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Preliminaries

We consider the class of single-input single-output nonlinear systems that can be
modeled by equations of the form

ẋ = f (x) + g(x)u

y = h(x)
(1)

in which x ∈ Rn and in which f : Rn → Rn and g : Rn → Rn are smooth maps
and h : Rn → R is a smooth function.

If the coordinates in which the state space description is provided are
appropriately transformed, the equations describing the system can be brought to
a form in which the design of feedback laws is facilitated.

In the case of a linear system, a change of coordinates consists in replacing the
original state vector x with a new vector x̃ related to x by means of linear
transformation x̃ = Tx in which T is a nonsingular matrix.

If the system is nonlinear, it is more appropriate to allow also for nonlinear
changes of coordinates. A nonlinear change of coordinates is a transformation
x̃ = Φ(x) in which Φ(·) is a map Rn → Rn. Such a map qualifies for a change of
coordinates if:

(i) Φ(·) is invertible, i.e. there exists a map Φ−1 : Rn → Rn such that
Φ−1(Φ(x)) = x for all x ∈ Rn and Φ(Φ−1(x̃)) = x̃ for all x̃ ∈ Rn

(ii) Φ(·) and Φ−1(·) are both smooth mappings, i.e. have continuous partial
derivatives of any order.

A transformation of this type is called a global diffeomorphism. A transformation
defined only in a neighborhood of a given point is called a local diffeomorphism.
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Relative degree

The nonlinear system (1) is said to have relative degree r at a point x◦ if: 1

(i) LgLkf h(x) = 0 for all x in a neighborhood of x◦ and all k < r − 1

(ii) LgL
r−1
f h(x◦) 6= 0 .

Note that the concept thus introduced is a local concept, namely r may depend
on the specific point x◦ where the functions LgLkf h(x) are evaluated. The value
of r may be different at different points of Rn and there may be points where a
relative degree cannot be defined. This occurs when the first function of the
sequence

Lgh(x), LgLf h(x), . . . , LgL
k
f h(x), . . .

which is not identically zero (in a neighborhood of x◦) is zero exactly at the point
x = x◦. However, since f (x), g(x), h(x) are smooth, the set of points where a
relative degree can be defined is an open and dense subset of Rn.

1Let λ be real-valued function and f a vector field, both defined on a subset U of Rn . The function Lf λ is the
real-valued function defined as

Lf λ(x) =
n∑

i=1

∂λ

∂xi
fi (x) :=

∂λ

∂x
f (x) .

This function is sometimes called the derivative of λ along f . If g is another vector field, the notation Lg Lf λ(x)

stands for the derivative of the real-valued function Lf λ along g and the notation Lkf λ(x) stands for the derivative

of the real-valued function Lk−1
f

λ along f .
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Relative degree

Assume the system at time t = 0 is in the state x(0) = x◦ and let’s calculate the
value of the output y(t) and of its derivatives with respect to time y (k)(t), for
k = 1, 2, . . ., at t = 0. We obtain

y(0) = h(x(0)) = h(x◦)

and

y (1)(t) =
∂h

∂x

dx

dt
=
∂h

∂x
[f (x(t)) + g(x(t))u(t)] = Lf h(x(t)) + Lgh(x(t))u(t) .

At time t = 0,
y (1)(0) = Lf h(x◦) + Lgh(x◦)u(0) ,

from which it is seen that, if r = 1, the value y (1)(0) is an affine function of u(0).

Otherwise, suppose r is larger than 1. If |t| is small, x(t) remains in a
neighborhood of x◦ and hence Lgh(x(t)) = 0 for all such t. As a consequence

y (1)(t) = Lf h(x(t)) .

This yields

y (2)(t) = Lf h
dx

dt
= Lf h[f (x(t)) + g(x(t))u(t)] = L2

f h(x(t)) + LgLf h(x(t))u(t) .

At time t = 0,
y (2)(0) = L2

f h(x◦) + LgLf h(x◦)u(0) ,

from which it is seen that, if r = 2, the value y (2)(0) is an affine function of u(0).
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Relative degree

Otherwise, if r larger than 2, for all t near t = 0 we have LgLf h(x(t)) = 0 and

y (2)(t) = L2
f h(x(t)) .

Continuing in this way, we get

y (k)(t) = Lkf h(x(t)) for all k < r and all t near t = 0

y (r)(0) = Lrf h(x◦) + LgL
r−1
f h(x◦)u(0) .

Thus, the integer r is exactly equal to the number of times one has to
differentiate the output y(t) at time t = 0 in order to have the value u(0) of the
input explicitly appearing.

The calculations above suggest that the functions h(x), Lf h(x), . . . , Lr−1
f h(x)

must have a special importance. As a matter of fact, such functions can be used
in order to define, at least partially, a local coordinates transformation around x◦.
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Relative degree and changes of coordinates

Proposition. Suppose the system has relative degree r at x◦. Then r ≤ n. If r is
strictly less than n, it is always possible to find n − r more functions
ψ1(x), . . . , ψn−r (x) such that the mapping

Φ(x) =



ψ1(x)
. . .

ψn−r (x)
h(x)

Lf h(x)
. . .

Lr−1
f h(x)


has a jacobian matrix which is nonsingular at x◦ and therefore qualifies as a local
coordinates transformation in a neighborhood of x◦. The value at x◦ of these
additional functions can be fixed arbitrarily. Moreover, it is always possible to
choose ψ1(x), . . . , ψn−r (x) in such a way that

Lgψi (x) = 0 for all 1 ≤ i ≤ n − r and all x around x◦.
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Relative degree and changes of coordinates

The description of the system in the new coordinates is found very easily. Set

z =


z1

z2

· · ·
zn−r

 =


ψ1(x)
ψ2(x)
· · ·

ψn−r (x)

 , ξ =


ξ1

ξ2

· · ·
ξr

 =


h(x)

Lf h(x)
· · ·

Lr−1
f h(x)


and

x̃ = col(z1, . . . , zn−r , ξ1, . . . , ξr ) := Φ(x) .

Bearing in mind the previous calculations, it is seen that

dξ1

d t
=

∂h

∂x

dx

d t
= Lf h(x(t)) = ξ2(t)

· · ·

dξr−1

d t
=

∂(Lr−2
f h)

∂x

dx

d t
= