ECE 631 System Theory

II. Linear Spaces

Functions

Given two sets X and Y, by the <u>function</u> $f: X \mapsto Y$ it is meant that for every $x \in X$ there is assigned one and only one element $y \in Y$, denoted by f(x).

Range of
$$f: f(\mathbf{X}) = \{f(x) | x \in \mathbf{X}\}$$

Image of
$$V \subset X$$
: $f(V) = \{f(x) | x \in V\}$

"function" : "map", "operator", "transformation"

Examples

Properties of Functions

- $f: X \mapsto Y$ is <u>one-to-one</u> (1-1) (or <u>injective</u>) if $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ [or $(x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2))$]
- $f: X \mapsto Y$ is <u>onto</u> (or <u>surjective</u>) if f(X) = Y
- $f: X \mapsto Y$ is one-to-one and onto (or <u>bijective</u>) if f is both surjective and injective

Linear Space (Linear Vector Space)

Linear Vector Space: (X, F)

For our purposes the scalar field F is always either $\mathbb R$ or $\mathbb C$

Definition: A set X is called a <u>linear space</u> over the field F if the following axioms are satisfied:

(A) For any $x, y \in X$, the sum is defined and is in X; the sum is denoted by x + y.

(A1)
$$x + y = y + x$$
 (commutativity)

- (A2) (x + y) + z = x + (y + z) (associativity)
- (A3) there exists an element $0 \in X$ called the zero vector s.t. x + 0 = x for all $x \in X$

(A4) For every $x \in X$ there is an element $(-x) \in X$ such that x + (-x) = 0

Linear Space (Linear Vector Space)

Definition (continued):

(SM) For each scalar $\alpha \in F$ and each vector $x \in X$ the operation of scalar multiplication is defined and denoted by $\alpha \cdot x \in X$ (SM1) $(\alpha\beta) \cdot x = a \cdot (\beta \cdot x)$ $\alpha, \beta \in F, x \in X$ (SM2) $\alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$ $\alpha \in F, x, y \in X$ (SM3) $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$ $\alpha, \beta \in F, x \in X$ (SM4) with $1 \in F$ being the multiplicative identity $1 \cdot x = x$ $\forall x \in X$

Example 1: $(\mathbb{R}^n, \mathbb{R})$ is a linear space.

Example 2: $(\mathbb{C}^n, \mathbb{C})$ is a linear space.

Example 3: $(C[0,T],\mathbb{R})$ is a linear space. [set of all continuous time functions f(t)defined in the interval $0 \le t \le T$

Example 5:

$$f(t) = \begin{bmatrix} f_1(t) \\ f_2(t) \\ \vdots \\ f_n(t) \end{bmatrix} \qquad P_n^{2 \times 2} = \begin{bmatrix} P_n^{11} & P_n^{12} \\ P_n^{21} & P_n^{22} \end{bmatrix}$$

Two examples of linear spaces are very important: (i) real spaces; (ii) function spaces.

<u>Real Spaces:</u> $(\mathbb{R}^n, \mathbb{R})$ or more generally $(\mathbb{C}^n, \mathbb{C})$ $x = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^\top \in \mathbb{R}^n$ $y = \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix}^\top \in \mathbb{R}^n$ (A) $x + y = \begin{bmatrix} x_1 + y_1 & x_2 + y_2 & \cdots & x_n + y_n \end{bmatrix}^\top \in \mathbb{R}^n$ (SM) $\alpha x = \begin{bmatrix} \alpha & x_1 & \alpha & x_2 & \cdots & \alpha & x_n \end{bmatrix}^\top \in \mathbb{R}^n$

Function Spaces:

$$f(s) = \begin{bmatrix} f_1(s) \\ \vdots \\ f_n(s) \end{bmatrix} \qquad g(s) = \begin{bmatrix} g_1(s) \\ \vdots \\ g_n(s) \end{bmatrix} \qquad s \in \mathcal{D}$$

(A)
$$(f+g)(s) = \begin{bmatrix} f_1(s) + g_1(s) \\ \vdots \\ f_n(s) + g_n(s) \end{bmatrix} = f(s) + g(s)$$

(SM) $(\alpha f)(s) = \begin{bmatrix} \alpha f_1(s) \\ \vdots \\ \alpha f_n(s) \end{bmatrix} = \alpha f(s)$

<u>More generally</u>: Let (X, \mathbb{R}) be a linear space. Let \mathcal{D} be a set and \mathcal{F} the class of functions that map \mathcal{D} into X.

$$\mathcal{F} = \left\{ f \left| f : \mathcal{D} \mapsto \mathbf{X} \right\} \right\}$$

on \mathcal{F} define addition: (f+g)(s) = f(s) + g(s) $f, g \in \mathcal{F}, s \in \mathcal{D}$ and scalar multiplication: $(\alpha f)(s) = \alpha f(s)$ $\alpha \in \mathbb{R}, f \in \mathcal{F}, s \in \mathcal{D}$

