layer
protocols, including MQTT, CoAP, and DNP3

• Capacity planning: Used to track and anticipate IoT traffic growth
and help in the planning of upgrades

• Security analysis: Generate low volumes of traffic typically and
always send their data to the same server(s), any change in
network traffic behavior may indicate a cybersecurity event

• Accounting: Field networks are often physically isolated and
leverage public cellular services and VPNs for backhaul. Traffic
can be leveraged to optimize the billing

INTRO TO TIMESERIES ANALYSIS

• Time series analysis provides insights into patterns over time
that are invaluable

• Understanding dynamics

• Detecting events

• forecasting

• Provide understanding of

• Theoretical concepts

• Translation to functional tools

W
H

A
T

IS
A

TIM
E

SER
IES?

•A time series is a sequence of data points

•Usually, signal is sampled at given frequency

•Represented as sequence of sampled values

• Irregularly sampled signals are time series encoded with
additional information stored into a data structure

TIM
E SER

IES D
A

TA

https://tsoc.org.cy/electrical-system/archive-total-daily-system-generation-on-the-transmission-system/?startdt=19-06-2024&enddt=%2B15days

TIM
E SER

IES D
A

TA

• COVID-19 Positive Cases (15/10/20 -18/10/22)

T
IM

E
SER

IES
A

N
A

LYSIS

• The main objective of time series analysis is:

• To understand and characterize the underlying
process that generates the observed data.

• To forecast the evolution of the process, i.e., predict
the next observed values.

• Two main perspectives to look at a time series leading to
different analysis approaches

• Statistical

• Dynamical systems

S
TA

TISTIC
S

A
N

A
LYSIS

• Assumed to be a sequence of random variables that have
some correlation or part of a distribution

• Sequence is a realization (observed values) of a stochastic
process

• Statistical time series approaches focus on finding the
parameters of the stochastic process that most likely
produced the observed time series

D
YN

A
M

IC
A

L
SYSTEM

A
N

A
LYSIS

• Assume that there is a system governed by unknown variables

• Observe one time series generated by the system

• Unknown variable of the system

• Unknown function of the system

• Objective is to reconstruct the dynamics of the system

T
IM

E
SER

IES
C

O
M

P
O

N
EN

TS

• Composed of three parts:

• Trend: the long-term direction

• Seasonality: the periodic behavior

• Residuals: the irregular fluctuations

• Trend captures the general direction of the time series

• For example, increasing number of passengers over
the years despite seasonal fluctuations

• Trend can be increasing, decreasing, or constant

• It can increase/decrease in different ways over time
(linearly, exponentially, etc)

S
EA

SO
N

A
LITY

• Periodic fluctuations in time series data that occur at regular
intervals due to seasonal factors

• Consistent / predictable patterns over a specific period (e.g.,
daily, monthly, quarterly, yearly)

• It can be driven by many factors:

• Naturally occurring events such as weather
fluctuations caused by time of year

• Business or administrative procedures, such as start
and end of a school year

• Social or cultural behavior, e.g., holidays

R
ESID

U
A

LS

• Residuals are the random fluctuations left over after trend
and seasonality are removed from the original time series

• Capture short term, unpredictable measurements

• Noise

• Uncertainty (measurements/ model / actuator)

• Faults / failures

D
EC

O
M

P
O

SITIO
N

M
O

D
ELS

• Time series components can be decomposed with the
following models:

1. Additive decomposition

2. Multiplicative decomposition

3. Pseudoadditive decomposition

• Additive models assume that the observed time series is the
sum of its components

• where T(t), S(t) and R(t) is the trend, seasonality and residual

• Additive models are used when the magnitudes of the
seasonal and residual values do not depend on the level of
the trend

𝑋 𝑡 = 𝑇 𝑡 + 𝑆 𝑡 + 𝑅(𝑡)

M
U

LTIP
LIC

A
TIV

E
M

O
D

ELS

• Multiplicative models assume the observed time series is a
product of its components

• Can be transformed in additive model by log transformation

• Used when the magnitudes of seasonal and residual values
depends on the trend

𝑋 𝑡 = 𝑇 𝑡 ∙ 𝑆 𝑡 ∙ 𝑅(𝑡)

log 𝑋 𝑡 = log(𝑇 𝑡) + log(𝑆 𝑡) + log(𝑅 𝑡)

P
SEU

D
O

A
D

D
ITIV

E M
O

D
ELS

• Pseudoadditive models combine elements of the additive
and multiplicative models.

