
ECE 631 
System Theory 

II. Linear Spaces 



Functions 
 
Given two sets        and     , by the function   
it is meant that for every              there is assigned one 
and only one element            ,  denoted by            . 
 
Range of           
 
Image of 
 
“function” : “map”, “operator”, “transformation”  
 
Examples …. 
 

Χ Υ :f Χ Υ

x∈Χ
y∈Υ ( )f x

:f ( ) ( ){ }f x xfΧ = ∈Χ

:V ⊂ Χ ( ) ( ){ }f V Vf x x= ∈



Properties of Functions 

•                      is one-to-one (1-1) (or injective)  
  if 

                    [ or                                                       ]  

                      
•                      is onto (or surjective) if   
 
•                      is one-to-one and onto (or bijective)  
                          if       is both surjective and injective 
 
 
Examples …. 
 

:f Χ Υ

( ) ( )1 2 1 2f x f x x x= ⇒ =

( ) ( )( )1 2 1 2x x f x f x≠ ⇒ ≠

:f Χ Υ

( )f Χ = Υ

:f Χ Υ

f



Linear Space (Linear Vector Space) 
Linear Vector Space:  
For our purposes the scalar field        is always either      or  
 

Definition: A set      is called a linear space over the field  
if the following axioms are satisfied: 
(A) For any                 , the sum is defined and is in      ; the sum 

is denoted by           . 
(A1)                            (commutativity) 
(A2)                                                (associativity) 
(A3)  there exists an element              called the zero vector 
         s.t.                     for all  
(A4) For every             there is an element  
         such that  

( ), FΧ
F

Χ F

,x y∈Χ Χ
x y+

x y y x+ = +
( ) ( )x y z x y z+ + = + +

0∈Χ
x∈Χ0x x+ =

x∈Χ ( )x− ∈Χ
( ) 0x x+ − =

R C



Linear Space (Linear Vector Space) 
 

Definition (continued): 
(SM) For each scalar               and each vector             the     
 operation of scalar multiplication is defined and 
 denoted by  
(SM1)  
(SM2)  
(SM3) 
(SM4) with            being the multiplicative identity  
  

Fα ∈ x∈Χ

xα ⋅ ∈Χ
( ) ( ) , ,x a x F xαβ β α β⋅ = ⋅ ⋅ ∈ ∈Χ

( ) , ,x y x y F x yα α α α⋅ + = ⋅ + ⋅ ∈ ∈Χ
( ) , ,x x x F xα β α β α β+ ⋅ = ⋅ + ⋅ ∈ ∈Χ

1 F∈
1 x x x⋅ = ∀ ∈Χ



Linear Space (Examples) 
 

Example 1:                  is a linear space. 
 
Example 2:                  is a linear space.  
 
Example 3:                            is  a linear space. 
                 
      set of all continuous time functions    
                            defined in the interval  

( ),nR R

( ),nC C

( )f t

[ ]( )0, ,C T R

0 t T≤ ≤



Linear Space (Examples) 
 

Example 4:                  is a linear space. 
 
                             set of all polynomials of degree less than or 
      equal to 
 
Example 5:  

( ),nP R

n

( )

( )
( )

( )

1

2

n

f t
f t

f t

f t

 
 
 =
 
 
 



11 12
2 2

21 22
n n

n
n n

P P
P

P P
×  
=  
 



Linear Space (Examples) 
Two examples of linear spaces are very important: (i) real 
spaces; (ii) function spaces. 
 
Real Spaces:                     or more generally 
 
 
 
  

 (A)  

 (SM) 

( ),nR R ( ),nC C

[ ]1 2
n

nx x x x= ∈


R

[ ]1 2
n

ny y y y= ∈


R

[ ]1 1 2 2 n
n

nx y x y x y x y+ = + + ∈+ 


R

[ ]1 2 n
nx x x xα α α α= ∈


R



Linear Space (Examples) 

 
Function Spaces:  
  
 
 
 
 (A)   
 
  
 (SM)    

( )
( )

( )

1

n

f s
f s

f s

 
 =  
  



( )
( )

( )

1

n

g s
g s

g s

 
 =  
  



( )( )
( ) ( )

( ) ( )
( ) ( )

1 1

nn

f s g s
f g s f s g s

f s g s

 +
 + = = + 
 + 



( )( )
( )

( )
( )

1

n

f s
f s f s

f s

α
α α

α

 
 = = 
  



s∈



More generally:  Let                  be a linear space. Let       be a set 
and      the class of functions that map       into     . 
 
 
on        define addition: 
and scalar multiplication:    
 
 

Linear Space (Examples) 
( ),Χ R 

  Χ

{ }:f f= Χ 

 ( )( ) ( ) ( ) , ,f g s f s g s f g s∈= ∈+ +  

( ) ( )( ) , ,f f s f ssα α α ∈ ∈= ∈ R



Let                  be a linear space and       a subset of      ; i.e.,  
 

Definition:                is a linear subspace of        if 

•     

•     

 

Note: To check whether                is a linear subspace of            

all we have to check is:                                       

  (Verify!) 

  

Linear Subspaces 
( ),Χ R Υ Χ Υ ⊂ Χ

( ),Υ R Χ

1 2 1 2,x x xx∈Υ⇒ + ∈Υ

, x xα α∈ ∈Υ⇒ ∈ΥR

( ),Υ R Χ

1 2 1 2, ,x xx xα α∈Υ ∀ ∈Υ ∀+ ∈R



Consider                                                         ,        continuous 

                       linear space of continuous functions 

Let 

Is         is subspace of                 ? 

•                            (by definition) 

• For any  

 

                                                             is a subspace of  

Linear Subspaces (Examples) 

[ ] [ ]{ }0, : 0,C T f f T= R :f

[ ] ( ){ }0, , 0 0f f T fC∈= =

 [ ]0,C T

[ ]0,C T⊂

1 2 ,,f f α∈ ∈ R

( ) ( )1 2 1 2( ) (00 0) 0 00ff f fα α α+ + ⋅ +== =

1 2f fα +⇒ ∈ ⇒ [ ]0,C T

Example: 



Example: 

Let                be subspace of      .  

Then                  is also a subspace of      . 

 

Proof:  Let 

Then                             (since                       ) 

Similarly  

 

 How to prove that        is a subspace? How to prove that it is not? 

Linear Subspaces (Examples) 

1 2,Υ Υ Χ

1 2Υ ∩Υ Χ

1 2 1 2, ,f f α∈Υ Υ∩ ∈R

1 2 1ffα + ∈Υ 1 2 1,f f ∈Υ

2 21 ffα + ∈Υ

1 2 1 2f fα⇒ ∈Υ ∩Υ+





Example: Is                                          a linear subspace of  
 Yes.   (verify!) 

Is                                        a linear subspace of                   ? 
 
Let                                       be arbitrary vectors in     . 
 
 
We want to check if  
Let  
  
 

Linear Subspaces (Examples) 

{ }3
1 2 0x xΧ = ∈ =R

{ }3
2 1xxΧ = ∈ =R

( )3,R R

( )3,R R

1 1

2 2

3 3

,
x y

x x y y
x y

   
   = =   
      

Χ

,x yα α+ ∈Χ ∀ ∈R

1 1 1 1

2 2

3 3 3 3

: 1
y y

z y
y y

x x
x y x

x x

α α
α α α

α α

   
   + = =   


+ +
= + +

+   +  
,z α⇒ ∉Χ ∀ ∈R

Example: 



Definition: (Linear dependence) 
Let                be a linear space. A finite number of vectors  
                                               are linearly dependent if there exist 
a set of      scalars     , at least one of which is not zero such that  
                                                              the zero of the linear space    
                                                               
 
  
Definition: (Linear Independence) 
Let                be a linear space. The set of vectors         is linearly 
independent if  

Linear Independence 

21 21 0n nx x xα α α Χ+ + + =

( ),Χ R
{ } { }1 2i nx x x x= 

n iα

1
0

n

i i
i

xα Χ
=

=∑

( ),Χ R

1 2
1

0 0.i

n

i n
i

xα α α α
=

= ⇒ = = = =∑ 

{ }ix



Fact:  
If           is linearly dependent, then at least one of the vectors 
can be written as a linear combination of the others. 
 
Proof: 
Assume with loss of generality that  
  

Linear Independence 

[ ]
1

1 2 2
1 .n nx xa a x
α

= + +⇒ − 

{ }ix

1 0α ≠



Example:  
 
Is the set                                       linearly independent? 
 