Linear Subspaces

Let (X, \mathbb{R}) be a linear space and Y a subset of X; i.e., $Y \subset X$

Definition: (Y, \mathbb{R}) is a linear subspace of X if

- $x_1, x_2 \in Y \Longrightarrow x_1 + x_2 \in Y$
- $\alpha \in \mathbb{R}, x \in Y \Rightarrow \alpha x \in Y$

<u>Note</u>: To check whether (Y, \mathbb{R}) is a linear subspace of X all we have to check is: $\alpha x_1 + x_2 \in Y \quad \forall x_1, x_2 \in Y, \forall \alpha \in \mathbb{R}$ (Verify!)

Example:

Consider
$$C[0,T] = \{f | f : [0,T] \mapsto \mathbb{R}\}$$
, f : continuous
[linear space of continuous functions]

Let
$$\mathcal{M} = \left\{ f \mid f \in C[0,T], f(0) = 0 \right\}$$

Is \mathcal{M} is subspace of C[0,T]?

•
$$\mathcal{M} \subset C[0,T]$$
 (by definition)

• For any
$$f_1, f_2 \in \mathcal{M}, \alpha \in \mathbb{R}$$

 $(\alpha f_1 + f_2)(0) = \alpha f_1(0) + f_2(0) = \alpha \cdot 0 + 0 = 0$

 $\Rightarrow \alpha f_1 + f_2 \in \mathcal{M} \qquad \Rightarrow \mathcal{M} \text{ is a subspace of } C[0,T]$

Example:

Let Y_1, Y_2 be subspace of X .

Then $\boldsymbol{Y}_1 \cap \boldsymbol{Y}_2$ is also a subspace of $~\boldsymbol{X}.$

Proof: Let
$$f_1, f_2 \in Y_1 \cap Y_2, \ \alpha \in \mathbb{R}$$

Then $\alpha f_1 + f_2 \in Y_1$ (since $f_1, f_2 \in Y_1$)
Similarly $\alpha f_1 + f_2 \in Y_2$
 $\Rightarrow \alpha f_1 + f_2 \in Y_1 \cap Y_2$

How to prove that \mathcal{M} is a subspace? How to prove that it is not?

Example: Is $X = \{x \in \mathbb{R}^3 | x_2 = 1\}$ a linear subspace of $(\mathbb{R}^3, \mathbb{R})$? Let $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, y = \begin{bmatrix} y_1 \\ y_2 \\ y_2 \end{bmatrix}$ be arbitrary vectors in X.

We want to check if $\alpha x + y \in X$, $\forall \alpha \in \mathbb{R}$

Let

$$z \coloneqq \alpha x + y = \begin{bmatrix} \alpha x_1 + y_1 \\ \alpha x_2 + y_2 \\ \alpha x_3 + y_3 \end{bmatrix} = \begin{bmatrix} \alpha x_1 + y_1 \\ \alpha + 1 \\ \alpha x_3 + y_3 \end{bmatrix} \Rightarrow z \notin X, \forall \alpha \in \mathbb{R}$$

$$\underline{Example:} \text{ Is } X_1 = \{x \in \mathbb{R}^3 | x_2 = 0\} \text{ a linear subspace of } (\mathbb{R}^3, \mathbb{R})$$

$$A = \{x \in \mathbb{R}^3 | x_2 = 0\} \text{ a linear subspace of } (\mathbb{R}^3, \mathbb{R})$$

Linear Independence

Definition: (Linear dependence)

Let (X, \mathbb{R}) be a linear space. A finite number of vectors $\{x_i\} = \{x_1 \ x_2 \ \cdots \ x_n\}$ are <u>linearly dependent</u> if there exist a set of n scalars α_i , at least one of which is not zero such that $\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n = 0_X$ the zero of the linear space $\sum_{i=1}^n \alpha_i x_i = 0_X$

Definition: (Linear Independence)

Let (X, \mathbb{R}) be a linear space. The set of vectors $\{x_i\}$ is linearly independent if $\sum_{i=1}^n \alpha_i x_i = 0 \implies \alpha_1 = \alpha_2 = \cdots = \alpha_n = 0.$

Linear Independence

Fact:

If $\{x_i\}$ is linearly dependent, then at least one of the vectors can be written as a linear combination of the others.

