ECE 631
System Theory

IV. Linear Algebra and Norms



Spectral Theory

Definition: Let A :R" > R" be a linear operator. Any
scalar A€ F suchthat A(X)=AX, where x#0, is
called an eigenvalue of A and X an eigenvector of A.

Note: Along the direction of an eigenvector X, the
operator A simply multiplies the vector by a scalar 4.

Note: AX = AX = (A —A1)x =0
Find the values of A such that the null-space of (A— A1)
is not simply X=0, i.e. the trivial solution.

__________________________

Note: To find 4 we solve |[det(A—Al)=0 . Characteristic

Equation




Spectral Theory (Examples)

Example: A:E ﬂ det(A-m):de{zj B}J
— (2= 2)(3=1)-2
=A1°-51+4
— (A-1(A-4)

Eigenvalues: 14 =1 4, =4

. . = 1 1 Xl = O
Eigenvectors: (A-A41)x=0 :{2 ZMXJ{O}

X, +X%X =0 X =—X,.

1 o
(i) X{_J? General solution: {_a} acR a#0.



Spectral Theory (Examples)

Example (continued):

B -2 1y | |0
e PR MK

_ZY1+Y2 =0 = Y, :ZY1-

1} General solution: {Za} aecR,a+0.
a

(ii) y={2;



Spectral Theory (Examples)

_ 3 2
Example: A:{ } a_1 9
-1 1 det(A—M):de{ }
-1 1-A
=(3-A)1-1)+2
= A2 =42 +5

Eigenvalues: 4 =2+ 4,=2-].

Eigenvectors are also complex :

(A-al)x=0 X:{—fﬂl’ {—12—1}



Spectral Theory

AeR™: det(A—ftI ) is a polynomial of degree N.

A(A)=det(A-A1)=(-)"A"+c,,A" " +...+c A+,
= (4 -A)4,=A)-(4 = 4)

A(l) is called the characteristic polynomial of A.

e« 4,4, ...y A can be real, complex, or a combination of real
and complex

e Ay Ays--s 4 can be all distinct or we can have A = 4, for | = ].

) det( ):ﬂl'ﬂ“z'

* Suppose [ is complex: j,l =a, + jB - Then A4 =q, - 15
is also an eigenvalue.



Spectral Theory

Sum of

Trace: Let Ac R™ Trace(A) Za «——— diagonal

i—1 elements.

Example: A:{ 3 2

_1 J Trace(A)=3+1=4.

Lemma: Trace(A) =A+A4+..+A = Zn:i,

Lemma: Let A4,4,,...,4 be distinct eigenvalues of A. Then any

Xy Xy,..., X, of corresponding eigenvectors is linearly independent.

e Modal matrix.

M7IAM = A =




Singular Value Decomposition (SVD)

Theorem: Any mx N matrix can be factored into:

where

A=UXV'

e U is an mxm orthogonal matrix, i.e., U 'U =1
e \/ isan Nxn orthogonal matrix,i.e., V'V =1

e > isadiagonal matrix of the form:

O,

0

0 0 0]

o, 0 0]

p=min{m,n}

0,2...20;2...0,20

« 0, are called singular values and they correspond to the eigenvalues

of ATA.

. p(A) = number of nonzero singular values.



Spectral Theory

let AeR™
" AA=A°
" A=A-AAA
- A'=1
« A istheinverse of A (if it exists).
N XN matrix of 0’s

Theorem: (Cayley-Hamilton) /

Every matrix satisfies its own characteristic equation, i.e., A(A) =0



Spectral Theory

1203
A(A)=A°-51+4 (from previous example)
A(A)=A’-5A+41

Check if: AA—5A+4I={8 8}

Example: {2 1}



Jordan Canonical form

Theorem: For any nx N matrix A there exists a non-singular

matrix T such that - :
L(4) 0

L(%)

T*AT =

where L(4)=| . 1

Note: If all eigenvalues are distinct then L(ﬂ,l)
2 .

A.

