Dr. Panayiotis Kolios
Assistant Professor, Dept. Computer Science,
KIOS CoE for Intelligent Systems and Networks

Office: FST 01, 116
Telephone: +357 22893450 / 22892695
WWW.Kios.ucy.ac.c '

https://www.kios.ucy.ac.cy/pkolios/

- 00000/
* Stationarity

* Signal from a system without underlying changes
» Strict / Weak stationarity

* Example of common stationary
* White noise (mean 0 and variance 1)

* How to detect stationarity

« Common ways to transform nonstationary time series into
stationary ones

e A stochastic process X(t): teT is called strictly stationary if,
Vi, t, ., t,eTandh e T, t,+h, t,+h, .., t +h € T, holds:

(X(t1), X(t), .., X(t,)) = (X(t1 + h), X(t; +), ..., X(t, + h))

* The joint distribution of any set of observations in the series
remains the same regardless of the time at which the
observations are taken

* Atime series is weakly stationary if:
1. Mean constantovertime E[X(t)]=m,VteT

2. Variance is finite E[X(t)?] < o,VtET
3. Covariance of X(t) and X(t + h)depends only on h

Autocorrelation measures how much the current time series
measurement is correlated with a past measurement

* e.g.today’s temperature usually highly correlated with
yesterday’s temperature

In general, computing the correlation of the time series with
versions of the signal delayed up to N lags:

Rux(ts, t2) = E[X(t1)X(¢2)]

Covariance of X(t,) and X(t,) is called autocovariance

Cox (t1, t2) = E[(X(t1) — pe, (X (&2) — s,)]
= Ryx(ty,t;) — He, U,

If X(t) has zero-mean, autocorrelation and autocovariance
are the same

NOILV13d40200.LNV

-]
* The random walk is one of the most important

nonstationary time series

Xt)=X({t—-1)+ ¢

e &, are called innovations and are iid, e.g. &,~N (0, 02)

seed to start series
seed = 3.14

Random Walk

rand walk = np.empty like(time, dtype='float')

for t in time:
rand walk[t] = seed + np.random.normal (loc=0, scale=2.5, size=1) [0]
seed = rand walk[t]

* Current value depends on its initial value and the sum of all
previous innovations

e Variance changes over time (increases linearly over time)

Var(X(t)) =Var(g) + Var(e,) + -+ Var(e,) = to?

 Mean changes over time when there is a trend

* Variance changes over time

Mean is constant for a full cycle (20 in the example)
Any period not equal to a full cycle has a different mean
Variance also depends on the time period that is measured

Hence not stationary

* Mean changes over time due to trend and there is a periodic
component

* Sinusoidal signal

x; = U+ Rsin(At +)
e wuisthe mean, R is amplitude, A frequency and i the phase
* Y random variable distributed uniformly over [—m,]

o Elsin(At+y)] =0

» Var(X) = E[X?] — (E[X])? = Var(sin(At + ¢)) = 1/2

* Autocovariance Cov(xs, x4) = E[(sin(At + Y)sin(A(t +
)+ yY)]| = R?zcos(/lh), which depends only on h

 Hence weakly stationary

* Run-sequence plots
* Allows visual inspection of the data
* Summary statistics
* Cut series into separate chunks
* Calculate statistics for each chunk and compare them
* Large deviations might indicate non-stationarity
* Histogram plots
* Augmented Dickey-Fuller test
e Statistical procedure to determine stationarity

split data into 10 chunks
chunks = np.split(trend, indices or sections=10)

compare means and variances
print ("{}\t | {}\t\t | {}".format ("Chunk", "Mean", "Variance"))
print ("-" * 35)
for i1, chunk in enumerate (chunks, 1):
print ("{:2}\t | {:.5}\t | {:.5}".format (i, np.mean(chunk), np.var (chunk)))

Statistical test can be used to check if the difference in
means or the difference in variances is statistically
significant

0 100 200 300 400 500

* histogram resembles a uniform distribution * histogram resembles a normal distribution
* Suggest mean and variance are constant

-]
e Statistical procedure to determine stationarity

* Consider
1. Null hypothesis: Hy the series is nonstationary
2. Alternative hypothesis: H, the series is stationary

* Set asignificance level or threshold that determines whether
you accept or reject the null

 a = 0.05 which yield a confidence of 95%

* ADF test might be inaccurate with small datasets or when
heteroskedasticity is present

e Best to pair ADF with other techniques (summary statistics,
etc)

