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III. Matrix Representations 



Matrix Representations 

Some observations: 

o A matrix can be considered as a linear operator. 

o Not every operator can be represented by a matrix. e.g. the 
convolution operator on                     into                    cannot be 
considered in matrix form. 

o If the linear operator                      , where the dimensions of     
and      are finite, then       can always be represented as a 
matrix with respect to given bases of      and       . 
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Matrix Representations 
Consider                      , where            are finite dimensional linear 
vector spaces over the field      . Let                      be  a basis for       . 
Then for any                there is a unique representation  
 
 
 
 
                            are called the components of       with respect to 
the basis                             . 
 

:Χ Υ ,Χ Υ
R { }1 ,, nx x… Χ

χ∈Χ

1

n

i i
i

xχ α
=

=∑ [ ] ( )1 2 , ,, nx
a aχ α…=

{ }1 2, , , na a α…
{ }1 2, , , nx x x…

χ



Matrix Representations 

Special case: If                                                               then: 
 
 
 
 
Consider              ;   by linearity of      : 
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Matrix Representations 
Let                               be a basis for    .   
                                                    
                                                and  
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Matrix Representations 
To summarise: 
 
Theorem: Let               have                             as  a basis; let   
have                            as a basis; let                        be a linear 
operator. Then with respect to these bases, the operator      is 
represented by the             matrix 
 
 
where the elements of the i-th column of      are the components 
of             with respect to the basis                             . 
 

Note:  
• A matrix is just a representation of an operator. 
• If we don’t know the bases used, we don’t really know the operator. 
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Matrix Representations 
Example: 
 
(A) Basis for        :  
        
      Basis for        : 
 
Represent       in matrix with respect to the basis         
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Matrix Representations 
Example (cont.): To test, consider  
 
 
 
 
(B) New Basis:  
Basis for       :                                   Basis for        : 
What is  
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Matrix Representations 
Example (cont.): 
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Matrix Representations 
Example: 
 
 
 
          is a linear operator    (check!) 
 
(A) Consider                                    ; then  
       Restrict      : 
Let                    be the basis in both the domain and range.  
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Matrix Representations 
Example (continued): 
 
 
Check! 
 
 
 
 
(B) Consider 
Domain basis:  
Range basis:      
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Matrix Representation and Change of Basis 
  linear operator. 
                               Basis for          Matrix            : representation  for 
                               Basis for 
                               “new” basis of  
                    “new” basis of 
                is another representation for   
How are            and             related? 

 
                                                                                       matrix 
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Matrix Representation and Change of Basis 
For any 
 
 
 
 
 
 
Similarly: 
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respect to                             . 
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Matrix Representation and Change of Basis 
For any 
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Matrix Representation and Change of Basis 
From previous example:  [ ] ,
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Matrix Representation and Change of Basis 
Special case:  1A P AP−=:Χ Χ
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Relation between Range and Null Space 
           linear operator 
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Relation between Range and Null Space (Examples) 
Example:  
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Relation between Range and Null Space (Examples) 
Example:  
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Relation between Range and Null Space(Examples) 
Example:  
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Rank 
Definition: The rank of the operator       is   
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Rank (Examples) 

Example: (hard for a computer to find the rank). 
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