
ΕΠΛ 428: IOT PROGRAMMING

Dr. Panayiotis Kolios
Assistant Professor, Dept. Computer Science,
KIOS CoE for Intelligent Systems and Networks
Office: FST 01, 116
Telephone: +357 22893450 / 22892695
Web: https://www.kios.ucy.ac.cy/pkolios/

Time series analysis:
Unit root test and Hurst Exponent

https://www.kios.ucy.ac.cy/pkolios/

R
EC

A
P

• Decomposition
• trend, seasonal, and random fluctuation components

• Trends
• Increasing / Decreasing / Flat
• Larger trends can be made up of smaller trends
• No defined timeframe for what constitutes a trend: it

depends on your data and task at hand

• Seasonal effects
• Weekend retail sales spikes
• Holiday shopping.
• Energy requirement changes with annual weather patterns.

• Random Fluctuations
• Observation errors
• Uncertainty / noise / faults
• The smaller this is in relation to trend and seasonal

components, the better we can predict the future

R
EC

A
P

 A
D

D
ITIV

E
V

S
M

U
LTIP

LIC
A

TIV
E

• Additive
• Data = Trend + Seasonal + Random.
• If our seasonality and fluctuations are stable, we likely have

an additive model

• Multiplicative
• Data = Trend
• Seasonal
• Random
• Similar to additive in log scale:

log(Data) = log(Trend + Seasonal + Random).
• Use multiplicative models if:

• the amplitude in seasonal and random fluctuations
grow with the trend

• the percentage change of our data is more important
than the absolute value change (e.g. stocks,
commodities)

R
EC

A
P

 S
TA

TIO
N

A
R

ITY

• A time series is stationary if:
• The mean of the series is constant

• The variance does not change over time (homoscedasticity)

• The covariance is not a function of time

R
EC

A
P

 S
TA

TIO
N

A
R

ITY

Checking stationarity
• Make a run-sequence plot
• Rolling statistics:

• Compute and plot rolling statistics such as moving
average/variance

• Check if the statistics change over time
• This technique can be done on different windows (small

windows are noisy, large windows too conservative)

• Histogram of time series:
• Does it look normal? -> stationary
• Does it look non-normal (e.g., uniform)? -> non-stationary

• Augmented Dickey-Fuller (ADF) test:
• Statistical tests for checking stationarity
• The null hypothesis 𝐻0 is that the time series is non-

stationary
• If the test statistic is small enough and the p-value below

the target 𝑎, we can reject 𝐻0, i.e., series is stationary

R
EC

A
P

 S
TA

TIO
N

A
R

ITY

Achieving stationarity

• Take the log of the data

• Difference (multiple times if needed) to remove trends
and seasonality OR

• Subtract estimated trend and seasonal components

B
R

O
W

N
IA

N
 M

O
TIO

N

• Random Walk

• where 𝜀𝑡 are called innovations and are iid, e.g. 𝜀𝑡~𝑁(0, 𝜎
2)

• Can also expressed as

• with 𝑊(𝑡) being the Wiener process, or:

• with 𝐵(𝑡) being the Brownian Motion

• 𝑊(𝑡) and B(𝑡) are cumulative sums of normality distributed
𝜀1 + 𝜀2 +⋯+ 𝜀𝑡

• Variance of Brownian Motion at time lag 𝜏

• increment 𝐵 𝑡 + 𝜏 − 𝐵 𝑡 is normally distributed with 0
mean and variance 𝜏

𝑋 𝑡 = 𝑋 𝑡 − 1 + 𝜀𝑡

𝑋 𝑡 = 𝑋 0 +𝑊(𝑡)

𝑋 𝑡 = 𝑋 0 + 𝐵(𝑡)

𝑉𝑎𝑟(𝑋 𝑡 + 𝜏 − 𝑋 𝑡)

U
N

IT R
O

O
T TEST

• ADF test is one of the most popular unit root tests

• The presence of a unit root suggests that the time series is
generated by a stochastic process with some level of
persistence

• This means that shocks to the system will have permanent
effects

• This is opposed to stationary processes where shocks have
only temporary effects

U
N

IT R
O

O
T TEST

• Consider a simple autoregressive process of order 1,
denoted as AR(1):

• where 𝜑 is a coefficient, and 𝜀𝑡 a white noise error term

• To analyze the properties of this process, we can rewrite the
equation in terms of lag operator 𝐿

• (1 − 𝜑𝐿)known as the characteristic equation of AR(1)

• The roots of this equation are found by setting 1 − 𝜑𝐿 = 0
and solving for 𝐿

• Giving 𝐿 = 1/𝜑 which is the root of the characteristic eq.

