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* Decomposition

* trend, seasonal, and random fluctuation components
* Trends

* Increasing / Decreasing / Flat

* Larger trends can be made up of smaller trends

e No defined timeframe for what constitutes a trend: it
depends on your data and task at hand

e Seasonal effects

 Weekend retail sales spikes

* Holiday shopping.

* Energy requirement changes with annual weather patterns.
 Random Fluctuations

* QObservation errors

* Uncertainty / noise / faults

* The smaller this is in relation to trend and seasonal
components, the better we can predict the future
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 Additive

e Data =Trend + Seasonal + Random.

* If our seasonality and fluctuations are stable, we likely have
an additive model

* Multiplicative
e Data=Trend
 Seasonal
e Random

* Similar to additive in log scale:
log(Data) = log(Trend + Seasonal + Random).

* Use multiplicative models if:

* the amplitude in seasonal and random fluctuations
grow with the trend

* the percentage change of our data is more important
than the absolute value change (e.g. stocks,
commodities)




 Atime series is stationary if:
* The mean of the series is constant
* The variance does not change over time (homoscedasticity)
* The covariance is not a function of time




Checking stationarity
 Make a run-sequence plot
* Rolling statistics:

Compute and plot rolling statistics such as moving
average/variance

Check if the statistics change over time

This technique can be done on different windows (small
windows are noisy, large windows too conservative)

* Histogram of time series:

Does it look normal? -> stationary
Does it look non-normal (e.g., uniform)? -> non-stationary

 Augmented Dickey-Fuller (ADF) test:

Statistical tests for checking stationarity

The null hypothesis Hj is that the time series is non-
stationary

If the test statistic is small enough and the p-value below
the target a, we can reject Hy, i.e., series is stationary
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Achieving stationarity

 Take the log of the data

* Difference (multiple times if needed) to remove trends
and seasonality OR

e Subtract estimated trend and seasonal components
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e Random Walk

X)) =X({t—-1)+ ¢
 where &, are called innovations and are iid, e.g. &,~N (0, 02)
* (Can also expressed as
X(t)=X(0)+W(t)
* with W(t) being the Wiener process, or:
X(t) =X(0) + B(t)
* with B(t) being the Brownian Motion

 W(t) and B(t) are cumulative sums of normality distributed
& T+ & + -+ &
* Variance of Brownian Motion attime lag t
Var(X(t + 1) — X(t))
* increment B(t + ) — B(t) is normally distributed with O
mean and variance T
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* ADF test is one of the most popular unit root tests

* The presence of a unit root suggests that the time series is
generated by a stochastic process with some level of
persistence

* This means that shocks to the system will have permanent
effects

* This is opposed to stationary processes where shocks have
only temporary effects




Consider a simple autoregressive process of order 1,
denoted as AR(1):

Y(t) =Y(t—1)+ ¢
where @ is a coefficient, and &; a white noise error term

To analyze the properties of this process, we can rewrite the
equation in terms of lag operator L

LY(t) =Y(t—-1)
(1=@L)Y(t) = e
(1 — @L)known as the characteristic equation of AR(1)

The roots of this equation are found by setting 1 — @L =0
and solving for L

Giving L = 1/¢ which is the root of the characteristic eq.
Foro =1, L = 1, given a root with “unit” value

AR(1) with unit root is not stationary since it becomes
randomwalk: Y(t) = @Y (t — 1) + &
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Formulation of the test

* ADF test assesses whether lagged values of the time series
are useful in predicting current values

 The test starts with a model that includes the time series
lagged by one period (lag-1)

 Then, other lagged terms are added to control for higher-
order correlation (this is the “augmented” part of the ADF
test)

ADF test equation

* Models the time series as follows: p

AY(D) = a + Bt +yY(t —1) + z 5, + ¢,

i=1
 withA;,=Y(t) —Y(t — 1), difference at time t

* a being a constant, § trend, y coefficient of lagged values

* 0; coefficients for lagged differences (account for higher
order correlations)
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ADF connection to unit root

* Assume a = ff = 0 (zero mean and no trend) and do not
consider higher-order terms (6; = 0)

e lety=(p—1)
* A= (@ — DY) + &
* Ify =0then @ =1 (unitroot)