 
 
 
 
                                      
   Let 
 
                        the set in linearly dependent 
 

Linear Independence (Examples) 

1 0 1
0 , 1 , 1
2 0 2

 −     
      −      
 −           

1 3

1 2 3 3

1

2

3

1 0 0
0

2 2 0

1
0 1 1 0
2 0 2

α α
α α α α α

α α

−     
     + + − = ⇒     

−        

=
=

−

−



−

=

1 2 3.α α α=⇒ = 1 2 3 1α α α= = =

⇒



Example:  
 
Is the set                             linearly independent ? 
 
 
 
 
 
                
               the set in linearly independent. 
 

Linear Independence (Examples) 

1 0
0 , 1
2 0

    
    
    
        

1

1

1

22

0
0

1 0
0 1 0
2 0 2 0

α
α α α

α

   
   + = ⇒   
     

=
=
=

1 2 0.α α =⇒ =

⇒



Example:  
Do there exist values                             such that the set  
                                 is linearly independent? 
 
 
 
 
               always linearly dependent. 
OR: For any  
                
         
      the fourth vector is a linear combination of the other three 

Linear Independence (Examples) 

1 2 3, ,x x x ∈R
1

2

3

1 0 0
0 , 1 , 0 ,
0 0 1

x
x
x

       
       
       
               

1 1 1 1 1

1 2

4 4

2 43 4 2 2 2

3 3

2 4

3 4 3 4 3

1 0 0 0
0 1 0 0 0
0 0 1 0

x x x
x x x
x x x

α α α α
α α α α α α α α

α α α α

+ = = −      
      + + + = ⇒ + = ⇒ = −      

+ = = −             

⇒
1 2 3, ,x x x

⇒

1

2 1 2 3

3

1 0 0
0 1 0
0 0 1

x
x
x x x
x

       
       = + +       
             



Example:  

Let                             

Consider                                                                   that is,      is  

composed of all linear combination of elements of    

        is a linear space (verify!) 

  Is      a linearly independent set of vectors? 

Suppose that                    ; we must show that this implies 

                                          for       to be linearly independent. 

 

 
 
 

Linear Independence (Examples) 

1
0

N

i i
i

xα
=

=∑

( ) ( ) ( ) ( )1 2cos 0 cos cos sin 0n Nn mt t t tα π α π α π α π⇒ …+ …+ ++ + =

( ){ } ( ){ }cos 0,1,2, , sin 1,2, ,t n t mκπ κ κπ κΧ = = … ∪ = …

1
,,

N

i i i i
i

xf f xα α
=

 
Υ = = ∈ ∈Χ 

 
∑ R

1N n m= + +

Υ

.Χ

Υ

1 2 0Nα α α…= = = = Χ

Χ



Example (continued) 
 
 
 Integrate both sides from -1 to 1 gives 

 Multiply both sides by                and integrate from -1 to 1 
gives 

 Multiply both sides by                   and integrate from -1 to 1 
gives  

 

Continue this to get  

 

       is a linearly independent set of vectors 

Linear Independence (Examples) 

1 0α =
cos( )tπ

2 0α =

cos(2 )tπ
3 0α =

1 2 0Nα α α…= = = =

( ) ( ) ( ) ( )1 2cos 0 cos cos sin 0n Nt t n mt tα π α π α π α π…+ …+ ++ + =

Χ



Span, Basis, Dimension 

Definition:  Let                                        be a subset of a linear 

space               .  The collection of linear combinations of vectors 

in       is called span of     , denoted as: 

 

 

 

( ),Χ R
{ }, ,: 1iy ni =Υ = …

Υ Υ ( )sp Υ

( )
1

, ,
n

i i i i
i

sp x yx yα α
=

Υ ∈Χ = ∈ ∈= 


Υ
 



∑ R



Span, Basis, Dimension 

Definition (Basis):  Let                                         be a set of vectors 

in               .   The set      is called a basis for       if  

 (i)  the vectors         are linearly independent.      

 (ii) 

 

          are called basis vectors of  

 Are          unique basis vectors? 
 