• For 𝜑 = 1, 𝐿 = 1, given a root with “unit” value

• AR(1) with unit root is not stationary since it becomes
random walk: 𝑌 𝑡 = 𝜑𝑌 𝑡 − 1 + 𝜀𝑡

𝑌 𝑡 = 𝜑𝑌 𝑡 − 1 + 𝜀𝑡

𝐿𝑌 𝑡 = 𝑌 𝑡 − 1

(1 − 𝜑𝐿)𝑌 𝑡 = 𝑒𝑡

A
D

F TEST

Formulation of the test

• ADF test assesses whether lagged values of the time series
are useful in predicting current values

• The test starts with a model that includes the time series
lagged by one period (lag-1)

• Then, other lagged terms are added to control for higher-
order correlation (this is the “augmented” part of the ADF
test)

ADF test equation

• Models the time series as follows:

• with ∆𝑡= 𝑌 𝑡 − 𝑌(𝑡 − 1), difference at time t

• 𝛼 being a constant, 𝛽 trend, 𝛾 coefficient of lagged values

• 𝛿𝑖 coefficients for lagged differences (account for higher
order correlations)

∆𝑌 𝑡 = 𝛼 + 𝛽𝑡 + 𝛾𝑌 𝑡 − 1 +෍

𝑖=1

𝑝

𝛿𝑖∆𝑡−𝑖 + 𝜀𝑡

A
D

F TEST A
N

D
 U

N
IT R

O
O

T

ADF connection to unit root

• Assume 𝛼 = 𝛽 = 0 (zero mean and no trend) and do not
consider higher-order terms (𝛿𝑖 = 0)

• Let 𝛾 = (𝜑 − 1)

• ∆𝑡= 𝜑 − 1 𝑌 𝑡 + 𝜀𝑡

• If 𝛾 = 0 then 𝜑 = 1 (unit root)

• ∆𝑡= 𝜀𝑡 -> 𝑌 𝑡 = 𝑌 𝑡 − 1 + 𝜀𝑡

A
D

F TEST A
N

D
 U

N
IT R

O
O

T

Null and alternative hypotheses

• 𝐻0: 𝛾 = 0, the time series has unit root, i.e., it is not
stationary

• 𝐻1: 𝛾 < 0, time series does not have unit root

Test statistics

• The ADF test statistic is calculated based on the estimated
coefficient ො𝛾

• This statistic is then compared to critical values for the ADF
distribution

• If the test statistic is more negative than the critical value,
𝐻0 is rejected

• If the test statistic is less negative than the critical value, 𝐻0
cannot be rejected.

A
D

F TEST

Choosing lag length

• The number of lags (𝑝) included in the test equation is
important

• Too few lags might leave out necessary corrections for
autocorrelation

• Too many lags can reduce the power of the test

• The appropriate lag length is often chosen based on
information criteria such as the Akaike Information Criterion
(AIC) or the Schwarz Information Criterion (BIC)

A
D

F TEST

Choosing lag length

ADF Statistic: -1.13

p-value: 0.70

Used Lag: 0

Number of Observations: 99

Critical Values: ['1%: -3.50', '5%: -2.89', '10%: -2.58']

Generating a synthetic time series (replace this with your dataset)

data = pd.Series(100 + np.random.normal(0, 1, 100).cumsum())

Perform Augmented Dickey-Fuller test

the lag can be set manually with 'maxlag' or inferred automatically with

autolag

result = adfuller(data, autolag='AIC') # You can change to 'BIC' for Schwarz

Information Criterion

adf_statistic, p_value, usedlag, nobs, critical_values, icbest = result

print(f'ADF Statistic: {adf_statistic :.2f}')

print(f'p-value: {p_value :.2f}')

print(f'Used Lag: {usedlag}')

print(f'Number of Observations: {nobs}')

print(f"Critical Values: {[f'{k}: {r:.2f}' for r,k in

zip(critical_values.values(), critical_values.keys())]}\n")

A
D

F TEST

ADF Test types
• 3 versions depending on whether the equation includes none, both, or one of the

terms 𝛼 (constant) and 𝛽𝑡 (trend):

• No constant or trend ('n').

