
ΕΠΛ 428: IOT PROGRAMMING

Dr. Panayiotis Kolios
Assistant Professor, Dept. Computer Science,
KIOS CoE for Intelligent Systems and Networks
Office: FST 01, 116
Telephone: +357 22893450 / 22892695
Web: https://www.kios.ucy.ac.cy/pkolios/

Time series analysis:
Stationarity & Smoothing

https://www.kios.ucy.ac.cy/pkolios/

• Stationarity

• Signal from a system without underlying changes

• Strict / Weak stationarity

• Example of common stationary

• White noise (mean 0 and variance 1)

• How to detect stationarity

• Common ways to transform nonstationary time series into
stationary ones

STA
TIO

N
A

R
ITY

STR
IC

T / W
EA

K
 STA

TIO
N

A
R

ITY

• A stochastic process X(t): t∈T is called strictly stationary if,
∀ t1, t2, …, tn ∈ T and h ∈ T, t1+h, t2+h, …, tn+h ∈ T, holds:

• The joint distribution of any set of observations in the series
remains the same regardless of the time at which the
observations are taken

• A time series is weakly stationary if:

1. Mean constant over time

2. Variance is finite

3. Covariance of 𝑋 𝑡 and 𝑋 𝑡 + ℎ depends only on h

𝑋 𝑡1 , 𝑋 𝑡2 , … , 𝑋 𝑡𝑛 = 𝑋 𝑡1 + ℎ , 𝑋 𝑡2 + ℎ ,… , 𝑋 𝑡𝑛 + ℎ

𝐸 𝑋 𝑡 = 𝑚, ∀𝑡 ∈ 𝑇

𝐸 𝑋 𝑡 2 < ∞,∀𝑡 ∈ 𝑇

A
U

TO
C

O
R

R
ELA

TIO
N

• Autocorrelation measures how much the current time series
measurement is correlated with a past measurement

• e.g. today’s temperature usually highly correlated with
yesterday’s temperature

• In general, computing the correlation of the time series with
versions of the signal delayed up to N lags:

• Covariance of 𝑋 𝑡1 and 𝑋 𝑡2 is called autocovariance

• If 𝑋 𝑡 has zero-mean, autocorrelation and autocovariance
are the same

𝑅𝑥𝑥(𝑡1, 𝑡2) = 𝐸 𝑋 𝑡1 𝑋 𝑡2

𝐶𝑥𝑥(𝑡1, 𝑡2) = 𝐸 (𝑋 𝑡1 − 𝜇𝑡1)(𝑋 𝑡2 − 𝜇𝑡2)

= 𝑅𝑥𝑥 𝑡1, 𝑡2 − 𝜇𝑡1𝜇𝑡2

R
A

N
D

O
M

 W
A

LK

• The random walk is one of the most important
nonstationary time series

• 𝜀𝑡 are called innovations and are iid, e.g. 𝜀𝑡~𝑁(0, 𝜎
2)

𝑋 𝑡 = 𝑋 𝑡 − 1 + 𝜀𝑡

seed to start series

seed = 3.14

Random Walk

rand_walk = np.empty_like(time, dtype='float')

for t in time:

rand_walk[t] = seed + np.random.normal(loc=0, scale=2.5, size=1)[0]

seed = rand_walk[t]

R
A

N
D

O
M

W
A

LK
IS

N
O

N
STA

TIO
N

A
R

Y

• Current value depends on its initial value and the sum of all
previous innovations

• Variance changes over time (increases linearly over time)

𝑉𝑎𝑟 𝑋 𝑡 = 𝑉𝑎𝑟 𝜀1 + 𝑉𝑎𝑟 𝜀2 +⋯+ 𝑉𝑎𝑟 𝜀𝑡 = 𝑡𝜎2

TIM
E SER

IES W
ITH

 TR
EN

D

• Mean changes over time when there is a trend

H
ETER

O
SC

ED
A

STIC
TIM

E
SER

IES

• Variance changes over time

T
IM

E
SER

IES
W

ITH
SEA

SO
N

A
LITY

• Mean is constant for a full cycle (20 in the example)

