### ΗΜΥ 631 ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ

## Ακαδημαϊκό έτος 2015-16 Εαρινό Εξάμηνο

Διδάσκων: Μάριος Πολυκάρπου

# System Theory

I. Introduction

### **System Theory: Definitions**



Signals and Systems – what's the difference?

- A **System** is an aggregation or assemblage of things so combined by nature or man as to form an integral and complex whole.
- A System is the mathematical description of a relationship between externally supplied quantities (inputs) and the dependent quantities (outputs) that result from the action or effect on those external quantities.

**System Theory** is the study of the interactions and behavior of the system components when subjected to certain conditions or inputs.

### **Aspects of System Theory**

- Multi-disciplinary (electrical engineering; mechanical engr; chemical engr; civil and environmental engr; biology; economics; sociology; etc)
- Mathematically rigorous
- Provides a common language for scientists and engineers
- Modeling; Prediction; Monitoring; Control
- Optimization

### **Monitoring and Control Applications**

- Distributed Autonomous Vehicles
- Power and Energy Systems
- Chemical and Petrochemical Engineering Processes
- Biological and Biomedical Engineering Applications
- Environmental Monitoring and Control Applications
- Transportation Systems
- Smart Buildings
- Water Distributions Networks
- Military and Security Applications
- many more .....

# Mathematical Modelling

- a) First principles of physics (chemistry, biology, economics, etc.)
- b) System identification using real data
- c) Combination of first principles and system identification

#### $\rightarrow$ Why do we need a mathematical model?

→ Why do we need a *design model* (simplified mathematical model)? Everything Should Be Made as Simple as Possible, But Not Simpler – A. Einstein

→ What are the limitations of mathematical modelling? Remember that all models are wrong; the practical question is how wrong do they have to be to not be useful. – George E. Box

# Mathematical Modelling

- Differential/dynamic systems vs algebraic systems
  - Systems with memory the outputs depend not only on the inputs but also on the initial conditions
- Linear vs nonlinear models
- Continuous-time vs discrete-time models
- Time invariant vs time-varying systems
- Causal vs non-causal (anticipatory) systems

## Mathematical Modelling – the 3 domains

$$u \longrightarrow H(s) \longrightarrow y$$

s-plane (Laplace transform) Transfer Functions

$$u \longrightarrow \begin{vmatrix} H(j\omega) \\ \angle H(j\omega) \end{vmatrix} \longrightarrow y$$

Frequency Response Bode diagrams

$$u \longrightarrow \begin{array}{c} \dot{x} = Ax + Bu \\ y = Cx + Du \end{array} \longrightarrow Y$$

State-Space (time domain) Differential Equations

#### Modelling, Feedback Control Design and Evaluation



### **General Control Formulation**



### **General Control Formulation**



#### Key Issues:

- Sensors
- Actuators
- Reference Inputs
- Disturbances
- Measurement Noise
- Feedback

### Simple Example of Automation: Temperature Control



### Simple Example of Automation: Cruise Control



# Design Objectives: Technical

- Tracking (regulation)
- Disturbance rejection



# Design Objectives: Engineering Goals

- Cost
- Computational complexity
- Reliability
- Adaptability, maintainability, expandability
- Effect on the environment
- Politics



### **Key Technological Trends**

- Internet of Things
- Big Data
- Cyber-Physical Systems
- Distributed Information Processing
- Cooperation/coordination between controllers
- System of Systems
- Autonomous mobile systems