• Constant, but no trend ('c').

• Both constant and trend ('ct').

Function to perform ADF test

def perform_adf_test(series, title, regression_type):

out = adfuller(series, regression=regression_type)

print(f"Results for {title}:")

print(f'ADF Statistic: {out[0]:.2f}')

print(f'p-value: {out[1]:.3f}')

print(f"Critical Values: {[f'{k}: {r:.2f}' for r,k in zip(out[4].values(),

out[4].keys())]}\n")

1. No Constant or Trend

series_no_const_no_trend = pd.Series(np.random.normal(0, 1, 200))

2. Constant, but No Trend

series_const_no_trend = pd.Series(50 + np.random.normal(0, 1, 200))

3. Both Constant and Trend

series_const_trend = pd.Series(50 + np.linspace(0, 20, 200) + np.random.normal(0,

1, 200))

A
D

F TEST

ADF Test types
plt.figure(figsize=(12, 4))

plt.subplot(1, 3, 1)

series_no_const_no_trend.plot(title='No Constant, No Trend')

plt.subplot(1, 3, 2)

series_const_no_trend.plot(title='Constant, but No Trend')

plt.subplot(1, 3, 3)

series_const_trend.plot(title='Both Constant and Trend')

plt.tight_layout();

A
D

F TEST

ADF Test types

Results for No Constant, No Trend:

ADF Statistic: -15.47

p-value: 0.000

Critical Values: ['1%: -2.58', '5%: -1.94', '10%: -1.62']

Results for Constant, No Trend:

ADF Statistic: -13.95

p-value: 0.000

Critical Values: ['1%: -3.46', '5%: -2.88', '10%: -2.57']

Results for Constant and Trend:

ADF Statistic: -14.68

p-value: 0.000

Critical Values: ['1%: -4.00', '5%: -3.43', '10%: -3.14']

1. No Constant or Trend

perform_adf_test(series_no_const_no_trend, "No Constant, No Trend", 'n')

2. Constant, but No Trend

perform_adf_test(series_const_no_trend, "Constant, No Trend", 'c')

3. Both Constant and Trend

perform_adf_test(series_const_trend, "Constant and Trend", 'ct')

M
EA

N
 R

EV
ISIO

N
 TEST

• Mean reversion refers to the property of a time series to revert to
its historical mean

• This concept is particularly popular in financial economics, where
it is often assumed that asset prices and revert to their historical
average over the long term

• Application examples
• Portfolio Management: Investors use mean reversion as a

strategy to buy assets that have underperformed and sell
assets that have overperformed, expecting that they will
revert to their historical mean

• Risk Management: Understanding mean reversion helps in
assessing the long-term risk of assets. If an asset is highly
mean-reverting, it might be considered less risky over the
long term, as it tends to move back to its average

• Pricing Models: In option pricing, certain models assume
mean reversion in the underlying asset’s volatility. This
affects the pricing and strategy for options trading

• Economic Forecasting: Economic variables (like GDP growth
rates, interest rates) often exhibit mean-reverting behavior.
This assumption is used in macroeconomic models and
forecasts.

M
EA

N
 R

EV
ISIO

N
 TEST

Mean reversion test

• Determines whether, after a deviation from its mean, a time
series will eventually revert back to that mean

• This can be done using unit root tests such as ADF

• If a time series has a unit root, it implies that it does not
revert to a mean
def get_data(tickerSymbol, period, start, end):

Get data on the ticker from Yahoo Finance

tickerData = yf.Ticker(tickerSymbol)

Get the historical prices for this ticker

tickerDf = tickerData.history(period=period, start=start, end=end)

return tickerDf

data = get_data('GOOG', period='1d', start='2004-09-01', end='2020-08-31')

M
EA

N
 R

EV
ISIO

N
 TEST

def get_data(tickerSymbol, period, start, end):

Get data on the ticker from Yahoo Finance

tickerData = yf.Ticker(tickerSymbol)

Get the historical prices for this ticker

tickerDf = tickerData.history(period=period, start=start, end=end)

return tickerDf

data = get_data('GOOG', period='1d', start='2004-09-01', end='2020-08-31')