• Any period not equal to a full cycle has a different mean

• Variance also depends on the time period that is measured

• Hence not stationary

TIM
E SER

IES W
ITH

 TR
EN

D
 A

N
D

 SEA
SO

N
A

LITY• Mean changes over time due to trend and there is a periodic
component

S
IN

U
SO

ID
A

L
SIG

N
A

L
W

ITH
R

A
N

D
O

M
P

H
A

SE

• Sinusoidal signal

• 𝜇 is the mean, R is amplitude, 𝜆 frequency and 𝜓 the phase

• 𝜓 random variable distributed uniformly over [−𝜋, 𝜋]

• 𝐸 𝑠𝑖𝑛 𝜆𝑡 + 𝜓 = 0

• 𝑉𝑎𝑟 𝑋 = 𝐸 𝑋2 − 𝐸 𝑋 2 = 𝑉𝑎𝑟 𝑠𝑖𝑛 𝜆𝑡 + 𝜓 = 1/2

• Autocovariance 𝐶𝑜𝑣(𝑥𝑡 , 𝑥𝑡+ℎ) = 𝐸[

]

(𝑠𝑖𝑛 𝜆𝑡 + 𝜓 𝑠𝑖𝑛(

)

𝜆(

)

𝑡 +

𝜏 + 𝜓 =
𝑅2

2
cos(𝜆ℎ), which depends only on h

• Hence weakly stationary

𝑥𝑡 = 𝜇 + 𝑅𝑠𝑖𝑛 𝜆𝑡 + 𝜓

D
ETEC

TIN
G

STA
TIO

N
A

R
ITY

• Run-sequence plots

• Allows visual inspection of the data

• Summary statistics

• Cut series into separate chunks

• Calculate statistics for each chunk and compare them

• Large deviations might indicate non-stationarity

• Histogram plots

• Augmented Dickey-Fuller test

• Statistical procedure to determine stationarity

SU
M

M
A

R
Y STA

TISTIC
S

split data into 10 chunks

chunks = np.split(trend, indices_or_sections=10)

compare means and variances

print("{}\t | {}\t\t | {}".format("Chunk", "Mean", "Variance"))

print("-" * 35)

for i, chunk in enumerate(chunks, 1):

print("{:2}\t | {:.5}\t | {:.5}".format(i, np.mean(chunk), np.var(chunk)))

• Statistical test can be used to check if the difference in
means or the difference in variances is statistically
significant

H
ISTO

G
R

A
M

O
F

TH
E

TIM
E

SER
IES

• histogram resembles a uniform distribution • histogram resembles a normal distribution

• Suggest mean and variance are constant

A
U

G
M

EN
TED

D
IC

K
EY-F

U
LLER

T
EST

(A
D

F)

• Statistical procedure to determine stationarity

• Consider

1. Null hypothesis: 𝐻0 the series is nonstationary

2. Alternative hypothesis: 𝐻𝐴 the series is stationary

• Set a significance level or threshold that determines whether
you accept or reject the null

• 𝛼 = 0.05 which yield a confidence of 95%

• ADF test might be inaccurate with small datasets or when
heteroskedasticity is present

• Best to pair ADF with other techniques (summary statistics,
etc)

A
U

G
M

EN
TED

D
IC

K
EY-F

U
LLER

T
EST

(A
D

F)

• Larger negative values provide indication of stationarity

• pvalue should be compared with the confidence level 𝛼

• Based on the comparison, we reject or fail to reject 𝐻0

ADF test in Python

adf, pvalue, usedlag, nobs, critical_values, icbest = adfuller(stationary)

C
O

M
M

O
N

TR
A

N
SFO

R
M

A
TIO

N
S

TO
A

C
H

IEV
E

STA
TIO

N
A

R
ITY

Transformation Effect

Subtract trend Constant mean

Apply log Constant variance

Differencing Remove autocorrelation

Seasonal differencing Remove periodic component

PERIODIC SIGNALS

• Periodic signals, by their nature, have means and variances that repeat
over the period of the cycle

• This implies that their statistical properties are functions of time within
each period

• i.e., the mean of a periodic signal over one cycle may be constant
• However, when considering any point in time relative to the cycle, the

instantaneous mean of the signal can vary
• Variance can also fluctuate within the cycle

• The ADF test specifically looks for a unit root
• A unit root indicates that shocks to the time series have a permanent

effect, causing drifts in the level of the series
• A sinusoidal function, by contrast, is inherently mean-reverting within its

cycles
• After a peak a sinusoid reverts to its mean and any “shock” in

terms of phase shift or amplitude change does not alter its
oscillatory nature.

