Time series analysis: Unit root test and Hurst Exponent

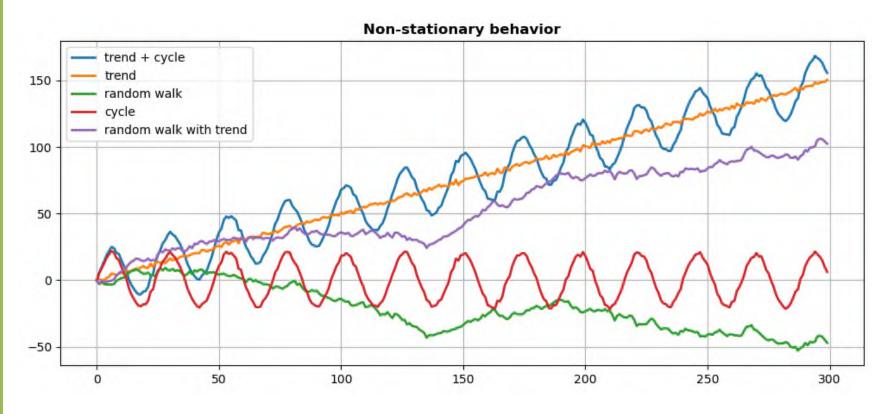
EΠΛ 428: IOT PROGRAMMING

Dr. Panayiotis Kolios Assistant Professor, Dept. Computer Science, KIOS CoE for Intelligent Systems and Networks Office: FST 01, 116 Telephone: +357 22893450 / 22892695 Web: <u>https://www.kios.ucy.ac.cy/pkolios/</u>

- Decomposition
 - trend, seasonal, and random fluctuation components
- Trends
 - Increasing / Decreasing / Flat
 - Larger trends can be made up of smaller trends
 - No defined timeframe for what constitutes a trend: it depends on your data and task at hand
- Seasonal effects
 - Weekend retail sales spikes
 - Holiday shopping.
 - Energy requirement changes with annual weather patterns.
- Random Fluctuations
 - Observation errors
 - Uncertainty / noise / faults
 - The smaller this is in relation to trend and seasonal components, the better we can predict the future

- Additive
 - Data = Trend + Seasonal + Random.
 - If our seasonality and fluctuations are stable, we likely have an additive model
- Multiplicative
 - Data = Trend
 - Seasonal
 - Random
 - Similar to additive in log scale: log(Data) = log(Trend + Seasonal + Random).
 - Use multiplicative models if:
 - the amplitude in seasonal and random fluctuations grow with the trend
 - the percentage change of our data is more important than the absolute value change (e.g. stocks, commodities)

- A time series is stationary if:
 - The mean of the series is constant
 - The variance does not change over time (homoscedasticity)
 - The covariance is not a function of time



Checking stationarity

- Make a run-sequence plot
- Rolling statistics:
 - Compute and plot rolling statistics such as moving average/variance
 - Check if the statistics change over time
 - This technique can be done on different windows (small windows are noisy, large windows too conservative)
- Histogram of time series:
 - Does it look normal? -> stationary
 - Does it look non-normal (e.g., uniform)? -> non-stationary
- Augmented Dickey-Fuller (ADF) test:
 - Statistical tests for checking stationarity
 - The null hypothesis H_0 is that the time series is non-stationary
 - If the test statistic is small enough and the p-value below the target a, we can reject H₀, i.e., series is stationary

Achieving stationarity

- Take the log of the data
- Difference (multiple times if needed) to remove trends and seasonality OR
- Subtract estimated trend and seasonal components

Random Walk

$$X(t) = X(t-1) + \varepsilon_t$$

- where ε_t are called innovations and are iid, e.g. $\varepsilon_t \sim N(0, \sigma^2)$
- Can also expressed as

X(t) = X(0) + W(t)

• with W(t) being the Wiener process, or:

X(t) = X(0) + B(t)

- with B(t) being the Brownian Motion
- W(t) and B(t) are cumulative sums of normality distributed $\varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_t$
- Variance of Brownian Motion at time lag au

 $Var(X(t + \tau) - X(t))$

• increment $B(t + \tau) - B(t)$ is normally distributed with 0 mean and variance τ