Proof:

Assume with loss of generality that $\alpha_1 \neq 0$ $\Rightarrow x_1 = -\frac{1}{\alpha_1} [a_2 x_2 + \dots + a_n x_n].$

Example:Is the set
$$\begin{cases} 1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ -1 \\ -2 \end{bmatrix} \end{cases}$$
 linearly independent?

$$\alpha_{1}\begin{bmatrix}1\\0\\2\end{bmatrix} + \alpha_{2}\begin{bmatrix}0\\1\\0\end{bmatrix} + \alpha_{3}\begin{bmatrix}-1\\-1\\-2\end{bmatrix} = 0 \Rightarrow \alpha_{2} - \alpha_{3} = 0$$
$$2\alpha_{1} - 2\alpha_{3} = 0$$

 $\Rightarrow \alpha_1 = \alpha_2 = \alpha_3$. Let $\alpha_1 = \alpha_2 = \alpha_3 = 1$

 \Rightarrow the set in linearly dependent

$$\alpha_{1} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + \alpha_{2} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = 0 \Rightarrow \alpha_{2} = 0 \qquad \Rightarrow \alpha_{1} = \alpha_{2} = 0.$$

$$2\alpha_{1} = 0$$

 \Rightarrow the set in linearly independent.

Example:

Do there exist values $x_1, x_2, x_3 \in \mathbb{R}$ such that the set $\left\{ \begin{array}{c|c|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}, \begin{array}{c} 0 & x_1 \\ x_2 \\ x \end{array} \right\}$ is linearly independent? $\alpha_{1} \begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix} + \alpha_{2} \begin{vmatrix} 0 \\ 1 \\ 0 \end{vmatrix} + \alpha_{3} \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix} + \alpha_{4} \begin{vmatrix} x_{1} \\ x_{2} \\ x_{3} \end{vmatrix} = 0 \Rightarrow \alpha_{1} + \alpha_{4} x_{1} = 0 \qquad \alpha_{1} = -\alpha_{4} x_{1}$ $= 0 \Rightarrow \alpha_{2} + \alpha_{4} x_{2} = 0 \Rightarrow \alpha_{2} = -\alpha_{4} x_{2}$ $\alpha_{3} + \alpha_{4} x_{3} = 0 \qquad \alpha_{3} = -\alpha_{4} x_{3}$ \Rightarrow always linearly dependent. OR: For any x_1, x_2, x_3 $\begin{bmatrix} x_1 \\ x_2 \\ x \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

 \Rightarrow the fourth vector is a linear combination of the other three

Linear Independence (Examples) Example:

Let
$$X = \{\cos(\kappa \pi t) | \kappa = 0, 1, 2, ..., n\} \cup \{\sin(\kappa \pi t) | \kappa = 1, 2, ..., m\}$$

Consider $Y = \{f | f = \sum_{i=1}^{N} \alpha_i x_i, \alpha_i \in \mathbb{R}, x_i \in X\}$ that is, Y is composed of all linear combination of elements of X.

 \rightarrow Y is a linear space (verify!)

N = n + m + 1

\rightarrow Is X a linearly independent set of vectors?

Suppose that $\sum_{i=1}^{N} \alpha_i x_i = 0$; we must show that this implies $\alpha_1 = \alpha_2 = \ldots = \alpha_N = 0$ for X to be linearly independent.

 $\Rightarrow \alpha_1 \cos(0\pi t) + \alpha_2 \cos(\pi t) + \ldots + \alpha_n \cos(n\pi t) + \ldots + \alpha_N \sin(m\pi t) = 0$

Example (continued)

 $\alpha_1 \cos(0\pi t) + \alpha_2 \cos(\pi t) + \ldots + \alpha_n \cos(n\pi t) + \ldots + \alpha_N \sin(n\pi t) = 0$

- > Integrate both sides from -1 to 1 gives $\alpha_1 = 0$
- > Multiply both sides by $\cos(\pi t)$ and integrate from -1 to 1 gives $\alpha_2 = 0$
- > Multiply both sides by $\cos(2\pi t)$ and integrate from -1 to 1 gives $\alpha_3 = 0$

Continue this to get
$$\alpha_1 = \alpha_2 = \ldots = \alpha_N = 0$$

 \rightarrow X is a linearly independent set of vectors

Definition: Let $Y = \{y_i : i = 1, ..., n\}$ be a subset of a linear space (X, \mathbb{R}) . The collection of linear combinations of vectors in Y is called **span** of Y, denoted as: sp(Y)

$$sp(\mathbf{Y}) = \left\{ x \in \mathbf{X} \middle| x = \sum_{i=1}^{n} \alpha_i y_i, \alpha_i \in \mathbb{R}, y_i \in \mathbf{Y} \right\}$$

Definition (Basis): Let $Y = \{y_i : i = 1, ..., n\}$ be a set of vectors in (X, \mathbb{R}) . The set Y is called a **basis** for X if

(i) the vectors $\{y_i\}$ are linearly independent. (ii) sp(Y) = X

 (X, \mathbb{R})

▶ { y_i } are called <u>basis vectors</u> of X
▶ Are { y_i } unique basis vectors?

