
ECE 631 
System Theory 

IV. Linear Algebra and Norms 



Spectral Theory 

Definition: Let                            be a linear operator.  Any 
scalar                such that                        , where             ,  is 
called an eigenvalue of         and        an eigenvector of      . 

: n n
R R

λ∈ ( )x xλ= 0x ≠
x

Note: Along the direction of an eigenvector     , the 
operator        simply multiplies the vector by a scalar      .   

x
 λ

Note:  
Find the values of      such that the null-space of              
is not simply             , i.e. the trivial solution. 
 
Note: To find       we solve   
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λ det( ) 0IλΑ − = Characteristic 
Equation 



Spectral Theory (Examples) 
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Spectral Theory (Examples) 

Example (continued): 
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Spectral Theory (Examples) 

Example: 
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Spectral Theory 

                                                   is a polynomial of degree  
  

( ): detn n Iλ×Α∈ Α−R .n
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( )λ∆ is called the characteristic polynomial of A.  

•                       can be real, complex, or a combination of real 
and complex. 

•                       can be all distinct or we can have               for 

•    

• Suppose       is   complex:                           .   Then                            
is also an eigenvalue. 
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Spectral Theory 

Trace: Let                                      
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Lemma:  Let                        be distinct eigenvalues of      .  Then any 
                       of corresponding eigenvectors is linearly independent.   
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Singular Value Decomposition (SVD) 
Theorem: Any              matrix can be factored into: 
 
where 
•       is  an              orthogonal matrix, i.e., 
•       is an              orthogonal matrix, i.e., 
•       is a diagonal matrix of the form:   

 
 
 
 

•     are called singular values and they correspond to the eigenvalues 
of          . 

•           = number of nonzero singular values. 
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Spectral Theory 
Let 
    

    

    

           is the inverse of      (if it exists). 

n n×Α∈R
2ΑΑ = Α

4Α Α⋅Α= ⋅Α⋅Α
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1−Α Α

Theorem: (Cayley-Hamilton) 
Every matrix satisfies its own characteristic equation, i.e.,   ( )∆ Α = 0

     matrix of 0’s n n×



Spectral Theory 
Example: 
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Jordan Canonical form 
Theorem: For any            matrix        there exists a non-singular 
matrix       such that 
 
 
 
 
where    
 
Note: If all eigenvalues are distinct then   
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Jordan Canonical form (Examples) 
Examples: 
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Normed Linear Spaces 
Definition: Let                be a linear vector space. A real-valued 
function is called a norm (and is denoted by      ) if the following 
properties hold: 
i.          and 
ii.    
iii.      
 

( ),Χ 
.

0x ≥ 0 0 .x x xΧ= ∀= ∈Χ⇒
,x xxα α α∀ ∈Χ ∀= ∈
, .x xy y yx ≤ + ∀ ∈Χ+ (triangle inequality) 

• A linear space with a norm is called a normed linear space. 
• The norm can be considered as an operator. 

{ }. : 0x x+ + Χ = ∈ ≥ R R R
+RΧ .



Normed Linear Spaces 
Examples of norms: 
a)    
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nΧ = R

1
1
: i

n

i
x x

=

=∑

2
1

1/2
2:

n

i
i

x x
=

 
=   
∑

absolute value 

(1-norm) 

(2-norm / Euclidean norm) 
1/

1
1 : p

p

p

n

i
ixp x

=

 
=   

≤ < ∞ ∑

1
: max ii n

x x
≤ ≤∞

=

(p-norm) 

(∞-norm) 



Normed Linear Spaces 
Consider the set:    

    

 

{ }2 1x xU = ∈ =R
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Lemma: Let       and         be any two norms on        (or      ). Then 
there exist constants                   so  that    
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Normed Linear Spaces 
Notation: Normed linear spaces are sometimes denoted by    

                                  or   
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b)                              (can be extended to                     ) 
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Normed Linear Spaces (Examples) 
Consider                 with 
i.     
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Normed Linear Spaces (Examples) 
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Operator Norms 
Definition: A linear operator                      where           are normed 
linear spaces, is said to be a bounded linear operator if there is a 
constant         such that 
 
where        is independent of             . 
 
The smallest such         that satisfies this condition is called the 
norm of       and is denoted by        .  
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Geometry of an Operator Norm 


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

Υ
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0Χ
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OR: 



 ( ) 

Key questions: 
• Does        satisfy the axioms of a norm? 
• What is the linear space in this case? 



Operator Norms 
Lemma: Let                   be the set of all linear transformations 
from       to      ; i.e.,  
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Operator Norms 
Reminder:  
So far we have seen elements of linear spaces that are: 
 
Vectors of reals           (e.g.),   function  (e.g.,      ) 

 
Vectors of functions,                 , matrices, e.g.           , 

 
Matrices of polynomials                             , and  
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Operator Norms 
Lemma:         is indeed a norm on 
 
Proof: (i) obviously                and  
 (ii)   
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Operator Norms 
Examples of matrix norms: 
Let                    (considered as a linear operator from        to         ) 
 
(i) 
 
(ii) 
 
(iii) 
 
    (                       is the largest eigenvalue of            )  

Example: 

n nA ×∈R nR nR
( )ijαΑ =

1
max
x

x
∞

∞ ∞=
=Α Α

1 1
max ij

n

i jn
α

≤ ≤∞
=

Α = ∑

1
1 11

max
x

x
=

Α Α=
1 1 1

max
n

i
ijj n

α
≤ ≤ =

Α = ∑

2
2 21

max
x

x
=

Α Α= ( ) 1/2

ma2 xλ Α Α Α = 

( )maxλ Α Α Α Α

1 2
3 4
 

Α =  
  1 2

6 ; 5.465 ; 7
∞

Α = Α = Α = (Check !) 


	ECE 631�System Theory
	Spectral Theory
	Spectral Theory (Examples)
	Spectral Theory (Examples)
	Spectral Theory (Examples)
	Spectral Theory
	Spectral Theory
	Singular Value Decomposition (SVD)
	Spectral Theory
	Spectral Theory
	Jordan Canonical form
	Jordan Canonical form (Examples)
	Normed Linear Spaces
	Normed Linear Spaces
	Normed Linear Spaces
	Normed Linear Spaces
	Normed Linear Spaces (Examples)
	Normed Linear Spaces (Examples)
	Operator Norms
	Geometry of an Operator Norm
	Operator Norms
	Operator Norms
	Operator Norms
	Operator Norms