¢ At= gt -> Y(t) —_ Y(t — 1) + gt
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Null and alternative hypotheses

* Hy:y =0, the time series has unit root, i.e., it is not
stationary

* Hi:y <0, time series does not have unit root
Test statistics

e The ADF test statistic is calculated based on the estimated
coefficient y

* This statistic is then compared to critical values for the ADF
distribution

* If the test statistic is more negative than the critical value,
H, is rejected

* If the test statistic is less negative than the critical value, H,
cannot be rejected.
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Choosing lag length

* The number of lags (p) included in the test equation is
Important

* Too few lags might leave out necessary corrections for
autocorrelation

 Too many lags can reduce the power of the test

 The appropriate lag length is often chosen based on
information criteria such as the Akaike Information Criterion
(AIC) or the Schwarz Information Criterion (BIC)
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Choosing lag length

# Generating a synthetic time series (replace this with your dataset)
data = pd.Series (100 + np.random.normal (0, 1, 100).cumsum())

# Perform Augmented Dickey-Fuller test

# the lag can be set manually with 'maxlag' or inferred automatically with
autolag

result = adfuller (data, autolag='AIC') # You can change to 'BIC' for Schwarz
Information Criterion

adf statistic, p value, usedlag, nobs, critical values, icbest = result
print (£'ADF Statistic: {adf statistic :.2f}")

print (f'p-value: {p value :.2f}")

print (f'Used Lag: {usedlag}')

print (£ 'Number of Observations: {nobs}')

print (f"Critical Values: {[f'{k}: {r:.2f}' for r,k in

zip (critical values.values(), critical values.keys())]}\n")
ADF Statistic: -1.13
p-value: 0.70
Used Lag: 0

Number of Observations: 99
Critical Values: ['1%: -3.50', '5%: -2.89', '10%: -2.58']
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ADF Test types

e 3versions depending on whether the equation includes none, both, or one of the
terms a (constant) and St (trend):

. No constant or trend ('n').
. Constant, but no trend ('c').
. Both constant and trend ('ct').

# Function to perform ADF test
def perform adf test(series, title, regression type):

out = adfuller (series, regression=regression_ type)

print (f"Results for {title}:")

print (£'ADF Statistic: {out[0]:.2f}")

print (f'p-value: {out[l]:.3f}")

print (f"Critical Values: {[f'{k}: {r:.2f}' for r,k in zip(out[4].values(),
out[4].keys())]}\n")

# 1. No Constant or Trend
series no_const no trend = pd.Series (np.random.normal (0, 1, 200))

# 2. Constant, but No Trend
series const no trend = pd.Series (50 + np.random.normal (0, 1, 200))

# 3. Both Constant and Trend
series_const trend = pd.Series (50 + np.linspace (0, 20, 200) + np.random.normal (O,

1, 200))
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ADF Test types

plt.figure (figsize=(12, 4))

plt.subplot (1, 3, 1)

series no const no trend.plot(title='No Constant, No Trend')
plt.subplot (1, 3, 2)

series const no trend.plot (title='Constant, but No Trend')
plt.subplot (1, 3, 3)

series const trend.plot(title='Both Constant and Trend')
plt.tight layout();
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ADF Test types

# 1. No Constant or Trend
perform adf test(series no const no trend, "No Constant, No Trend", 'n')

# 2. Constant, but No Trend
perform adf test(series const no trend, "Constant, No Trend", 'c')

# 3. Both Constant and Trend
perform adf test(series const trend, "Constant and Trend", 'ct')

Results for No Constant, No Trend:

ADF Statistic: -15.47

p-value: 0.000

Critical Values: ['1%: -2.58', '5%: -1.94', '10%: -1.62']

Results for Constant, No Trend:

ADF Statistic: -13.95

p-value: 0.000

Critical Values: ['1%: -3.46', '5%: -2.88', '10%: -2.57']

Results for Constant and Trend:

ADF Statistic: -14.68

p-value: 0.000

Critical Values: ['1%: -4.00', '5%: -3.43', '10%: -3.14']