• Useful when:
• Time series values are very small or zero

• Multiplicative models struggle with zero values, but you still need
to model multiplicative seasonality

• Some features are multiplicative (e.g., seasonal effects) and
other are additive (e.g., residuals).

• Complex seasonal patterns or data that do not completely
align with additive or multiplicative model.

• Particularly relevant for modeling series that are extremely
weather-dependent, have sharply pronounced seasonal
fluctuations and trend-cycle movements

𝑋 𝑡 = 𝑇 𝑇 + 𝑇 𝑡 ∙ 𝑆 𝑡 − 1 + 𝑇 𝑡 ∙ (𝑅 𝑡 − 1)

D
ETR

EN
D

1. Estimate a linear trend (compute 1st order polynomial)

2. Detrend time series by subtracting linear component

slope, intercept = np.polyfit(np.arange(len(additive)),

additive, 1) # estimate line coefficient

trend = np.arange(len(additive)) * slope + intercept # linear

trend

detrended = additive - trend # remove the trend

A
D

D
ITIV

E D
EC

O
M

P
O

SITIO
N

1. seasonal_decompose function

a) specify type of model (additive or multiplicative)

b) main period
additive_decomposition = seasonal_decompose(x, model='additive', period=12)

L
O

C
A

LLY
ESTIM

A
TED

SC
A

TTER
P

LO
T

SM
O

O
TH

IN
G

(LO
ESS)

• LOESS is an alternative approach employed by function STL

• Seasonal and Trend decomp. using LOESS

stl_decomposition = STL(endog=additive, period=12, robust=True).fit()

W
H

IC
H

M
ETH

O
D

TO
U

SE?

• Use seasonal_decompose when:
• Data has a clear and stable seasonal pattern and trend

• Simpler model with fewer parameters to set

• The seasonal amplitude is constant over time (suggesting an
additive model) or varies proportionally with the trend
(suggesting a multiplicative model)

• Use STL when:
• Data exhibits complex seasonality that may change over time

• Handle outliers effectively without them distorting the trend and
seasonal components

• Non-linear trends and seasonality, and better adjustment over
the decomposition process

ID
EN

TIFY
TH

E
D

O
M

IN
A

N
T

P
ER

IO
D/FR

EQ
U

EN
C

Y

• Autocorrelation function

• Use Fast Fourier Transform (FFT) on a detrended signal

period, freqs, magnitudes = fft_analysis(seasonal)

ID
EN

TIFY
TH

E
D

O
M

IN
A

N
T

P
ER

IO
D/FR

EQ
U

EN
C

Y

• Autocorrelation function

• Use Fast Fourier Transform (FFT) on a detrended signal

def fft_analysis(signal):

Linear detrending

slope, intercept = np.polyfit(np.arange(len(signal)), signal, 1)

trend = np.arange(len(signal)) * slope + intercept

detrended = signal - trend

fft_values = fft(detrended)

frequencies = np.fft.fftfreq(len(fft_values))

Remove negative frequencies and sort

positive_frequencies = frequencies[frequencies > 0]

magnitudes = np.abs(fft_values)[frequencies > 0]

Identify dominant frequency

dominant_frequency = positive_frequencies[np.argmax(magnitudes)]

print(f"Dominant Frequency: {dominant_frequency:.3f}")

Convert frequency to period (e.g., days, weeks, months, etc.)

dominant_period = 1 / dominant_frequency

print(f"Dominant Period: {dominant_period:.2f} time units")

return dominant_period, positive_frequencies, magnitudes