- ADF test is one of the most popular unit root tests
- The presence of a unit root suggests that the time series is generated by a stochastic process with some level of persistence
- This means that shocks to the system will have permanent effects
- This is opposed to stationary processes where shocks have only temporary effects

• Consider a simple autoregressive process of order 1, denoted as AR(1):

$$Y(t) = \varphi Y(t-1) + \varepsilon_t$$

- where φ is a coefficient, and ε_t a white noise error term
- To analyze the properties of this process, we can rewrite the equation in terms of lag operator *L*

$$LY(t) = Y(t - 1)$$
$$(1 - \varphi L)Y(t) = e_t$$

- $(1 \varphi L)$ known as the characteristic equation of AR(1)
- The roots of this equation are found by setting $1 \varphi L = 0$ and solving for L
- Giving $L = 1/\varphi$ which is the root of the characteristic eq.
- For $\varphi = 1$, L = 1, given a root with "unit" value
- AR(1) with unit root is not stationary since it becomes random walk: $Y(t) = \varphi Y(t 1) + \varepsilon_t$

Formulation of the test

- ADF test assesses whether lagged values of the time series are useful in predicting current values
- The test starts with a model that includes the time series lagged by one period (lag-1)
- Then, other lagged terms are added to control for higherorder correlation (this is the "augmented" part of the ADF test)

ADF test equation

• Models the time series as follows: $p = \sum_{k=1}^{p} \sum_{k=1}^{p}$

$$\Delta Y(t) = \alpha + \beta t + \gamma Y(t-1) + \sum_{i=1}^{r} \delta_i \Delta_{t-i} + \varepsilon_t$$

- with $\Delta_t = Y(t) Y(t-1)$, difference at time t
- α being a constant, β trend, γ coefficient of lagged values
- δ_i coefficients for lagged differences (account for higher order correlations)

ADF connection to unit root

• Assume $\alpha = \beta = 0$ (zero mean and no trend) and do not consider higher-order terms ($\delta_i = 0$)

• Let
$$\gamma = (\varphi - 1)$$

• $\Delta_t = (\varphi - 1)Y(t) + \varepsilon_t$

• If $\gamma = 0$ then $\varphi = 1$ (unit root)

•
$$\Delta_t = \varepsilon_t \rightarrow Y(t) = Y(t-1) + \varepsilon_t$$

Null and alternative hypotheses

- $H_0: \gamma = 0$, the time series has unit root, i.e., it is not stationary
- $H_1: \gamma < 0$, time series does not have unit root Test statistics
- The ADF test statistic is calculated based on the estimated coefficient $\hat{\gamma}$
- This statistic is then compared to critical values for the ADF distribution
- If the test statistic is more negative than the critical value, H_0 is rejected
- If the test statistic is less negative than the critical value, H₀ cannot be rejected.

Choosing lag length

- The number of lags (*p*) included in the test equation is important
- Too few lags might leave out necessary corrections for autocorrelation
- Too many lags can reduce the power of the test
- The appropriate lag length is often chosen based on information criteria such as the Akaike Information Criterion (AIC) or the Schwarz Information Criterion (BIC)

Choosing lag length

```
# Generating a synthetic time series (replace this with your dataset)
data = pd.Series(100 + np.random.normal(0, 1, 100).cumsum())
# Perform Augmented Dickey-Fuller test
# the lag can be set manually with 'maxlag' or inferred automatically with
autolag
result = adfuller(data, autolag='AIC') # You can change to 'BIC' for Schwarz
Information Criterion
adf_statistic, p_value, usedlag, nobs, critical_values, icbest = result
print(f'ADF Statistic: {adf_statistic :.2f}')
print(f'p-value: {p_value :.2f}')
print(f'Number of Observations: {nobs}')
print(f"Critical Values: {[f'{k}: {r:.2f}' for r,k in
zip(critical values.values(), critical values.keys())]}\n")
```

ADF Statistic: -1.13

p-value: 0.70

Used Lag: 0

Number of Observations: 99

Critical Values: ['1%: -3.50', '5%: -2.89', '10%: -2.58']

ADF Test types

- 3 versions depending on whether the equation includes none, both, or one of the terms α (constant) and βt (trend):
 - No constant or trend ('n').
 - Constant, but no trend ('c').
 - Both constant and trend ('ct').