ADF test in Python
adf, pvalue, usedlag, nobs, critical values, icbest = adfuller(stationary)

e Larger negative values provide indication of stationarity
e pvalue should be compared with the confidence level a
* Based on the comparison, we reject or fail to reject H,

Transformation

Constant mean

Constant variance

Remove autocorrelation

Seasonal differencing Remove periodic component

PERIODIC SIGNALS

Periodic signals, by their nature, have means and variances that repeat
over the period of the cycle

This implies that their statistical properties are functions of time within
each period

* j.e., the mean of a periodic signal over one cycle may be constant

However, when considering any point in time relative to the cycle, the
instantaneous mean of the signal can vary

e Variance can also fluctuate within the cycle
The ADF test specifically looks for a unit root

A unit root indicates that shocks to the time series have a permanent
effect, causing drifts in the level of the series

A sinusoidal function, by contrast, is inherently mean-reverting within its
cycles

e After a peak a sinusoid reverts to its mean and any “shock” in
terms of phase shift or amplitude change does not alter its
oscillatory nature.

Hence the ADF test’s conclusion of stationarity for a sinusoid does not
imply that the sinusoid is stationary

The test’s conclusion is about the absence of a unit root.

This does not imply that the mean and variance are constant within the
periodic fluctuations

ADF test in Python
def adftest (series, plots=True) :
out = adfuller (series, autolag='AIC')
print (f'ADF Statistic: {out[0]:.2f}")
print (f'p-value: {out[l]:.3f}")
print (f"Critical Values: {[f'{k}: {r:.2f}' for r,k in zip(out[4].values(),

out[4].keys())]1}\n")
if plots:
Compute rolling statistics
rolmean = series.rolling(window=12) .mean ()

rolstd = series.rolling(window=12) .std()

Plot rolling statistics:

plt.figure(figsize= (14, 4))

plt.plot (series, color='tab:blue',6 label="'Original')
plt.plot (rolmean, color='tab:red', label='Rolling Mean')
plt.plot (rolstd, color='black', label = 'Rolling Std')
plt.legend(loc="best"')

plt.title('Rolling Mean and Standard Deviation')
plt.grid () ;

SMOOTHING

-]
* Atime series consists of measurements characterized by
temporal dependencies

* Atime series can be decomposed into trend, seasonality,
and residuals

* Many time series models require the data to be stationary in
order to make forecasts

* Smoothing:
* A data collection process is often affected by noise

* If too strong, the noise can conceal useful patterns in
the data

* Smoothing can filter out noise

* Also used to make forecasts by projecting the
recovered patterns into the future

* Simple smoothing
1. Simple average
2. Moving average
3. Weighted moving average

* Exponential smoothing
1. Simple exponential smoothing
2. Double exponential smoothing
3. Triple exponential smoothing

1. Generate stationary data

Generate stationary data
time = np.arange (100)
stationary = np.random.normal (loc=0, scale=1.0, size=len(time))

2. run-sequence plot used to visually inspect time series

function to visualize data
run_sequence plot (time, stationary, title="Stationary time series");

-]
* Simple average is the most basic technique
 Mean value used to predict future values
* Conservative way to represent time series

find mean of series
stationary time series avg = np.mean(stationary);

create array composed of mean value and equal to length of time array
sts avg = np.full (shape=len(time), fill value=stationary time series avg,
dtype="'float’)

plot resulting figure

ax = run_sequence plot(time, stationary, title="Stationary Data")
ax.plot (time, sts avg, 'tab:red', label="mean")

plt.legend() ;

Approximating with the mean seems reasonable
Want to measure how far off our estimate is from reality
One way is to calculate the Mean Squared Error (MSE)

T

1 R
MSE = TZ(X(t) — X(t))?

t=1

where X (t) and X(t) are the true and estimated values at t
Example:

* Observed X = (0,1, 3, 2]

* Predicted by model X(t) = [1,1,2, 4]

MSE = (0 —1)?+(1 - 1)?4+(3 - 2)*+(2—-4)*=6

Smaller MSE better model!!

def mse (observations, estimates):

win

INPUT:
observations - numpy array of values indicating observed values
estimates - numpy array of values indicating an estimate of values
OUTPUT:

Mean Square Error value

wain

check arg types

assert type (observations) == type(np.array([])), "'observations' must be a
numpy array"

assert type(estimates) == type(np.array([])), "'estimates' must be a numpy
array"

check length of arrays equal

assert len(observations) == len (estimates), "Arrays must be of equal length"

calculations

difference = observations - estimates
sq diff = difference ** 2

mse = sum(sq diff)

return mse

call mse function
res = mse (np.array ([0, 1, 3, 2]), np.array([1l, 1, 2, 4]))
print (res)