Plotting the Closing Prices

plt.figure(figsize=(14, 5))

plt.plot(data['Close'], label='GOOG Closing Price')

plt.title('Google Stock Closing Prices (2004-2020)')

plt.xlabel('Date')

plt.ylabel('Price (USD)')

plt.legend();

Results for Google Stock Closing Prices:

ADF Statistic: -0.78

p-value: 0.968

Critical Values: ['1%: -3.96', '5%: -3.41', '10%: -3.13’]

• 𝐻0 cannot be rejected

M
EA

N
 R

EV
ISIO

N
 TEST

Perform the ADF test

perform_adf_test(data['Close'],"Google Stock Closing Prices", 'ct')

• Testing for mean reversion and testing for stationarity are
related but distinct concepts in time series analysis

Key Differences:

• Mean reversion testing is focused on whether a time series
will return to a specific level (the mean)

• Stationarity testing checks if the overall statistical properties
of the series remain consistent over time

• A stationary time series may or may not be mean reverting

• A stationary series with a constant mean and variance over
time might still not revert to its mean after a shock

• Conversely, a mean-reverting series must have some
stationarity, particularly in its mean, but it might still have
changing variance or other properties over time

M
EA

N
 R

EV
ISIO

N
 A

N
D

 STA
TIO

N
A

R
ITY

• The Hurst exponent (𝐻) is a measure used to characterize
the long-term memory of time series

• It helps to determine the presence of autocorrelation or
persistence in the data

• The goal of the Hurst Exponent is to provide us with a scalar
value that will help us to identify whether a series is:

• random walk

• trending

• mean reverting

• The key insight is that, if any autocorrelation exists, then

• with 𝐻 being the Hurst exponent

H
U

R
ST EX

P
O

N
EN

T

𝑉𝑎𝑟(𝑋 𝑡 + 𝜏 − 𝑋 𝑡) ∝ 𝜏2𝐻

• Time series can be characterized using Hurst exponent (𝐻):

• If 𝐻 = 0.5, the time series is similar to a random walk
(Brownian motion). In this case, the variance increases
linearly with 𝜏

• If 𝐻 < 0.5, the time series exhibits anti-persistence, i.e.
mean reversal. The variance increases more slowly
than linearly with 𝜏

• If 𝐻 > 0.5, the time series exhibits persistent long-
range dependence, i.e. is trending. The variance
increases more rapidly than linearly with 𝜏

H
U

R
ST EX

P
O

N
EN

T

def hurst(ts):

Create the range of lag values

lags = range(2, 100)

Calculate the array of the variances of the lagged differences

tau = [np.sqrt(np.std(np.subtract(ts[lag:], ts[:-lag]))) for lag in lags]

Use a linear fit to estimate the Hurst Exponent

poly = np.polyfit(np.log(lags), np.log(tau), 1)

Return the Hurst exponent from the polyfit output

return poly[0]*2.0

•proba is the probability that the next increment will follow the trend

• proba > 0.5 persistent random walk

• proba < 0.5 antipersistent one

• min_lookback and max_lookback are the minimum and maximum
window sizes to calculate trend direction

P
ER

SISTEN
T

A
N

D
A

N
TI-P

ER
SISTEN

T
TIM

E
SER

IES

def random_walk_memory(length, proba, min_lookback, max_lookback)

def random_walk_memory(length, proba=0.5, min_lookback=1, max_lookback=100):

series = [0.] * length

for i in range(1, length):

If the series has not yet reached the min_lookback threshold

the direction of the step is random (-1 or 1)

if i < min_lookback + 1:

direction = np.sign(np.random.randn())

consider the historical values to determine the direction

else:

randomly choose between min_lookback and the minimum of

i-1 (to ensure not exceeding the current length) and max_lookback.

lookback = np.random.randint(min_lookback, min(i-1, max_lookback)+1)

Decides whether to follow the recent trend or move against it,

based on a comparison between proba and a random number between 0 and 1.

recent_trend = np.sign(series[i-1] - series[i-1-lookback])

change = np.sign(proba - np.random.uniform())

direction = recent_trend * change

series[i] = series[i-1] + np.fabs(np.random.randn()) * direction

return series

P
ER

SISTEN
T

A
N

D
A

N
TI-P

ER
SISTEN

T
TIM

E
SER

IES

bm = random_walk_memory(2000, proba=0.5)

persistent = random_walk_memory(2000, proba=0.7)

antipersistent = random_walk_memory(2000, proba=0.3)

