ECE 631 System Theory

IV. Linear Algebra and Norms

<u>Definition</u>: Let $\mathcal{A} : \mathbb{R}^n \mapsto \mathbb{R}^n$ be a linear operator. Any scalar $\lambda \in \mathcal{F}$ such that $\mathcal{A}(x) = \lambda x$, where $x \neq 0$, is called an <u>eigenvalue</u> of \mathcal{A} and x an <u>eigenvector</u> of \mathcal{A} .

<u>Note</u>: Along the direction of an eigenvector x, the operator \mathcal{A} simply multiplies the vector by a scalar λ .

<u>Note</u>: $Ax = \lambda x \Rightarrow (A - \lambda I)x = 0$ Find the values of λ such that the null-space of $(A - \lambda I)$ is not simply x = 0, i.e. the trivial solution.

<u>Note</u>: To find λ we solve $det(A - \lambda I) = 0$

Characteristic Equation

Spectral Theory (Examples)

Example:
$$A = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$$
 $det(A - \lambda I) = det \begin{bmatrix} 2 - \lambda & 1 \\ 2 & 3 - \lambda \end{bmatrix}$
 $= (2 - \lambda)(3 - \lambda) - 2$
 $= \lambda^2 - 5\lambda + 4$
 $= (\lambda - 1)(\lambda - 4)$

Eigenvalues:
$$\lambda_1 = 1$$
 $\lambda_2 = 4$.
Eigenvectors: $(A - \lambda_1 I)x = 0 \implies \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $x_1 + x_2 = 0 \Leftrightarrow x_1 = -x_2$.

(i)
$$x = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
; General solution: $\begin{bmatrix} \alpha \\ -\alpha \end{bmatrix}$ $\alpha \in \mathbb{R}, \alpha \neq 0.$

Spectral Theory (Examples)

Example (continued):

$$(\mathbf{A} - \lambda_2 I) \mathbf{y} = \mathbf{0} \quad \Rightarrow \begin{bmatrix} -2 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$-2y_1 + y_2 = \mathbf{0} \quad \Rightarrow y_2 = 2y_1.$$

(ii)
$$y = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
; General solution: $\begin{bmatrix} \alpha \\ 2\alpha \end{bmatrix}$ $\alpha \in \mathbb{R}, \alpha \neq 0.$

Spectral Theory (Examples)

Example:
$$A = \begin{bmatrix} 3 & 2 \\ -1 & 1 \end{bmatrix}$$

 $det(A - \lambda I) = det \begin{bmatrix} 3 - \lambda & 2 \\ -1 & 1 - \lambda \end{bmatrix}$
 $= (3 - \lambda)(1 - \lambda) + 2$
 $= \lambda^2 - 4\lambda + 5$

Eigenvalues: $\lambda_1 = 2 + j$ $\lambda_2 = 2 - j$.

Eigenvectors are also complex :

$$(A - \lambda I)x = 0 \qquad \qquad x = \left\{ \begin{bmatrix} 2 \\ -1 + j \end{bmatrix}, \begin{bmatrix} 2 \\ -1 - j \end{bmatrix} \right\}$$

 $A \in \mathbb{R}^{n \times n}: \quad \det(A - \lambda I) \text{ is a polynomial of degree } n.$ $\Delta(\lambda) = \det(A - \lambda I) = (-1)^n \lambda^n + c_{n-1} \lambda^{n-1} + \ldots + c_1 \lambda + c_0$ $= (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda)$

 $\Delta(\lambda)$ is called the **characteristic polynomial of A**.

- $\lambda_1, \lambda_2, \dots, \lambda_n$ can be real, complex, or a combination of real and complex.
- $\lambda_1, \lambda_2, \dots, \lambda_n$ can be all distinct or we can have $\lambda_i = \lambda_i$ for $i \neq j$.
- $\det(\mathbf{A}) = \lambda_1 \cdot \lambda_2 \cdot \ldots \cdot \lambda_n = c_0$
- Suppose λ_i is complex: $\lambda_i = \alpha_i + j\beta_i$. Then $\overline{\lambda_i} = \alpha_i j\beta_i$ is also an eigenvalue.