T*AT =




Jordan Canonical form (Examples)

Examples:

L T_lAT = -5 E ____________




Normed Linear Spaces

Definition: Let (X, .7:) be a linear vector space. A real-valued
function is called a norm (and is denoted by HH ) if the following
properties hold:

.[x|>0and|x|=0=x=0, ¥xeX.
i.|ax|=|a||X]| VxeX,VaeF

i, [x+ vyl < x|+ |yl vx,yeX (triangle inequality)
iyl <y wxyex. -

e Alinear space with a norm is called a normed linear space.
e The norm can be considered as an operator.

l|: X+ R [R+ ={xeR|x> O}]

R+
X I




Normed Linear Spaces

Examples of norms:
a) X=R"

n
I ”X”l = ;|Xi
i

absolute value
| / (1-norm)
N 1/2
i x|, = {ZMZ} (2-norm / Euclidean norm)
i=1

n Up
i, for 1< p <oo ||x||p::{;|xi|p} onorm

iv. [ =max

1<i<n

| (oo-norm)



Normed Linear Spaces

Consider the set:J = {x cR? ‘ Hx ‘ = 1}

XH For large p.

], X [ 1],
N AL
AN as

Lemma: Let HH and HH be any two norms on R" (or C"). Then
there exist constants C,,C, >0 so that

c[X[<|X]|'s¢c, x| WxeX



Normed Linear Spaces

Notation: Normed linear spaces are sometimes denoted by

(X E ) or ()

set field norm

For example: (RS,R,H-HZ), (CS’C’H'Hl)

b) X=C[O,T] (can be extended to C(—0, ) )
T

X = | [x(t)) at
- , U2

i X, =| ] |x(t) dt}

i T 0 1Up

i, =| [ (o) et |

v. [x].. = maxx(t)




Normed Linear Spaces (Examples)
Consider C[O,oo]with
i x(t)=1

X|| = max \1\
0 te[O

Xl—jol_oo

X[, = ‘v’pe[l,oo].
i. x(t)=e"

X[ _max‘e ‘ 1

¥, =, e" =1



Normed Linear Spaces (Examples)

i X(t):ﬁ
x|, = max|-—|=1
10|14+t

|X|, <o but ||x|, =0 (check!)



Operator Norms

Definition: A linear operator A : X — Y where X, Y are normed
linear spaces, is said to be a bounded linear operator if there is a
constant M such that

HA(X)HY <M|x|, ¥xeX
where M is independent of X e X..

The smallest such M that satisfies this condition is called the
norm of A and is denoted by HAH

vote: [ 4= max Ok
<0 X

= max A (x)

[l =2

=max |.A(x)

[l <t



Geometry of an Operator Norm

Key questions:
. DoesHAHsatisfy the axioms of a norm?

e What is the linear space in this case?




Operator Norms

Lemma: Let E(X, Y) be the set of all linear transformations
from X to Y ;i.e,,

L(X,Y):= {A A X > Y,Aislinear}.

Then £(X,Y) is a linear space under the addition A + B being
defined as:

(A+B)(x)=A(x)+B(x) ABeL(X,Y)xeX
and scalar multiplication a.A defined as:

(¢ A)(X)=aA(x) AeLl(X,)Y), aeF xeX



Operator Norms

Reminder:

So far we have seen elements of linear spaces that are:

1

Vectors of reals | 3| (e.g.), function (e.g.,e™")
4

- 5sin(t) . 1 2
Vectors of functions, cos(t) , matrices, e.g. 4 5)

Matri £ ool o 1+x 1+Xx° 4
atrices of polynomials an
POTy X°+x> 1+x* |’

now operators 4A: X—Y



Operator Norms

Lemma: HAH is indeed a norm on £(X,Y)

Proof: (i) obviously HA ‘ >0 and HAH =0=>A4=0
(it)| e A| = max |er. A (X)),

Ixl=2

= max|a A, =|a||A]|

Xl =2

(iii) | A + B|| = max [(A + B) (x)

Ixl=2

= max A (x)+B(x)|,

e
A, + B, )
<[l +[5]

smw(

[x=2




Operator Norms

Examples of matrix norms:

Let Ac R™" (considered as a linear operator from R"to R" )

A:(aij)
0 [AL =maxfax]. AL =me>le

0 AL = Al la, = max o

[x]l,=2 1< j<n

(iii) ]| A]|, = max|| Ax], A, = |:/1max (ATA)T/Z

Ixl,=1

(A (ATA) is the largest eigenvalue of ATA )
Example:

1 2 _ _
A=y ol 1AL=6: |AL=5465; JA]. =7 (Check
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