Function to perform ADF test

```
def perform_adf_test(series, title, regression_type):
    out = adfuller(series, regression=regression_type)
    print(f"Results for {title}:")
    print(f'ADF Statistic: {out[0]:.2f}')
    print(f'p-value: {out[1]:.3f}')
    print(f"Critical Values: {[f'{k}: {r:.2f}' for r,k in zip(out[4].values(),
    out[4].keys())]}\n")
```

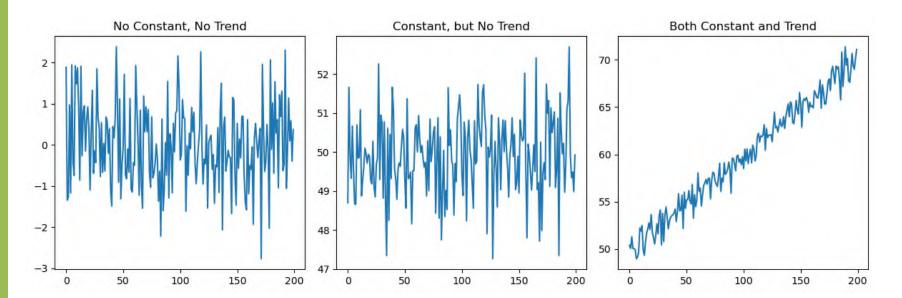
1. No Constant or Trend
series_no_const_no_trend = pd.Series(np.random.normal(0, 1, 200))

2. Constant, but No Trend
series_const_no_trend = pd.Series(50 + np.random.normal(0, 1, 200))

3. Both Constant and Trend series_const_trend = pd.Series(50 + np.linspace(0, 20, 200) + np.random.normal(0, 1, 200))

ADF Test types

```
plt.figure(figsize=(12, 4))
plt.subplot(1, 3, 1)
series_no_const_no_trend.plot(title='No Constant, No Trend')
plt.subplot(1, 3, 2)
series_const_no_trend.plot(title='Constant, but No Trend')
plt.subplot(1, 3, 3)
series_const_trend.plot(title='Both Constant and Trend')
plt.tight_layout();
```



ADF Test types

1. No Constant or Trend
perform adf test(series no const no trend, "No Constant, No Trend", 'n')

2. Constant, but No Trend
perform adf test(series const no trend, "Constant, No Trend", 'c')

3. Both Constant and Trend
perform adf test(series const trend, "Constant and Trend", 'ct')

Results for No Constant, No Trend: ADF Statistic: -15.47 p-value: 0.000 Critical Values: ['1%: -2.58', '5%: -1.94', '10%: -1.62']

Results for Constant, No Trend: ADF Statistic: -13.95 p-value: 0.000 Critical Values: ['1%: -3.46', '5%: -2.88', '10%: -2.57']

Results for Constant and Trend: ADF Statistic: -14.68 p-value: 0.000 Critical Values: ['1%: -4.00', '5%: -3.43', '10%: -3.14']

- Mean reversion refers to the property of a time series to revert to its historical mean
- This concept is particularly popular in financial economics, where it is often assumed that asset prices and revert to their historical average over the long term
- Application examples
 - Portfolio Management: Investors use mean reversion as a strategy to buy assets that have underperformed and sell assets that have overperformed, expecting that they will revert to their historical mean
 - Risk Management: Understanding mean reversion helps in assessing the long-term risk of assets. If an asset is highly mean-reverting, it might be considered less risky over the long term, as it tends to move back to its average
 - Pricing Models: In option pricing, certain models assume mean reversion in the underlying asset's volatility. This affects the pricing and strategy for options trading
 - Economic Forecasting: Economic variables (like GDP growth rates, interest rates) often exhibit mean-reverting behavior. This assumption is used in macroeconomic models and forecasts.