_, axes = plt.subplots(1,3, figsize=(24, 4))

axes[0].plot(bm)

axes[0].set_title(f"Brownian Motion, H: {hurst(bm):.2f}")

axes[1].plot(persistent)

axes[1].set_title(f"Persistent, H: {hurst(persistent):.2f}")

axes[2].plot(antipersistent)

axes[2].set_title(f"Anti-Persistent, H: {hurst(antipersistent):.2f}");

print(f"GOOG closing price, H: {hurst(data['Close'].values):.2f}")

GOOG closing price, H: 0.41

• The Hurst exponent (𝐻) is a critical metric in the analysis of
time series (e.g., financial data)

• Offers insights into the behavior of data, such as stocks

• Here’s how to interpret 𝐻 in the context of closing stock
prices and its influence on investment decisions:

Case 1: 𝐻 = 0.5
• Data follows a geometric Brownian motion, i.e., a completely random

walk

• Implies that future price movements are independent of past
movements

• There are no autocorrelations in price movements to exploit; past data
cannot predict future prices

IN
TER

P
R

ETA
TIO

N
O

F
TH

E
H

U
R

ST
EX

P
O

N
EN

T

Case 2: 𝐻 < 0.5
• Indicates a mean-reverting series, i.e., data tends to revert to its

historical average

• This suggests that the asset is less risky over the long term

• Investors might interpret a low 𝐻as an opportunity to buy stocks after a
significant drop, expecting a reversion to the mean, or to sell after a
substantial rise

Case 3: 𝐻 > 0.5
• Suggests a trending series, where increases or decreases in data are likely

to be followed by further increases or decreases, respectively

• This persistence indicates potential momentum in data, which can be
exploited by momentum strategies:

• Buying stocks that have been going up in the hope that they will continue
to do so, and selling those in a downtrend

IN
TER

P
R

ETA
TIO

N
O

F
TH

E
H

U
R

ST
EX

P
O

N
EN

T

• The observed value of 𝐻 can vary over different time
frames: analyze 𝐻 over the period relevant to the prediction
horizon

• External factors (such as geopolitical events, environment)
can influence data and should be considered alongside 𝐻

• If the time series is too short, the value of 𝐻 might not be
reliable

H
U

R
ST

EX
P

O
N

EN
T

P
R

A
C

TIC
A

L
C

O
N

SID
ER

A
TIO

N
S

• The Geometric Brownian Motion (GBM) is a stochastic
process

• It is often used to model stock prices and other financial
variables that do not revert to a mean but rather exhibit
trends with a drift 𝜇 and volatility 𝜎

• The GBM is defined as:

• Where

• S(t) is the data at time t

• 𝑆0 initial value at t=0

• 𝜇 is the expected value (drift coefficient)

• 𝜎 volatility (standard deviation)

• W(t) is a Wiener process (standard Brownian montion)

G
EO

M
ETR

IC
B

R
O

W
N

IA
N

M
O

TIO
N𝑆 𝑡 = 𝑆0 exp 𝜇 −

1

2
𝜎2 + 𝜎𝑊 𝑡

P
ER

SISTEN
T

A
N

D
A

N
TI-P

ER
SISTEN

T
TIM

E
SER

IES

S0 = 100 # Initial stock price

mu = 0.09 # Expected annual return (9%)

sigma = 0.25 # Annual volatility (25%)

T = 2 # Time horizon in years

dt = 1/252 # Time step in years, assuming 252 trading days per year

N = int(T/dt) # Number of time steps

t = np.linspace(0, T, N) # Time vector

Brownian Motion

dW = np.random.normal(0, np.sqrt(dt), N)

W = np.cumsum(dW)

Geometric Brownian Motion

S = S0 * np.exp((mu - 0.5 * sigma**2) * t + sigma * W)

Plotting the Geometric Brownian Motion

plt.figure(figsize=(12, 4))

plt.plot(S)

plt.title('Geometric Brownian Motion');

• 𝑆 𝑡 is log-normally distributed because it’s an exponential
function of a normally distributed process B 𝑡

• Variance of 𝑆 𝑡 can be found from the properties of the
log-normal distribution:

• Variance of GBM is not linear in 𝑡 like the BM

• Instead, it grows exponentially with time due to the

exponential term 𝑒𝜎
2𝑡

• This, and the possibility of modelling drift (expected annual
return) are the main additions of GBM over BM

V
A

R
IA

N
C

E
O

F
G

B
M

𝑉𝑎𝑟 𝑆 𝑡 = 𝑒𝜎
2𝑡 − 1 𝑒2𝜇𝑡+𝜎

2𝑡𝑆0
2

• GBM can be used to model real stock prices and simulate
their future behavior.