Mean reversion refers to the property of a time series to revert to
its historical mean

This concept is particularly popular in financial economics, where
it is often assumed that asset prices and revert to their historical
average over the long term

Application examples

Portfolio Management: Investors use mean reversion as a
strategy to buy assets that have underperformed and sell
assets that have overperformed, expecting that they will
revert to their historical mean

Risk Management: Understanding mean reversion helps in
assessing the long-term risk of assets. If an asset is highly
mean-reverting, it might be considered less risky over the
long term, as it tends to move back to its average

Pricing Models: In option pricing, certain models assume
mean reversion in the underlying asset’s volatility. This
affects the pricing and strategy for options trading

Economic Forecasting: Economic variables (like GDP growth

rates, interest rates) often exhibit mean-reverting behavior.

This assumption is used in macroeconomic models and
forecasts.
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Mean reversion test

 Determines whether, after a deviation from its mean, a time
series will eventually revert back to that mean

* This can be done using unit root tests such as ADF

* If atime series has a unit root, it implies that it does not
revert to a mean

def get data(tickerSymbol, period, start, end):

# Get data on the ticker from Yahoo Finance
tickerData = yf.Ticker (tickerSymbol)

# Get the historical prices for this ticker
tickerDf = tickerData.history(period=period, start=start, end=end)

return tickerDf

data = get data('GOOG', period='1ld', start='2004-09-01', end='2020-08-31")




def get data(tickerSymbol, period, start, end):

# Get data on the ticker from Yahoo Finance
tickerData = yf.Ticker (tickerSymbol)

# Get the historical prices for this ticker
tickerDf = tickerData.history(period=period, start=start, end=end)

return tickerDf

data = get data('GOOG', period='1ld', start='2004-09-01', end='2020-08-31")

# Plotting the Closing Prices
plt.figure(figsize= (14, 5))

plt.plot (data['Close'], label='GOOG Closing Price')
plt.title('Google Stock Closing Prices (2004-2020)")
plt.xlabel ('Date')

plt.ylabel ('Price (USD)"'")

plt.legend() ;




# Perform the ADF test
perform adf test(data['Close'],"Google Stock Closing Prices", 'ct')

Results for Google Stock Closing Prices:

ADF Statistic: -0.78

p-value: 0.968

Critical Values: ['1%: -3.96', '5%: -3.41', '10%: -3.13’]

* H, cannot be rejected




* Testing for mean reversion and testing for stationarity are
related but distinct concepts in time series analysis

Key Differences:

* Mean reversion testing is focused on whether a time series
will return to a specific level (the mean)

 Stationarity testing checks if the overall statistical properties
of the series remain consistent over time

* A stationary time series may or may not be mean reverting

* A stationary series with a constant mean and variance over
time might still not revert to its mean after a shock

e Conversely, a mean-reverting series must have some
stationarity, particularly in its mean, but it might still have
changing variance or other properties over time
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* The Hurst exponent (H) is a measure used to characterize
the long-term memory of time series

* |t helps to determine the presence of autocorrelation or
persistence in the data

* The goal of the Hurst Exponent is to provide us with a scalar
value that will help us to identify whether a series is:

* random walk
* trending
* mean reverting

* The key insight is that, if any autocorrelation exists, then

Var(X(t + t) — X(t)) o« 724

* with H being the Hurst exponent




* Time series can be characterized using Hurst exponent (H):

 If H= 0.5, the time series is similar to a random walk
(Brownian motion). In this case, the variance increases
linearly with 1

* If H < 0.5, the time series exhibits anti-persistence, i.e.
mean reversal. The variance increases more slowly
than linearly with T

* If H> 0.5, the time series exhibits persistent long-
range dependence, i.e. is trending. The variance
increases more rapidly than linearly with 1

def hurst(ts):
# Create the range of lag values
lags = range (2, 100)
# Calculate the array of the variances of the lagged differences
tau = [np.sqgrt (np.std(np.subtract(ts[lag:], tsl[:-lag]))) for lag in lags]
# Use a linear fit to estimate the Hurst Exponent
poly = np.polyfit(np.log(lags), np.log(tau), 1)
# Return the Hurst exponent from the polyfit output
return poly[0]*2.0
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def random walk memory (length, proba, min lookback, max lookback)

