ECE 631
System Theory

Ill. Matrix Representations



Matrix Representations

Some observations:
O A matrix can be considered as a linear operator.

O Not every operator can be represented by a matrix. e.g. the
convolution operator on PC [O’OO] into PC [(),oo] cannot be
considered in matrix form.

0 If the linear operator A : X Y, where the dimensions of X
and Y are finite, then A can always be represented as a
matrix with respect to given bases of X and Y.



Matrix Representations

Consider A : X B Y, where X,Y are finite dimensional linear
vector spaces over the field R. Let{x,,...,x,} be abasis for X .

Then forany y € X there is a unique representation

{al, az,,,,,an} are called the components of ¥ with respect to
the basis {Xl,XZ,...,Xn}.




Matrix Representations

i-th position
Special case: If X -+ 0 @T’ O]T then:

natural Cartesian coordinates

=7, 1=12,..n [x] = (2 Zorees 20)

Consider A(Z)" by linearity of A :
A(g)=A(ax +...+a,X,)
= A(Xx)+...+a, A(X,)

=iznl:ai¢4(xi) ;

v =A(x)=2 aA(X) .

=1

weY



Matrix Representations

Let {yl,yz ..... yn} be a basis for Y.
W:Z;ﬂjyj and A(xi):Zajiyj
=
:W:Zﬂjyj :Zaizajiyj Z|:Zajl |:|
=1 =1 j=1 =1L i<l

:ﬁj:Zajiai , 1=1...,m.

Gy 0 Oy
| et [A]y,x: : : }mrows D[A(Z)l/ Z[A] vx [}(]X
ml amn
_g r?CGIumnsj [l/j]y ~ A[Z]X

where A= [A]

y. X



Matrix Representations

To summarise:

Theorem: Let(X,]'_) have {Xl, ) ST Xn} as a basis; Iet(Y,]:)
have{yl, Youeons ym}as a basis; let A: X+ Y bealinear
operator. Then with respect to these bases, the operator A is
represented by the Mx N matrix

A:(“J‘i): [A]y,x

where the elements of the i-th column of A are the components
ofA(Xi )with respect to the basis {yl, Yoroear Y }

Note:

e A matrix is just a representation of an operator.

* |f we don’t know the bases used, we don’t really know the operator.



Matrix Representations

_ X, 0 X, ]
Example: 4:R?—~ R3® «x-= Z I =2% | A(x)=|-2x,
- X,

171 L2 L %
(A) Basis for R” : (“1’“2):“0_’{1_)

(1717 (2]
Basis for R° : (Vl,Vz,Vg)[ Of1], 1}
0

Represent A in matrix with respect to the basis U, V.

A(u)=[1 -2 0] =V, +a,, +aV, = 3v, —2v, + 0,

A(u)=[1 -2 1] =y, +aV, + v, =3, —3v, +1v,

3 3
[Al,=|-2 -3




Matrix Representations

-1
Example (cont.): To test, consider x= [ . } =aUu +au =-2u +1u
3 3] -3 17
—2
y=A()=-2 3| =l 1] =By +v, 41y, = 2
| 0 1 ] 1 1

(B) New Basis: 0
-1 10
Basis for R*: (Gl,ﬁz){{o},{sD Basis for R3:(\71,\72,\73){ 0,11
What is [‘A]v,a ?
A(G)=[-1 2 0] =a¥, +a,¥, +a¥, =10, + 27, + 0V,

A(G,)=[0 0 3] =aV, +a,, +al, = 07, — 30, + 3V,

1 O
[‘A]v,a =12 -3
L 3 —




Matrix Representations




Matrix Representations

. -1
Example: A :C [01 1] — C [O, 1] Space of continuously
\/ differentiable on [0 1]

A( f ) :% f  (differential operator)

A is alinear operator (check!)

(A) Consider M = Sp(l,t,tz,ts) : thenA(I\/I )c M
RestrictA: A MM dim(M)=4<wx
Let {1,t,t2,t3} be the basis in both the domain and range.
What is [‘A]ﬂ,ﬂ ? A(’ul):A(l)zo Components'(O 0,0, O)
=.A(t):l Components : (1 0,0, O)
)=2t Components . (O 2,0,0
(

) )
:A(t4):3t2 Components: (0,0, 3, O)



Matrix Representations

Example (continued):

o O O

0

(B) Consider

1
0
0
0

0

ZOOI\)

0

o w O

3

7

1
-5

0100
0020
Ahi=lo 0 0 3
000 0
)=7+2
“
2 2 3
=7-1+2-t+(-15)t°+0-t
—-15
0

Domain basis: 1 = l,t,tz,t3}

Range basis: A = {1,’[,’[2}

=sp(Lt,t?) A:M >N

—
>
I
o O O
o O B
o N O
w O O




Matrix Representation and Change of Basis

A : XY linear operator.
X = {Xl,..., Xn} Basis for X Matrix [A]y,xz representation for.A

— yl,,,,,yn} Basis for Y
%,,...,X,} “new” basis of X

..., n

X <<

~/

{yl,..., )7”} “new” basis of Y
[A]y’X is another representation for A
=» How are [A]y,xand [A]y,x related?

y

)~(i:Z:p"XI C1=1...,n P:(p“) N x N matrix
I-1

i-th column of P consists of the components of X. with respect
to X ={X,..., X, }.



Matrix Representation and Change of Basis

For any ;(EX:;(:Zn:aiXi ;(zia?i)?i zi&ii P X
i—1 i |
n _Zza p|IX _ZO[I

:>05,=Zp“07i 1=1...,n. =1 1=

(2], =Plx],=[x], =P [x],

Similarly: V. :quiy,{ ;1=1,...,m.
k=1

Q=(gs) mMxm matrix

I-th column of Q consists of the components of y. with

respectto Y = {yl ..... Y, }



Matrix Representation and Change of Basis

For any weY:t//:Z,BKyK
K=1

l//:ZBy :Zﬁiquiyx :Zzﬁqk Ve :Z’B"y"
1 1 «x=l k=1 i=1 x=1

= Q[ A(x)], =QA[x], = AP[ 4],
Alx],=Q " AP[x],

~

= |A=Q'AP| |A=QAP™




Matrix Representation and Change of Basis

3 3 1 0
-2 3| A=[A],=|2 -3
0 3

0 1
Ly Ao s

AR

From previous example: a_14] -

1 1
10 +1- {1}&
_O_ O .
i} o . ~
=-1-10 +O-[1}+1-
0

1]




Matrix Representation and Change of Basis

~

Special case: A: X~ X A=P AP

D A D

A




Relation between Range and Null Space

A: (X,]—“) > (Y, .7:) linear operator

dim(X)=n R(A)cY Range Space
dim(Y):m N(A)CX Null Space

Fact: dim(R(A))+dim(N (A))=n «

—— dim(domain of.A)




Relation between Range and Null Space (Examples)

Example:  4:R” > R® What is N(A)’?

X Same as 0 0

D T T [ I

example 0

X 0
dim(\ (A))=0.
o
What is R(A)? All 3-dimensional vectors of the form | -2¢,
where a,,a, € R. | a, |
o, [ 1] 0 | Basis for R(A)

20, |=a +a,|0

= dim(R(A))=0.




Relation between Range and Null Space (Examples)

0
Example: A4:R*—~ R* ))((1 0
X=| ° A(X) =

Xy X

X X, + X
What is N(A)? - -t
0 | [O] 0 ]

B 0 B 0 X1=0 A o

.A(X)— X =0 :>X2+X4=0 N(A)=<XER X = 5 a,feR;

X, +X%, | |0 - |




Relation between Range and Null Space(Examples)

Example:_ _dim_(/\/(A))?

- 0

Z E +ﬂ(1’ = dim(NV(A))=2

—a | -1 0] .

dlm(R(A))7 R(A):<XER4X: 2 a,a, € Rt
L | &2

[ 0 | 0| 0

21 “a| | |ra| | = dim(R(A))=2

 a, 0] 1




Rank

Definition: The rank of the operator A is dim (R(A))

Fact: rank(A) = maximum number of linearly independent

— columns of A (where A is any matrix
C sometimes representation of A )
denoted as p(A) P _ Ny _
= maximum number of linearly independent
rows of A.
Example: 1 0 1 0]
A=[2 1 3 2 p(A)=2
0 3 3 6]




Rank (Examples)

Example: (hard for a computer to find the rank).

1 -1 1 Ife=0
A= A)=
{0 e} p(A) {2 if & =0

Fact: AeR™":  p(A)<min{m,n}
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