1. First, we estimate 𝜇 and 𝜎 from historical stock price data.

• 𝜇 could be the historical average of the stock’s
logarithmic returns

• 𝜎 could be the standard deviation of those returns

2. Then, we use these estimates in the GBM formula to
simulate future price paths.

• This method is widely used for option pricing, risk
management, and investment strategy simulations

• However, GBM has limitations, such as assuming a constant
drift and volatility

• These assumptions may not hold true in real markets

• Therefore, it’s often used as a component of a broader
analysis or modeling strategy

R
EA

L
W

O
R

LD
A

P
P

LIC
A

TIO
N

S
O

F
G

B
M

P
ER

SISTEN
T

A
N

D
A

N
TI-P

ER
SISTEN

T
TIM

E
SER

IES

Step 1: Get the "training" data (e.g., 2020-2022)

data2 = get_data('GOOG', period='1d', start='2019-12-31', end='2022-12-31’)

Get "test" data, for comparison (e.g., 2023)

data3 = get_data('GOOG', period='1d', start='2022-12-31', end='2023-12-31')

test_days = len(data3)

Step 2: Calculate Daily Returns

returns = data2['Close'].pct_change() # Interested in the returns, so we get the

changes in %

Step 3: Estimate Parameters for GBM

mu = returns.mean() * 252 # Annualize the mean

sigma = returns.std() * np.sqrt(252) # Annualize the std deviation

Step 4: Set GBM parameters

T = 1 # Time horizon in years

dt = 1/test_days # Time step in years, assuming 252 trading days per year

N = int(T/dt) # Number of time steps

time_step = np.linspace(0, T, N)

S0 = data2['Close'].iloc[-1] # Starting stock price (latest close price)

Step 5: Compute Simulation

W = np.random.standard_normal(size=N)

W = np.cumsum(W)*np.sqrt(dt) # Cumulative sum for the Wiener process

X = (mu - 0.5 * sigma**2) * time_step + sigma * W

S = S0 * np.exp(X) # GBM formula

P
ER

SISTEN
T

A
N

D
A

N
TI-P

ER
SISTEN

T
TIM

E
SER

IES

Plot the results

plt.figure(figsize=(12, 5))

plt.plot(data2['Close'], label='GOOGL Historical Closing Prices')

plt.plot(data3.index, S, label='Simulated GBM Prices')

plt.plot(data3['Close'], label='Real Prices')

plt.legend()

plt.title('Google Stock Prices and Simulated GBM')

plt.xlabel('Date')

plt.ylabel('Price')

plt.xticks(rotation=45);

P
ER

SISTEN
T

A
N

D
A

N
TI-P

ER
SISTEN

T
TIM

E
SER

IES

Simulate multiple paths

n_paths = 10

paths = []

for _ in range(n_paths):

W = np.cumsum(np.random.standard_normal(size=N))*np.sqrt(dt)

X = (mu - 0.5 * sigma**2) * time_step + sigma * W

paths.append(S0 * np.exp(X))

path_mean = np.array(paths).mean(axis=0)

path_std = np.array(paths).std(axis=0)

There is stochastic component in GBM hence run monte carlo

plt.figure(figsize=(12, 5))

plt.plot(data2['Close'], label='GOOGL Historical Closing Prices')

plt.plot(data3.index, path_mean, label='Simulated GBM Prices')

plt.fill_between(data3.index, path_mean-1.96*path_std, path_mean+1.96*path_std,

color='tab:orange', alpha=0.2, label='95% CI')

plt.plot(data3['Close'], label='Real Prices')

plt.legend(loc='upper left')

plt.title('Google Stock Prices and Simulated GBM')

plt.xlabel('Date')

plt.ylabel('Price')

plt.xticks(rotation=45);