* Simple average does not work well when time series has a
trend

* Moving average has better sensitivity to local changes
* Select a window size P
 Compute average for the current window
* Slide window by one and compute average again

.]
* Example of MA

1.6 2.0 2.7 3.0 3.3 4.2

def moving average (observations, window=3, forecast=False):
cumulative sum = np.cumsum(observations, dtype=float)

cumulative sum[window:] = cumulative sum[window:] - cumulative sum[:-window]
if forecast:
return np.insert (cumulative sum[window - 1:] / window, O,
np.zeros (window-1))
else:
return cumulative sum[window - 1:] / window

create and test dataset

time = np.arange (100)
stationary = np.random.normal (loc=0, scale=1.0, size=len(time))
trend = (time * 2.0) + stationary

MA trend = moving average (trend, window=3)

print (f"MSE:\n---—-—---- \nsimple average: {mse (trend,
avg _trend) :.2f}\nmoving average: {mse(trend[2:], MA trend):.2f}")

* Example of MA on time series with trend

1.6 2.0 2.7 3.0 3.3 4.2

* Example of MA on time series with seasonality

create and test dataset
seasonality = 10 + np.sin(time) * 10;
MA seasonality = moving average (seasonality, window=3);

run_sequence plot (time, seasonality, title="Seasonality")
plt.plot (time[1l:-1], MA seasonality, 'tab:red', label="MA")
plt.legend (loc="upper left');

* Example of MA on time series with trend, seasonality, noise

create and test dataset
trend seasonality = trend + seasonality + stationary
MA trend seasonality = moving average (trend seasonality, window=3)

run_sequence plot (time, trend seasonality, title="Trend, seasonality, and noise")
plt.plot (time[l:-1], MA trend seasonality, 'tab:red', label="MA")
plt.legend (loc="upper left');

e MA has several limitations:

e assigns equal importance to all values in the window, regardless
of their chronological order

* Hence it fails to capture trends that appear in the recent past

* MA requires the selection of an arbitrary window size
* asmall window may lead to noise

* atoolarge window could oversmooth the data, missing
important short-term fluctuations

 MA does not adjust for changes in trend or seasonality

* Can lead to inaccurate predictions, especially when these
components are nonlinear and time-dependent

-]
* Instead of computing patterns within a series, the smoothing
functions can be used to create forecasts

* Forecast for the next time step is computed as follows:

X))+ X+ ++X(t—-P+1)
P

X(t+1) =

 Example

create and test dataset
X = np.array([1l, 2, 4, 8, 1l6, 32, 64])
ma X = moving average (x, window=3, forecast=True)

t = np.arange (len (x))
run_sequence plot(t, x, title="Nonlinear data")

* In the previous example

* MA can not keep up with the rate of change

* Lagging by (P;rl)

* lag increases as you increase the window size

e a3 window size that’s too small however will chase noise in the
data as opposed to extracting the pattern

* hence tradeoff between responsiveness and robustness to
noise

* careful tuning required to determine which setup is best for a
given dataset and problem at hand

* WMA weights recent observations more than older values

* By applying diminishing weights to past observations, we can
control how much each value affects the forecasts

* Various methods to set the weights:

* Could define them with the following system of
equations:

W1 -+ W» -+ W3 = 1
3 wy = (wy)?
L W3 = (W1)3

wy = 0.543 weight associated witht — 1
e Resulting to w, ~ 0.294 weight associated with t — 2
w3 = 0.16 weight associated witht — 3

-0/
wy = 0.543 weight associated witht — 1

e w, = 0.294 weight associated with t — 2
w3 = 0.16 weight associated witht — 3

1.6 2.0 2.7 3.0 3.3 4.2

wy X1.6+w, X20+w; X2.7=23

-]
* Instead of computing patterns within a series, the smoothing
functions can be used to create forecasts

* Forecast for the next time step is computed as follows:

P

J def weighted moving average (observations, weights, forecast=False): e
if len(weights) != len(observations|[0O:len (weights)]) :
raise ValueError ("Length of weights must match the window size")

Xt+1)=

Normalize weights

weights = np.array(weights) / np.sum(weights)
Initialize the result array
result = np.empty(len (observations))