• Hence the ADF test’s conclusion of stationarity for a sinusoid does not
imply that the sinusoid is stationary

• The test’s conclusion is about the absence of a unit root.
• This does not imply that the mean and variance are constant within the

periodic fluctuations

ADF test in Python

def adftest(series, plots=True):

out = adfuller(series, autolag='AIC')

print(f'ADF Statistic: {out[0]:.2f}')

print(f'p-value: {out[1]:.3f}')

print(f"Critical Values: {[f'{k}: {r:.2f}' for r,k in zip(out[4].values(),

out[4].keys())]}\n")

if plots:

Compute rolling statistics

rolmean = series.rolling(window=12).mean()

rolstd = series.rolling(window=12).std()

Plot rolling statistics:

plt.figure(figsize=(14, 4))

plt.plot(series, color='tab:blue',label='Original')

plt.plot(rolmean, color='tab:red', label='Rolling Mean')

plt.plot(rolstd, color='black', label = 'Rolling Std')

plt.legend(loc='best')

plt.title('Rolling Mean and Standard Deviation')

plt.grid();

SMOOTHING

• A time series consists of measurements characterized by
temporal dependencies

• A time series can be decomposed into trend, seasonality,
and residuals

• Many time series models require the data to be stationary in
order to make forecasts

• Smoothing:

• A data collection process is often affected by noise

• If too strong, the noise can conceal useful patterns in
the data

• Smoothing can filter out noise

• Also used to make forecasts by projecting the
recovered patterns into the future

SM
O

O
TH

IN
G

SM
O

O
TH

IN
G

 TEC
H

N
IQ

U
ES

• Simple smoothing

1. Simple average

2. Moving average

3. Weighted moving average

• Exponential smoothing

1. Simple exponential smoothing

2. Double exponential smoothing

3. Triple exponential smoothing

EX
A

M
P

LE TO
 B

E U
SED

1. Generate stationary data

2. run-sequence plot used to visually inspect time series

Generate stationary data

time = np.arange(100)

stationary = np.random.normal(loc=0, scale=1.0, size=len(time))

function to visualize data

run_sequence_plot(time, stationary, title="Stationary time series");

SIM
P

LE A
V

ER
A

G
E

• Simple average is the most basic technique

• Mean value used to predict future values
• Conservative way to represent time series

find mean of series

stationary_time_series_avg = np.mean(stationary);

create array composed of mean value and equal to length of time array

sts_avg = np.full(shape=len(time), fill_value=stationary_time_series_avg,

dtype='float’)

plot resulting figure

ax = run_sequence_plot(time, stationary, title="Stationary Data")

ax.plot(time, sts_avg, 'tab:red', label="mean")

plt.legend();

M
EA

N
 SQ

U
A

R
ED

 ER
R

O
R

• Approximating with the mean seems reasonable

• Want to measure how far off our estimate is from reality

• One way is to calculate the Mean Squared Error (MSE)

• where 𝑋 𝑡 and ෠𝑋 𝑡 are the true and estimated values at t

• Example:

• Observed 𝑋 = [0, 1, 3, 2]

• Predicted by model ෠𝑋 𝑡 = [1, 1, 2, 4]

• Smaller MSE better model!!

𝑀𝑆𝐸 =
1

𝑇
෍

𝑡=1

𝑇

(𝑋 𝑡 − ෠𝑋 𝑡)2

𝑀𝑆𝐸 = (0 − 1)2+(1 − 1)2+(3 − 2)2+(2 − 4)2= 6

M
SE FU

N
C

TIO
N

 C
O

D
E

def mse(observations, estimates):

"""

INPUT:

observations - numpy array of values indicating observed values

estimates - numpy array of values indicating an estimate of values

OUTPUT:

Mean Square Error value

"""

check arg types

assert type(observations) == type(np.array([])), "'observations' must be a

numpy array"

assert type(estimates) == type(np.array([])), "'estimates' must be a numpy

array"

check length of arrays equal

assert len(observations) == len(estimates), "Arrays must be of equal length"

calculations

difference = observations - estimates

sq_diff = difference ** 2

mse = sum(sq_diff)

return mse

call mse function

res = mse(np.array([0, 1, 3, 2]), np.array([1, 1, 2, 4]))

print(res)