<u>Trace</u>: Let $A \in \mathbb{R}^{n \times n}$ Trace $(A) = \sum_{i=1}^{n} \alpha_{ii}$ Sum of diagonal elements. <u>Example</u>: $A = \begin{bmatrix} 3 & 2 \\ -1 & 1 \end{bmatrix}$ Trace(A) = 3 + 1 = 4.

Lemma: Trace (A) =
$$\lambda_1 + \lambda_2 + \ldots + \lambda_n = \sum_{i=1}^n \lambda_i$$

<u>Lemma</u>: Let $\lambda_1, \lambda_2, ..., \lambda_n$ be distinct eigenvalues of A. Then any $x_1, x_2, ..., x_n$ of corresponding eigenvectors is linearly independent.

$$\mathbf{M} = \begin{bmatrix} \vdots & \vdots & & \vdots \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & & \vdots \end{bmatrix} \xrightarrow{\mathbf{M} \text{ odal matrix.}} \mathbf{M}^{-1} \mathbf{A} \mathbf{M} = \mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$$

Singular Value Decomposition (SVD)

<u>Theorem</u>: Any $m \times n$ matrix can be factored into:

$$\mathbf{A} = \boldsymbol{U} \, \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$$

where

- U is an $m \times m$ orthogonal matrix, i.e., $U^{\top}U = I$
- V is an $n \times n$ orthogonal matrix, i.e., $V^{\top}V = I$
- Σ is a diagonal matrix of the form:

 $\begin{bmatrix} \sigma_1 & 0 & 0 & 0 \\ & \ddots & & & \\ & & \sigma_i & & \\ & & & \ddots & \\ 0 & & & \sigma_p & 0 & 0 \end{bmatrix} \qquad p = \min\{m, n\}$ $\sigma_1 \ge \dots \ge \sigma_i \ge \dots \sigma_p \ge 0$

- σ_i are called singular values and they correspond to the eigenvalues of $A^T A$.
- $\rho(A)$ = number of nonzero singular values.

Let $A \in \mathbb{R}^{n \times n}$

- $AA = A^2$
- $A^4 = A \cdot A \cdot A \cdot A$
- $A^0 = I$
- A^{-1} is the inverse of A (if it exists).

 $n \times n$ matrix of 0's

Theorem: (Cayley-Hamilton)

Every matrix satisfies its own characteristic equation, i.e., $\Delta(A) = \mathbf{0}^{\prime}$

Example: $A = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$ $\Delta(\lambda) = \lambda^{2} - 5\lambda + 4 \text{ (from previous example)}$ $\Delta(A) = A^{2} - 5A + 4I$ Check if: $AA - 5A + 4I = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

Jordan Canonical form

<u>Theorem</u>: For any $n \times n$ matrix A there exists a non-singular matrix T such that $T^{-1}AT = \begin{bmatrix} L(\lambda_{1}) & 0 \\ & L(\lambda_{2}) \end{bmatrix}$ $T^{-1}AT = \begin{bmatrix} L(\lambda_{1}) & 0 \\ & L(\lambda_{2}) \end{bmatrix}$ where $L(\lambda) = \begin{bmatrix} \lambda & 1 & 0 \\ & \ddots & 1 \\ 0 & \lambda \end{bmatrix}$

<u>Note</u>: If <u>all</u> eigenvalues are distinct then $L(\lambda_1) = \lambda_1$.

$$\mathbf{T}^{-1}\mathbf{A}\mathbf{T} = \begin{bmatrix} \lambda_1 & & \mathbf{0} \\ & \ddots & \\ \mathbf{0} & & \lambda_n \end{bmatrix}$$

Jordan Canonical form (Examples)

$$\bullet \begin{bmatrix} \lambda_1 & 1 \\ 0 & \lambda_1 \end{bmatrix}$$

<u>Definition</u>: Let (X, \mathcal{F}) be a linear vector space. A real-valued function is called a <u>norm</u> (and is denoted by $\|.\|$) if the following properties hold:

i.
$$||x|| \ge 0$$
 and $||x|| = 0 \Rightarrow x = 0_X \quad \forall x \in X.$
ii. $||\alpha x|| = |\alpha| ||x|| \quad \forall x \in X, \forall \alpha \in \mathcal{F}$
iii. $||x + y|| \le ||x|| + ||y|| \quad \forall x, y \in X.$ (triangle inequality)