Calculate weighted moving average
for i in range(len(weights)-1, len (observations)):
window = observations[i-len (weights)+1l:1i+1]
result[i] = np.dot (window, weights)
Handle forecast option
if forecast:
Pad the beginning of the result array with zeros to maintain the
original length

result[:1len(weights)-1] = 0

else:
Remove the start of the array that doesn't have a full window
result = result|[len(weights)-1:]

return result

 Example

weights = np.array([0.160, 0.294, 0.543])
wma x = weighted moving average (x, weights, forecast=True)

£ = np.arange(len (x))
run_sequence plot(t, x,

title="Nonlinear data")

* WMA more sensitive to local changes

* More flexible to importance of different time steps
Does not require a fixed window size

Type Capture trend Capture seasonality

Single Exponential Smoothing

Double Exponential Smoothing X

Triple Exponential Smoothing

e Single Exponential Smoothing
* Extract patterns from data without trend and seasonality
e S(t) =aX(t)+ (1 —a)S(t — 1) with a smoothing constant

* Atanytime step T:
T

S(t) = z a(1—a)™t X(t)
t=0
e 5(0) can be set to X(0) or mean of first few samples
* « can also be computed with MSE

* Double Exponential Smoothing
e Extract patterns from data AND trend
e S)=aX(t)+ (A —-a)(S(t—1)+ b(t — 1)) Smoothed values
e b(t) = ,B(S(t) — S(t — 1)) + (1 — B)b(t — 1) Estimated trend
« X(t+1)=S5@)+b() Forecasts
e Parameter € [0, 1] controls the decay of the change

* |nitialization
* 5(0) can be set to X(0) or mean of first few samples
« b(0)=X1)—-X(0)

* Forecasts beyond 1-step ahead
« X(t+1)=S5)+1h(t)

* TRIPLE Exponential Smoothing

e Extract patterns from data AND trend AND seasonality
* Third component added for seasonality of length L

* Additive seasonality variant

* Multiplicative seasonality variant

* Additive seasonality for variations that are roughly constant
e SW)=aX@t)+ct—-L)+A—-a)St—1)+b(t—1))
« b®)=B(S®)-St-1))+ A -pBb(t—-1)
c c@=yX@®-SE-D-bEt-1)+ A —y)(t—-L)
« X(t+1)=St)+th(t)+c(t—L+1+ (t—1)mod(L))
* Multiplicative for changing seasonal variations

()
.« S(t) = “cft_tm +(1-a)(S(t—1)+b(t—1))

« b®)=B(S®)-St—-1))+ A -Bb(t—-1)

@ = yEg+A=pet-1)

e Xit+1) =@ +1b(®)c(t—L+1+ (r—1Dmod(L))

* |nitialization for double / triple Exponential Smoothing

.« b(0) = 1 X(L+1)-X(1) n X(L+2)-X(2) I X(L+L)—X(L))
L L L L
e ¢(t) = —ZN X(L(JA D+ Vt, N seasonal cycles in time series
J

j = L
* All of these implemented in python using statsmodels

Train/test split
train = trend seasonality[:-5]
test = trend seasonality[-5:]

find mean of series
trend seasonal avg = np.mean(trend seasonality)

create array of mean value equal to length of time array
simple avg preds = np.full (shape=len(test), fill value=trend seasonal avg,
dtype="float')

mse
simple mse = mse(test, simple avg preds)

results
print ("Predictions: ", simple avg preds)
print ("MSE: ", simple mse)

* Single Exponential Smoothing

from statsmodels.tsa.api import SimpleExpSmoothing

single = SimpleExpSmoothing (train).fit (optimized=True)
single preds = single.forecast (len(test))

single mse = mse(test, single preds)

print ("Predictions: ", single preds)

print ("MSE: ", single mse)

Double Exponential Smoothing

from statsmodels.tsa.api import Holt

double = Holt (train) .fit (optimized=True)
double preds = double.forecast (len(test))
double mse = mse (test, double preds)
print ("Predictions: ", double preds)
print ("MSE: ", double mse)

Triple Exponential Smoothing

from statsmodels.tsa.api import ExponentialSmoothing

triple = ExponentialSmoothing (train, trend="additive", seasonal="additive",
seasonal periods=13).fit (optimized=True)

triple preds = triple.forecast (len(test))

triple mse = mse(test, triple preds)

print ("Predictions: ", triple preds)

print ("MSE: ", triple mse)

simple 47197.581558
single 639.806113
double 388.215595
triple 97.583706