<u>Note</u>: If $\{y_i\}$ are the basis vectors of X then for any $x \in X$ there exists scalars $\alpha_1, \ldots, \alpha_n$ such that $x = \sum_{i=1}^n \alpha_i y_i$

Fact: This parametrization is unique.

Proof: Suppose $\exists \beta_1, \beta_2, \dots, \beta_n$ such that $x = \sum_{i=1}^n \beta_i y_i$; $x = \sum_{i=1}^n \alpha_i y_i$ $x - x = 0 = \sum_{i=1}^n (\beta_i - \alpha_i) y_i$. Since $\{y_i\}$ are linearly independent: $\beta_1 - \alpha_1 = 0$; $\beta_2 - \alpha_2 = 0$; $\dots \beta_n - \alpha_n = 0$; $\Rightarrow \alpha_1 = \beta_1 \dots \Rightarrow$ uniqueness.

Definition (Dimension): If a basis Y for (X, \mathbb{R}) has *n* elements then X is an <u>*n*-dimensional</u> linear vector space.

<u>Example</u>: $(\mathbb{R}^n, \mathbb{R})$ has a basis $\{e_1, e_2, \dots, e_n\}$ where $e_i = \begin{bmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 0 \end{bmatrix}^{\top} \cdot \mathbb{R}^n$ is *n*-dimensional space. i-th position

Example: Let
$$Y = \begin{cases} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \end{cases}$$

Then:

•
$$sp(Y) = \mathbb{R}^3$$
 (verify!)

• Y is a basis for \mathbb{R}^3 .

Infinite-Dimensional Linear Vector Spaces

- These results can be extended to infinite-dimensional linear vector spaces
- For example: C[0,T] is an infinite-dimensional linear vector space.
- $M = \{\cos(\kappa \pi t), \sin(\kappa \pi t); \kappa = 0, 1, 2, ...\}$ X = sp(M)M is a basis for the infinite-dimensional space X.

Dimension of Linear Vector Spaces (Examples)

1)
$$(\mathbb{R}^{3\times 2}, \mathbb{R})$$
 $\begin{bmatrix} * & * \\ * & * \\ * & * \\ * & * \end{bmatrix}$ 3x2 matrices of reals.

- 2) Polynomials of degree 4 (P_4, \mathbb{R}) e.g. $x^4 + 3x^3 + x^2 + 4x + 1$.
- 3) (\mathbb{C},\mathbb{R})
- 4) (\mathbb{C},\mathbb{C})

Linear Transformations

Definition: Let $A: X \mapsto Y$ where X, Y are linear vector spaces over the same field \mathcal{F} . \mathcal{A} is a linear transformation or operator if $\mathcal{A}(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 \mathcal{A}(x_1) + \alpha_2 \mathcal{A}(x_2) \quad \forall \alpha_1, \alpha_2 \in \mathcal{F}, \ x_1, x_2 \in X$ • $\mathcal{A}(x_1 + x_2) = \mathcal{A}(x_1) + \mathcal{A}(x_2)$ Additivity.

- $\mathcal{A}(\alpha x) = \alpha \mathcal{A}(x)$ Homogeneity
- Together: $\mathcal{A}(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 \mathcal{A}(x_1) + \alpha_2 \mathcal{A}(x_2)$ <u>SUPERPOSITION</u>.

Linear Transformations

Example: $A: \mathbb{R}^3 \mapsto \mathbb{R}^3$ $y = Ax \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 5 \\ 0 & 2 & 1 \\ -1 & 5 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

By the standard rules of matrix addition and scalar multiplication, we have that the matrix is a linear transformation or linear operator.

Example: (convolution) Let $X = PC[0,\infty]$, $Y = PC[0,\infty]$ and \mathcal{A} be defined as $y(t) = (\mathcal{A}x)(t) = \int_0^t \exp(-(t-\tau))x(\tau)d\tau$ linear space of piecewise continuous functions more general: $h(t-\tau)$ \Rightarrow Convolution is a linear operator: x(t) S y(t)

Null & Range Spaces of Linear Operators

Definition: Let \mathcal{A} be a linear operator, $\mathcal{A} : X \mapsto Y$. The set $\mathcal{N}(\mathcal{A}) = \left\{ x \in X | \mathcal{A}(x) = 0_Y \right\}$ is called the <u>null space</u> of \mathcal{A} . The set $\mathcal{R}(\mathcal{A}) = \left\{ y \in Y | y = \mathcal{A}(x), x \in X \right\}$ is called the <u>range</u> space of \mathcal{A} .