*proba is the probability that the next increment will follow the trend
e proba > 0.5 persistent random walk
e proba < 0.5 antipersistent one

* min_lookback and max_lookback are the minimum and maximum
window sizes to calculate trend direction

def random walk memory (length, proba=0.5, min lookback=1, max lookback=100) :
series = [0.] * length
for i in range(l, length):
# If the series has not yet reached the min_lookback threshold
# the direction of the step is random (-1 or 1)
if i < min lookback + 1:
direction = np.sign (np.random.randn ())
# consider the historical values to determine the direction
else:
# randomly choose between min lookback and the minimum of
# i-1 (to ensure not exceeding the current length) and max lookback.
lookback = np.random.randint (min lookback, min(i-1, max lookback)+1)
# Decides whether to follow the recent trend or move against it,
# based on a comparison between proba and a random number between 0 and 1.

recent trend = np.sign(series[i-1] - series[i-1-lookback])
change = np.sign(proba - np.random.uniform())
direction = recent trend * change

series[i] = series[i-1] + np.fabs(np.random.randn()) * direction

return series




bm = random walk memory (2000, proba=0.5)
persistent = random walk memory (2000, proba=0.7)
antipersistent = random walk memory (2000, proba=0.3)

, axes = plt.subplots (1,3, figsize=(24, 4))

axes|[0] .plot (bm)

axes[0].set title(f"Brownian Motion, H: {hurst(bm):.2f}")
axes|[1l] .plot (persistent)

axes[l].set title(f"Persistent, H: {hurst(persistent):.2f}")

axes|[2] .plot (antipersistent)

axes[2].set title(f"Anti-Persistent, H: {hurst(antipersistent):.2f}");

print (£"GOOG closing price, H: {hurst(data['Close'].values):.2f}")

GOOG closing price, H: 0.41




* The Hurst exponent (H) is a critical metric in the analysis of
time series (e.g., financial data)

e Offers insights into the behavior of data, such as stocks

* Here’s how to interpret H in the context of closing stock
prices and its influence on investment decisions:

Case1l: H = 0.5
* Data follows a geometric Brownian motion, i.e., a completely random
walk

* Implies that future price movements are independent of past
movements

* There are no autocorrelations in price movements to exploit; past data
cannot predict future prices




Case2: H < 0.5

Indicates a mean-reverting series, i.e., data tends to revert to its
historical average

This suggests that the asset is less risky over the long term

Investors might interpret a low Has an opportunity to buy stocks after a
significant drop, expecting a reversion to the mean, or to sell after a
substantial rise

Case3:H > 0.5

Suggests a trending series, where increases or decreases in data are likely
to be followed by further increases or decreases, respectively

This persistence indicates potential momentum in data, which can be
exploited by momentum strategies:

Buying stocks that have been going up in the hope that they will continue
to do so, and selling those in a downtrend

ININOdX3 1SH4NH 3FHL 40 NOILVL13ddddLN|



-]
 The observed value of H can vary over different time

frames: analyze H over the period relevant to the prediction
horizon

* External factors (such as geopolitical events, environment)
can influence data and should be considered alongside H

* If the time series is too short, the value of H might not be
reliable




e The Geometric Brownian Motion (GBM) is a stochastic
process

* Itis often used to model stock prices and other financial
variables that do not revert to a mean but rather exhibit
trends with a drift 4 and volatility o

e The GBM is defined as:

S(t) = Sy exp ((u — %02> + 0W(t)>
* Where

e S(t) is the data at time t

* S, initial value at t=0

e uisthe expected value (drift coefficient)

e o volatility (standard deviation)

 W(t) is a Wiener process (standard Brownian montion)




SO0 = 100 # Initial stock price

mu = 0.09 # Expected annual return (9%)

sigma = 0.25 # Annual volatility (25%)

T =2 # Time horizon in years

dt = 1/252 # Time step in years, assuming 252 trading days per year
N = int (T/dt) # Number of time steps

t = np.linspace (0, T, N) # Time vector

# Brownian Motion

dW = np.random.normal (0, np.sqgrt(dt), N)