Mean reversion test

- Determines whether, after a deviation from its mean, a time series will eventually revert back to that mean
- This can be done using unit root tests such as ADF
- If a time series has a unit root, it implies that it does not revert to a mean

```
def get_data(tickerSymbol, period, start, end):
    # Get data on the ticker from Yahoo Finance
    tickerData = yf.Ticker(tickerSymbol)
    # Get the historical prices for this ticker
    tickerDf = tickerData.history(period=period, start=start, end=end)
    return tickerDf
data = get data('GOOG', period='1d', start='2004-09-01', end='2020-08-31')
```



```
def get_data(tickerSymbol, period, start, end):
```

```
# Get data on the ticker from Yahoo Finance
tickerData = yf.Ticker(tickerSymbol)
```

```
# Get the historical prices for this ticker
tickerDf = tickerData.history(period=period, start=start, end=end)
```

return tickerDf

data = get data('GOOG', period='1d', start='2004-09-01', end='2020-08-31')

```
# Plotting the Closing Prices
plt.figure(figsize=(14, 5))
plt.plot(data['Close'], label='GOOG Closing Price')
plt.title('Google Stock Closing Prices (2004-2020)')
plt.xlabel('Date')
plt.ylabel('Price (USD)')
plt.legend();
```


Perform the ADF test
perform adf test(data['Close'], "Google Stock Closing Prices", 'ct')

Results for Google Stock Closing Prices: ADF Statistic: -0.78 p-value: 0.968 Critical Values: ['1%: -3.96', '5%: -3.41', '10%: -3.13']

• H_0 cannot be rejected

- Testing for mean reversion and testing for stationarity are related but distinct concepts in time series analysis
 Key Differences:
- Mean reversion testing is focused on whether a time series will return to a specific level (the mean)
- Stationarity testing checks if the overall statistical properties of the series remain consistent over time
- A stationary time series may or may not be mean reverting
- A stationary series with a constant mean and variance over time might still not revert to its mean after a shock
- Conversely, a mean-reverting series must have some stationarity, particularly in its mean, but it might still have changing variance or other properties over time

- The Hurst exponent (*H*) is a measure used to characterize the long-term memory of time series
- It helps to determine the presence of autocorrelation or persistence in the data
- The goal of the Hurst Exponent is to provide us with a scalar value that will help us to identify whether a series is:
 - random walk
 - trending
 - mean reverting
- The key insight is that, if any autocorrelation exists, then

 $Var(X(t+\tau)-X(t)) \propto \tau^{2H}$

• with *H* being the Hurst exponent

- Time series can be characterized using Hurst exponent (*H*):
 - If H = 0.5, the time series is similar to a random walk (Brownian motion). In this case, the variance increases linearly with τ
 - If H < 0.5, the time series exhibits anti-persistence, i.e. mean reversal. The variance increases more slowly than linearly with τ
 - If H > 0.5, the time series exhibits persistent longrange dependence, i.e. is trending. The variance increases more rapidly than linearly with τ

```
def hurst(ts):
    # Create the range of lag values
    lags = range(2, 100)
    # Calculate the array of the variances of the lagged differences
    tau = [np.sqrt(np.std(np.subtract(ts[lag:], ts[:-lag]))) for lag in lags]
    # Use a linear fit to estimate the Hurst Exponent
    poly = np.polyfit(np.log(lags), np.log(tau), 1)
    # Return the Hurst exponent from the polyfit output
    return poly[0]*2.0
```

Κυπρου

def random_walk_memory(length, proba, min_lookback, max_lookback)

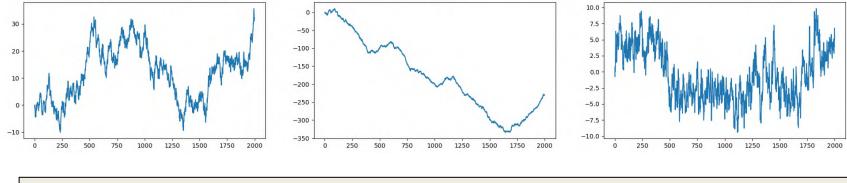
•proba is the probability that the next increment will follow the trend