- A linear space with a norm is called a **normed linear space**.
- The norm can be considered as an operator.

$$\|\cdot\|: \mathbf{X} \mapsto \mathbb{R}^+ \left[\mathbb{R}^+ = \left\{ x \in \mathbb{R} \mid x \ge 0 \right\} \right]$$
$$\mathbf{X} \qquad \qquad \mathbf{X} \qquad$$

Examples of norms:

a) $X = \mathbb{R}^n$ absolute value i. $||x||_1 := \sum_{i=1}^n |x_i|$ (1-norm) ii. $||x||_2 \coloneqq \left[\sum_{i=1}^n |x_i|^2\right]^{n/2}$ (2-norm / Euclidean norm) iii. for $1 \le p < \infty$ $||x||_p := \left[\sum_{i=1}^n |x_i|^p\right]^{1/p}$ (p-norm) iv. $||x||_{\infty} \coloneqq \max_{1 \le i \le n} |x_i|$ (∞ -norm)

<u>Lemma</u>: Let $\|\cdot\|$ and $\|\cdot\|'$ be any two norms on \mathbb{R}^n (or \mathbb{C}^n). Then there exist constants $c_1, c_2 > 0$ so that

$$c_1 \|x\| \le \|x\|' \le c_2 \|x\| \quad \forall x \in \mathbf{X}.$$

Notation: Normed linear spaces are sometimes denoted by

$$\begin{array}{c} (X, \mathcal{F}, \|.\|) \text{ or } (X, \|.\|) \\ \text{set} & \text{field} \end{array} \text{ norm} \end{array}$$
For example: $(\mathbb{R}^5, \mathbb{R}, \|.\|_2)$, $(\mathbb{C}^3, \mathbb{C}, \|.\|_1)$
b) $X = C[0,T]$ (can be extended to $C(-\infty, \infty)$)
i. $\|x\|_1 = \int_0^T |x(t)| dt$
ii. $\|x\|_2 = \left[\int_0^T |x(t)|^2 dt\right]^{1/2}$
iii. $\|x\|_p = \left[\int_0^T |x(t)|^p dt\right]^{1/p}$
iv. $\|x\|_{\infty} = \max_{t \in [0,T]} |x(t)|$

Normed Linear Spaces (Examples)

Consider
$$C[0,\infty]$$
 with
i. $x(t) = 1$
 $||x||_{\infty} = \max_{t \in [0,\infty]} |1| = 1$
 $||x||_{1} = \int_{0}^{\infty} 1 = \infty$
 $||x||_{p} = \infty \quad \forall p \in [1,\infty].$
ii. $x(t) = e^{-t}$
 $||x||_{\infty} = \max_{t \in [0,\infty]} |e^{-t}| = 1$
 $||x||_{1} = \int_{0}^{\infty} e^{-t} = 1$

Normed Linear Spaces (Examples)

iii.
$$x(t) = \frac{1}{1+t}$$
$$\|x\|_{\infty} = \max_{t \in [0,\infty]} \left|\frac{1}{1+t}\right| = 1$$
$$\|x\|_{2} < \infty \quad \text{but} \quad \|x\|_{1} = \infty \quad \text{(check!)}$$

<u>**Definition</u>**: A linear operator $\mathcal{A} : X \mapsto Y$ where X, Y are normed linear spaces, is said to be a **bounded linear operator** if there is a constant M such that</u>

$$\left|\mathcal{A}(x)\right\|_{\mathbf{Y}} \le \mathbf{M} \left\|x\right\|_{\mathbf{X}} \quad \forall x \in \mathbf{X}$$

where M is independent of $x \in X$.

The smallest such M that satisfies this condition is called the norm of ${\mathcal A}$ and is denoted by $\|{\mathcal A}\|$.

Note:
$$\|\mathcal{A}\| = \max_{x \neq 0} \frac{\|\mathcal{A}(x)\|_{Y}}{\|x\|_{X}}$$

$$= \max_{\|x\|_{X}=1} \|\mathcal{A}(x)\|_{Y}$$
$$= \max_{\|x\|_{X}\leq 1} \|\mathcal{A}(x)\|_{Y}$$

Geometry of an Operator Norm

Key questions:

- Does $\|A\|$ satisfy the axioms of a norm?
- What is the linear space in this case?