M
O

V
IN

G
 A

V
ER

A
G

E (M
A

)

• Simple average does not work well when time series has a
trend

• Moving average has better sensitivity to local changes

• Select a window size 𝑃

• Compute average for the current window

• Slide window by one and compute average again

M
O

V
IN

G
 A

V
ER

A
G

E (M
A

)

• Example of MA

def moving_average(observations, window=3, forecast=False):

cumulative_sum = np.cumsum(observations, dtype=float)

cumulative_sum[window:] = cumulative_sum[window:] - cumulative_sum[:-window]

if forecast:

return np.insert(cumulative_sum[window - 1:] / window, 0,

np.zeros(window-1))

else:

return cumulative_sum[window - 1:] / window

create and test dataset

time = np.arange(100)

stationary = np.random.normal(loc=0, scale=1.0, size=len(time))

trend = (time * 2.0) + stationary

MA_trend = moving_average(trend, window=3)

print(f"MSE:\n--------\nsimple average: {mse(trend,

avg_trend):.2f}\nmoving_average: {mse(trend[2:], MA_trend):.2f}")

M
O

V
IN

G
 A

V
ER

A
G

E (M
A

)

• Example of MA on time series with trend

M
O

V
IN

G
 A

V
ER

A
G

E (M
A

)

• Example of MA on time series with seasonality

create and test dataset

seasonality = 10 + np.sin(time) * 10;

MA_seasonality = moving_average(seasonality, window=3);

run_sequence_plot(time, seasonality, title="Seasonality")

plt.plot(time[1:-1], MA_seasonality, 'tab:red', label="MA")

plt.legend(loc='upper left');

M
O

V
IN

G
 A

V
ER

A
G

E (M
A

)

• Example of MA on time series with trend, seasonality, noise

create and test dataset

trend_seasonality = trend + seasonality + stationary

MA_trend_seasonality = moving_average(trend_seasonality, window=3)

run_sequence_plot(time, trend_seasonality, title="Trend, seasonality, and noise")

plt.plot(time[1:-1], MA_trend_seasonality, 'tab:red', label="MA")

plt.legend(loc='upper left');

M
A

 SH
O

R
TFA

LLS

• MA has several limitations:
• assigns equal importance to all values in the window, regardless

of their chronological order

• Hence it fails to capture trends that appear in the recent past

• MA requires the selection of an arbitrary window size
• a small window may lead to noise

• a too large window could oversmooth the data, missing
important short-term fluctuations

• MA does not adjust for changes in trend or seasonality
• Can lead to inaccurate predictions, especially when these

components are nonlinear and time-dependent

F
O

R
EC

A
STIN

G
W

ITH
M

A

• Instead of computing patterns within a series, the smoothing
functions can be used to create forecasts

• Forecast for the next time step is computed as follows:

• Example

෠𝑋 𝑡 + 1 =
𝑋 𝑡 + 𝑋 𝑡 + 1 +⋯+ 𝑋(𝑡 − 𝑃 + 1)

𝑃

create and test dataset

x = np.array([1, 2, 4, 8, 16, 32, 64])

ma_x = moving_average(x, window=3, forecast=True)

t = np.arange(len(x))

run_sequence_plot(t, x, title="Nonlinear data")

• In the previous example

• MA can not keep up with the rate of change

• Lagging by
(𝑃+1)

2

• lag increases as you increase the window size

• a window size that’s too small however will chase noise in the
data as opposed to extracting the pattern

• hence tradeoff between responsiveness and robustness to
noise

• careful tuning required to determine which setup is best for a
given dataset and problem at hand

W
EIG

H
TED

 M
O

V
IN

G
 A

V
ER

A
G

E (W
M

A
)

• WMA weights recent observations more than older values

• By applying diminishing weights to past observations, we can
control how much each value affects the forecasts

• Various methods to set the weights:

• Could define them with the following system of
equations:

• Resulting to
𝑤1 ≈ 0.543 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡 − 1
𝑤2 ≈ 0.294 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡 − 2
𝑤3 ≈ 0.16 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡 − 3

൞

𝑤1 +𝑤2 +𝑤3 = 1

𝑤2 = (𝑤1)
2

𝑤3 = (𝑤1)
3

W
EIG

H
TED

 M
O

V
IN

G
 A

V
ER

A
G

E (W
M

A
)

•

𝑤1 ≈ 0.543 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡 − 1
𝑤2 ≈ 0.294 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡 − 2
𝑤3 ≈ 0.16 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡 − 3

F
O

R
EC

A
STIN

G
W

ITH
W

M
A

• Instead of computing patterns within a series, the smoothing
functions can be used to create forecasts

• Forecast for the next time step is computed as follows:

• Example

෠𝑋 𝑡 + 1 =
𝑤1𝑋 𝑡 + 𝑤2𝑋 𝑡 + 1 +⋯+𝑤𝑃𝑋(𝑡 − 𝑃 + 1)

𝑃
def weighted_moving_average(observations, weights, forecast=False): """

if len(weights) != len(observations[0:len(weights)]):

raise ValueError("Length of weights must match the window size")

Normalize weights

weights = np.array(weights) / np.sum(weights)

Initialize the result array

result = np.empty(len(observations))

Calculate weighted moving average

for i in range(len(weights)-1, len(observations)):

window = observations[i-len(weights)+1:i+1]

result[i] = np.dot(window, weights)

Handle forecast option

if forecast:

Pad the beginning of the result array with zeros to maintain the

original length

result[:len(weights)-1] = 0

else:

Remove the start of the array that doesn't have a full window

result = result[len(weights)-1:]

return result

F
O

R
EC

A
STIN

G
W

ITH
W

M
A

• Example

• WMA more sensitive to local changes

• More flexible to importance of different time steps

• Does not require a fixed window size

weights = np.array([0.160, 0.294, 0.543])

wma_x = weighted_moving_average(x, weights, forecast=True)

t = np.arange(len(x))

run_sequence_plot(t, x, title="Nonlinear data")

E
X

P
O

N
EN

TIA
L

S
M

O
O

TH
IN

G

• Single Exponential Smoothing
• Extract patterns from data without trend and seasonality

• 𝑆 𝑡 = 𝛼𝑋 𝑡 + 1 − 𝑎 𝑆(𝑡 − 1) with 𝛼 smoothing constant

• At any time step 𝜏:

• S(0) can be set to X(0) or mean of first few samples

• 𝛼 can also be computed with MSE

Type Capture trend Capture seasonality

Single Exponential Smoothing

Double Exponential Smoothing

Triple Exponential Smoothing

𝑆(𝑡) =෍

𝑡=0

𝜏

𝛼 1 − 𝑎 𝜏−𝑡 𝑋(𝑡)

D
O

U
B

LE E
X

P
O

N
EN

TIA
L

S
M

O
O

TH
IN

G

• Double Exponential Smoothing
• Extract patterns from data AND trend

• 𝑆 𝑡 = 𝛼𝑋 𝑡 + 1 − 𝑎 (𝑆 𝑡 − 1 + 𝑏 𝑡 − 1) Smoothed values

• 𝑏 𝑡 = 𝛽 𝑆 𝑡 − 𝑆 𝑡 − 1 + 1 − 𝛽 𝑏(𝑡 − 1) Estimated trend

• ෠𝑋 𝑡 + 1 = 𝑆 𝑡 + 𝑏(𝑡) Forecasts

• Parameter 𝛽 ∈ [0, 1] controls the decay of the change

• Initialization
• S(0) can be set to X(0) or mean of first few samples

• 𝑏 0 = 𝑋 1 − 𝑋 0

• Forecasts beyond 1-step ahead

• ෠𝑋 𝑡 + 𝜏 = 𝑆 𝑡 + 𝜏𝑏(𝑡)

TR
IP

LE E
X

P
O

N
EN

TIA
L

S
M

O
O

TH
IN

G

• TRIPLE Exponential Smoothing
• Extract patterns from data AND trend AND seasonality

• Third component added for seasonality of length L

• Additive seasonality variant

• Multiplicative seasonality variant

• Additive seasonality for variations that are roughly constant
• 𝑆 𝑡 = 𝛼(𝑋 𝑡 + 𝑐 𝑡 − 𝐿) + 1 − 𝑎 (𝑆 𝑡 − 1 + 𝑏 𝑡 − 1)