- proba > 0.5 persistent random walk
- proba < 0.5 antipersistent one
- min_lookback and max_lookback are the minimum and maximum window sizes to calculate trend direction

```
def random walk memory(length, proba=0.5, min lookback=1, max lookback=100):
    series = [0.] * length
   for i in range(1, length):
       # If the series has not yet reached the min lookback threshold
        # the direction of the step is random (-1 or 1)
        if i < min lookback + 1:
            direction = np.sign(np.random.randn())
        # consider the historical values to determine the direction
        else:
            # randomly choose between min lookback and the minimum of
            # i-1 (to ensure not exceeding the current length) and max lookback.
            lookback = np.random.randint(min lookback, min(i-1, max lookback)+1)
            # Decides whether to follow the recent trend or move against it,
            # based on a comparison between proba and a random number between 0 and 1.
            recent trend = np.siqn(series[i-1] - series[i-1-lookback])
            change = np.sign(proba - np.random.uniform())
            direction = recent trend * change
        series[i] = series[i-1] + np.fabs(np.random.randn()) * direction
    return series
```

```
bm = random_walk_memory(2000, proba=0.5)
persistent = random_walk_memory(2000, proba=0.7)
antipersistent = random_walk_memory(2000, proba=0.3)
_, axes = plt.subplots(1,3, figsize=(24, 4))
axes[0].plot(bm)
axes[0].set_title(f"Brownian Motion, H: {hurst(bm):.2f}")
axes[1].plot(persistent)
axes[1].set_title(f"Persistent, H: {hurst(persistent):.2f}")
axes[2].plot(antipersistent)
axes[2].set_title(f"Anti-Persistent, H: {hurst(antipersistent):.2f}");
```

Brownian Motion, H: 0.43 Persistent, H: 0.75 Anti-Persistent, H: 0.16



print(f"GOOG closing price, H: {hurst(data['Close'].values):.2f}")

GOOG closing price, H: 0.41

- The Hurst exponent (*H*) is a critical metric in the analysis of time series (e.g., financial data)
- Offers insights into the behavior of data, such as stocks
- Here's how to interpret *H* in the context of closing stock prices and its influence on investment decisions:

Case 1: H = 0.5

- Data follows a geometric Brownian motion, i.e., a completely random walk
- Implies that future price movements are independent of past movements
- There are no autocorrelations in price movements to exploit; past data cannot predict future prices

Case 2: *H* < 0.5

- Indicates a mean-reverting series, i.e., data tends to revert to its historical average
- This suggests that the asset is less risky over the long term
- Investors might interpret a low Has an opportunity to buy stocks after a significant drop, expecting a reversion to the mean, or to sell after a substantial rise

Case 3: H > 0.5

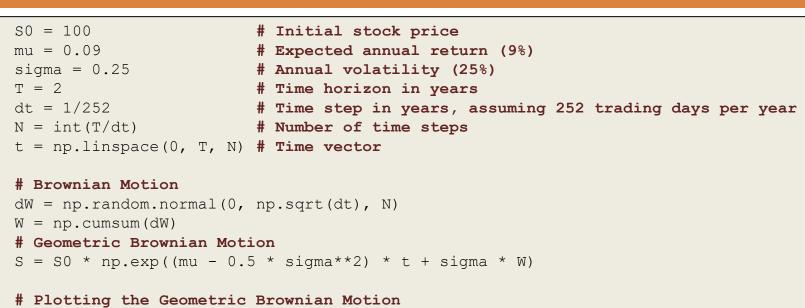
- Suggests a trending series, where increases or decreases in data are likely to be followed by further increases or decreases, respectively
- This persistence indicates potential momentum in data, which can be exploited by momentum strategies:
- Buying stocks that have been going up in the hope that they will continue to do so, and selling those in a downtrend

- The observed value of H can vary over different time frames: analyze H over the period relevant to the prediction horizon
- External factors (such as geopolitical events, environment) can influence data and should be considered alongside *H*
- If the time series is too short, the value of *H* might not be reliable

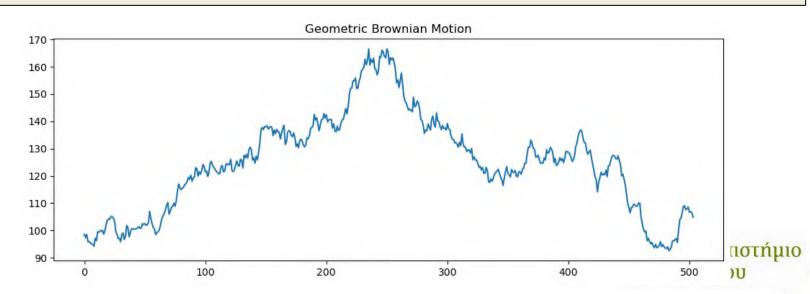
- The Geometric Brownian Motion (GBM) is a stochastic process
- It is often used to model stock prices and other financial variables that do not revert to a mean but rather exhibit trends with a drift μ and volatility σ
- The GBM is defined as:

$$S(t) = S_0 \exp\left(\left(\mu - \frac{1}{2}\sigma^2\right) + \sigma W(t)\right)$$