<u>Lemma</u>: Let $\mathcal{L}(X, Y)$ be the set of all <u>linear transformations</u> from X to Y; i.e., $\mathcal{L}(X, Y) \coloneqq \{\mathcal{A} \mid \mathcal{A} : X \mapsto Y, \mathcal{A} \text{ is linear}\}.$

Then $\mathcal{L}(X, Y)$ is a linear space under the addition $\mathcal{A} + \mathcal{B}$ being defined as:

$$(\mathcal{A}+\mathcal{B})(x) = \mathcal{A}(x) + \mathcal{B}(x) \quad \mathcal{A}, \mathcal{B} \in \mathcal{L}(X,Y), x \in X.$$

and scalar multiplication αA defined as:

$$(\alpha \mathcal{A})(x) = \alpha \mathcal{A}(x) \quad \mathcal{A} \in \mathcal{L}(X, Y), \, \alpha \in \mathcal{F}, x \in X$$

Reminder:

So far we have seen elements of linear spaces that are:

Vectors of reals $\begin{bmatrix} 1\\3\\4 \end{bmatrix}$ (e.g.), function (e.g., e^{-t}) Vectors of functions, $\begin{bmatrix} 5\sin(t)\\\cos(t) \end{bmatrix}$, matrices, e.g. $\begin{bmatrix} 1&2\\4&5 \end{bmatrix}$, Matrices of polynomials $\begin{bmatrix} 1+x&1+x^3\\x^2+x^3&1+x^4 \end{bmatrix}$, and

now operators $\mathcal{A}: X \mapsto Y$

 $\underline{\mathsf{Lemma}}: \left\| \mathcal{A} \right\| \text{is indeed a norm on } \mathcal{L} \big(X, Y \big)$

Proof: (i) obviously
$$\|\mathcal{A}\| \ge 0$$
 and $\|\mathcal{A}\| = 0 \Rightarrow \mathcal{A} = 0$
(ii) $\|\alpha\mathcal{A}\| = \max_{\|x\|_{X}=1} \|\alpha\mathcal{A}(x)\|_{Y}$
 $= \max_{\|x\|_{X}=1} |\alpha| \|\mathcal{A}(x)\|_{Y} = |\alpha| \|\mathcal{A}\|$
(iii) $\|\mathcal{A} + \mathcal{B}\| = \max_{\|x\|_{X}=1} \|(\mathcal{A} + \mathcal{B})(x)\|_{Y}$
 $= \max_{\|x\|_{X}=1} \|\mathcal{A}(x) + \mathcal{B}(x)\|_{Y}$
 $\leq \max_{\|x\|_{X}=1} (\|\mathcal{A}(x)\|_{Y} + \|\mathcal{B}(x)\|_{Y})$
 $\leq \|\mathcal{A}\| + \|\mathcal{B}\|$

Examples of matrix norms:

Let $A \in \mathbb{R}^{n \times n}$ (considered as a linear operator from \mathbb{R}^n to \mathbb{R}^n) $A = (\alpha_{ii})$ (i) $||A||_{\infty} = \max_{||x||=1} ||Ax||_{\infty} ||A||_{\infty} = \max_{1 \le i \le n} \sum_{i=1}^{n} |\alpha_{ij}||$ (ii) $\|A\|_{1} = \max_{\|x\|_{1}=1} \|Ax\|_{1}$ $\|A\|_{1} = \max_{1 \le j \le n} \sum_{i=1}^{n} |\alpha_{ij}|$ (iii) $\|A\|_{2} = \max_{\|x\| = 1} \|Ax\|_{2} \quad \|A\|_{2} = \left[\lambda_{\max}(A^{\top}A)\right]^{1/2}$ ($\lambda_{\max}(A^{\top}A)$ is the largest eigenvalue of $A^{\top}A$) **Example:** $A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} \quad \|A\|_1 = 6; \ \|A\|_2 = 5.465; \ \|A\|_{\infty} = 7$ (Check !)