W = np.cumsum (dW)

# Geometric Brownian Motion

S = S0 * np.exp((mu - 0.5 * sigma**2) * t + sigma * W)

# Plotting the Geometric Brownian Motion
plt.figure (figsize= (12, 4))

plt.plot (S)

plt.title('Geometric Brownian Motion');
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« S(t)islog-normally distributed because it’s an exponential

function of a normally distributed process B(t)

* Variance of S(t) can be found from the properties of the
log-normal distribution:

Var(S(t)) = (e"zt — 1) g2Ht+o7t g2

e Variance of GBM is not linear in t like the BM

* Instead, it grows exponentially with time due to the
exponential term e?" ¢

e This, and the possibility of modelling drift (expected annual
return) are the main additions of GBM over BM




e GBM can be used to model real stock prices and simulate
their future behavior.

1. First, we estimate u and o from historical stock price data.

* u could be the historical average of the stock’s
logarithmic returns

e o could be the standard deviation of those returns

2. Then, we use these estimates in the GBM formula to
simulate future price paths.

* This method is widely used for option pricing, risk
management, and investment strategy simulations

* However, GBM has limitations, such as assuming a constant
drift and volatility

* These assumptions may not hold true in real markets

* Therefore, it’s often used as a component of a broader
analysis or modeling strategy
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# Step 1: Get the "training" data (e.g., 2020-2022)
dataz2 = get data('GOOG', period='ld', start='2019-12-31', end='2022-12-31")

# Get "test" data, for comparison (e.g., 2023)
data3 = get data('GOOG', period='ld', start='2022-12-31', end='2023-12-31")
test days = len(data3)

# Step 2: Calculate Daily Returns
returns = data2['Close'].pct change() # Interested in the returns, so we get the
changes in %

# Step 3: Estimate Parameters for GBM
mu = returns.mean() * 252 # Annualize the mean
sigma = returns.std() * np.sqgrt(252) # Annualize the std deviation

# Step 4: Set GBM parameters

T =1 # Time horizon in years

dt = 1/test days # Time step in years, assuming 252 trading days per year
N = int (T/dt) # Number of time steps

time step = np.linspace(0, T, N)

SO0 = data2['Close'].iloc[-1] # Starting stock price (latest close price)

# Step 5: Compute Simulation

W = np.random.standard normal (size=N)

W = np.cumsum (W) *np.sqgrt (dt) # Cumulative sum for the Wiener process
X

S

(mu - 0.5 * sigma**2) * time step + sigma * W
= S0 * np.exp(X) # GBM formula




# Plot the results

plt.figure (figsize=(12, 5))

plt.plot (data2['Close'], label='GOOGL Historical Closing Prices')
plt.plot (data3.index, S, label='Simulated GBM Prices')

plt.plot (data3['Close'], label='Real Prices')

plt.legend ()

plt.title('Google Stock Prices and Simulated GBM')

plt.xlabel ('Date')

plt.ylabel ('Price')

plt.xticks (rotation=45);




There is stochastic component in GBM hence run monte carlo

# Simulate multiple paths

n paths = 10

paths = []

for  in range(n_paths):
W = np.cumsum(np.random.standard normal (size=N)) *np.sqrt (dt)
X = (mu - 0.5 * sigma**2) * time step + sigma * W
paths.append (SO0 * np.exp (X))

path mean = np.array(paths) .mean (axis=0)
path std = np.array(paths) .std(axis=0)

plt.figure (figsize=(12, 5))

plt.plot (data2['Close'], label='GOOGL Historical Closing Prices')
plt.plot (data3.index, path mean, label='Simulated GBM Prices')
plt.fill between (data3.index, path mean-1.96*path std, path mean+l.96*path std,
color="'tab:orange', alpha=0.2, label='95% CI')

plt.plot (data3['Close'], label='Real Prices')

plt.legend (loc="upper left')

plt.title('Google Stock Prices and Simulated GBM')

plt.xlabel ('Date')

plt.ylabel ('Price')

plt.xticks (rotation=45) ;