( ),Χ R
{ }, ,: 1iy ni =Υ = …

Υ

( ),Χ R

Χ

{ }iy

( )sp Υ = Χ

{ }iy Χ

{ }iy



Span, Basis, Dimension 

Note: If          are the basis vectors of      then for any              there 

exists scalars                   such that  

Fact: This parametrization is unique. 

Proof: Suppose                             such that 

                                                .   Since         are linearly independent: 

                                                                                                uniqueness. 

 

Definition (Dimension): If a basis      for                has       elements 

then       is an    -dimensional  linear vector space.   

1 ,, nα α…
1

i i

n

i
x yα

=

=∑

( ),Χ RΥ

Χ{ }iy x∈Χ

{ }iy
1 2, , , nβ β β∃ …

1 1
;i

i
i

i
i i

n n

x y x yβ α
= =

= =∑ ∑

1
0 ( )i

i
i

n

ix x yβ α
=

− = = −∑
1 1 2 2 1 10; 0; 0;n nβ α β α β α α β…− = − = − = ⇒ = …⇒

n

Χ n



Span, Basis, Dimension 
Example:                has a basis                           where 
                                                     .                is    -dimensional space.  
  i-th position   
 

 
 
Example:   Let                 

 
Then: 

•                        (verify!) 

•      is a basis for      . 3RΥ

1 1 1
0 , 1 , 1
0 0 1

      
      Υ =       
            

( ) 3sp Υ = R

( ),nR R { }1 2, , , ne e e…

[ ]0 0 1 0 0ie =  

 nnR



Infinite-Dimensional Linear Vector Spaces 
• These results can be extended to infinite-dimensional linear 

vector spaces 
• For example:                 is an infinite-dimensional linear vector 

space. 
•   
             is a basis for the infinite-dimensional space     .  Χ

[ ]0,C T

( )sp MΧ =( ) ( ){ }cos ,s 0,1 ,in ; ,2M t tκπ κπ κ == …
M



Dimension of Linear Vector Spaces (Examples) 
 
1)                                          3x2 matrices of reals. 

 
 
 

2) Polynomials of degree 4 
       e.g.  
 
3)   
 
4) 
 

∗ ∗ 
 ∗ ∗ 
∗ ∗  

( )3 2 ,×R R

( )4 ,P R
4 3 23 4 1.x x x x+ + + +

( ),C R

( ),C C



Linear Transformations 

Definition: Let                      where           are linear vector spaces 
over the same field      .      Is a linear transformation or operator if 
 
 
 
 
 
 
 
•                                                          Additivity. 
•                                    Homogeneity    
• Together:                                                                   
                       SUPERPOSITION. 

:Α Χ Υ ,Χ Υ
 

( ) ( ) ( )21 1 2 2 1 1 1 2 1 22 , , ,xx xx x xα α α α α α= + ∀ ∈ ∈Χ+   

( ) ( ) ( )1 1 2 2 1 21 2x x x xα α α α= ++  

( ) ( ) ( )1 2 1 2xx x x=+ +  
( ) ( )xxα α= 

Χ Υ




Linear Transformations 

Example: 
 
 
By the standard rules of matrix addition and scalar multiplication, 
we have that the matrix is a linear transformation or linear 
operator. 
 
Example: (convolution) Let                                                           and    
be defined as 
 
 
Convolution is a linear operator: 

3 3: xyΑ = ΑR R 1 1

2 2

3 3

1 4 5
0 2 1
1 5 0

y x
y x
y x

    
    =    

−        

[ ] [ ]0, , 0,PC Y PCΧ = ∞ = ∞ 
linear space of piecewise 
continuous functions  ( ) ( )

0
( ) exp( ( )) ( )

t
y t t t x dx τ τ τ= = − −∫

more general:   ( )h t τ−

( )x t ( )y tS



Null & Range Spaces of Linear Operators 

Definition: Let       be a linear operator, 
The set                                                         is called the null space of    . 
The set                                                                  is called the range 
space of      . 
 
Fact:               is a linear subspace of            
                        is a linear subspace of  

: .Χ Υ
( ){ }( ) 0x x Υ= ∈Χ =   

( ){ }( ) ,y y x x= ∈Υ = ∈Χ  


( ) 
( ) 

.Χ

.Υ

Χ

Χ

Υ

Υ





0Υ

( ) 

( ) 

(Verify!) 
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