• 𝑏 𝑡 = 𝛽 𝑆 𝑡 − 𝑆 𝑡 − 1 + 1 − 𝛽 𝑏(𝑡 − 1)

• 𝑐 𝑡 = 𝛾 𝑋 𝑡 − 𝑆 𝑡 − 1 − 𝑏(𝑡 − 1) + 1 − 𝛾 𝑐(𝑡 − 𝐿)

• ෠𝑋 𝑡 + 𝜏 = 𝑆 𝑡 + 𝜏𝑏 𝑡 + 𝑐(𝑡 − 𝐿 + 1 + 𝜏 − 1 𝑚𝑜𝑑 𝐿)

• Multiplicative for changing seasonal variations

• 𝑆 𝑡 = 𝛼
𝑋(𝑡)

𝑐(𝑡−𝐿)
+ 1 − 𝑎 𝑆 𝑡 − 1 + 𝑏 𝑡 − 1

• 𝑏 𝑡 = 𝛽 𝑆 𝑡 − 𝑆 𝑡 − 1 + 1 − 𝛽 𝑏(𝑡 − 1)

• 𝑐 𝑡 = 𝛾
𝑋(𝑡)

𝑆(𝑡)
+ 1 − 𝛾 𝑐(𝑡 − 𝐿)

• ෠𝑋 𝑡 + 𝜏 = (𝑆 𝑡 + 𝜏𝑏 𝑡)𝑐(𝑡 − 𝐿 + 1 + 𝜏 − 1 𝑚𝑜𝑑 𝐿)

TR
IP

LE E
X

P
O

N
EN

TIA
L

S
M

O
O

TH
IN

G

• Initialization for double / triple Exponential Smoothing

• 𝑏 0 =
1

𝐿
(
𝑋 𝐿+1 −𝑋 1

𝐿
+

𝑋 𝐿+2 −𝑋 2

𝐿
+⋯+

𝑋 𝐿+𝐿 −𝑋 𝐿

𝐿
)

• 𝑐 𝑡 =
1

𝑁
∑𝐽=1
𝑁 𝑋(𝐿 𝑗−1 +𝑡)

𝐴𝑗
∀𝑡, N seasonal cycles in time series

• 𝐴𝑗 =
∑𝑖=1
𝐿 𝑋(2 𝑗−1 +𝑡)

𝐿

• All of these implemented in python using statsmodels

Train/test split

train = trend_seasonality[:-5]

test = trend_seasonality[-5:]

find mean of series

trend_seasonal_avg = np.mean(trend_seasonality)

create array of mean value equal to length of time array

simple_avg_preds = np.full(shape=len(test), fill_value=trend_seasonal_avg,

dtype='float')

mse

simple_mse = mse(test, simple_avg_preds)

results

print("Predictions: ", simple_avg_preds)

print("MSE: ", simple_mse)

E
X

P
O

N
EN

TIA
L

S
M

O
O

TH
IN

G
EX

A
M

P
LE

• Single Exponential Smoothing

• Double Exponential Smoothing

• Triple Exponential Smoothing

from statsmodels.tsa.api import SimpleExpSmoothing

single = SimpleExpSmoothing(train).fit(optimized=True)

single_preds = single.forecast(len(test))

single_mse = mse(test, single_preds)

print("Predictions: ", single_preds)

print("MSE: ", single_mse)

from statsmodels.tsa.api import Holt

double = Holt(train).fit(optimized=True)

double_preds = double.forecast(len(test))

double_mse = mse(test, double_preds)

print("Predictions: ", double_preds)

print("MSE: ", double_mse)

from statsmodels.tsa.api import ExponentialSmoothing

triple = ExponentialSmoothing(train, trend="additive", seasonal="additive",

seasonal_periods=13).fit(optimized=True)

triple_preds = triple.forecast(len(test))

triple_mse = mse(test, triple_preds)

print("Predictions: ", triple_preds)

print("MSE: ", triple_mse)

E
X

P
O

N
EN

TIA
L

S
M

O
O

TH
IN

G
EX

A
M

P
LE

MSE

simple 47197.581558

single 639.806113

double 388.215595

triple 97.583706