- Where
 - S(t) is the data at time t
 - S₀ initial value at t=0
 - μ is the expected value (drift coefficient)
 - σ volatility (standard deviation)
 - W(t) is a Wiener process (standard Brownian montion)



```
plt.figure(figsize=(12, 4))
plt.plot(S)
plt.title('Geometric Brownian Motion');
```



- *S*(*t*) is *log-normally distributed* because it's an exponential function of a normally distributed process B(*t*)
- Variance of S(t) can be found from the properties of the log-normal distribution:

$$Var(S(t)) = \left(e^{\sigma^2 t} - 1\right)e^{2\mu t + \sigma^2 t}S_0^2$$

- Variance of GBM is not linear in *t* like the BM
- Instead, it grows exponentially with time due to the exponential term $e^{\sigma^2 t}$
- This, and the possibility of modelling drift (expected annual return) are the main additions of GBM over BM

- GBM can be used to model real stock prices and simulate their future behavior.
- 1. First, we estimate μ and σ from historical stock price data.
 - μ could be the historical average of the stock's logarithmic returns
 - σ could be the standard deviation of those returns
- 2. Then, we use these estimates in the GBM formula to simulate future price paths.
- This method is widely used for option pricing, risk management, and investment strategy simulations
- However, GBM has limitations, such as assuming a constant drift and volatility
- These assumptions may not hold true in real markets
- Therefore, it's often used as a component of a broader analysis or modeling strategy
 ΔΔ Πανεπιστήμιο

PERSISTENT AND ANTI-PERSISTENT TIME SERIES

Step 1: Get the "training" data (e.g., 2020-2022)
data2 = get data('GOOG', period='1d', start='2019-12-31', end='2022-12-31')

Get "test" data, for comparison (e.g., 2023)
data3 = get_data('GOOG', period='1d', start='2022-12-31', end='2023-12-31')
test days = len(data3)

Step 2: Calculate Daily Returns
returns = data2['Close'].pct_change() # Interested in the returns, so we get the
changes in %

Step 3: Estimate Parameters for GBM
mu = returns.mean() * 252 # Annualize the mean
sigma = returns.std() * np.sqrt(252) # Annualize the std deviation

```
# Step 4: Set GBM parameters
T = 1 # Time horizon in years
dt = 1/test_days # Time step in years, assuming 252 trading days per year
N = int(T/dt) # Number of time steps
time_step = np.linspace(0, T, N)
S0 = data2['Close'].iloc[-1] # Starting stock price (latest close price)
```

```
# Step 5: Compute Simulation
W = np.random.standard_normal(size=N)
W = np.cumsum(W)*np.sqrt(dt) # Cumulative sum for the Wiener process
X = (mu - 0.5 * sigma**2) * time_step + sigma * W
S = S0 * np.exp(X) # GBM formula
```



```
# Plot the results
plt.figure(figsize=(12, 5))
plt.plot(data2['Close'], label='GOOGL Historical Closing Prices')
plt.plot(data3.index, S, label='Simulated GBM Prices')
plt.plot(data3['Close'], label='Real Prices')
plt.legend()
plt.title('Google Stock Prices and Simulated GBM')
plt.xlabel('Date')
plt.ylabel('Price')
plt.xticks(rotation=45);
```


There is stochastic component in GBM hence run monte carlo

Simulate multiple paths

```
n_paths = 10
paths = []
for _ in range(n_paths):
    W = np.cumsum(np.random.standard_normal(size=N))*np.sqrt(dt)
    X = (mu - 0.5 * sigma**2) * time_step + sigma * W
    paths.append(S0 * np.exp(X))
path_mean = np.array(paths).mean(axis=0)
```

path_std = np.array(paths).std(axis=0)

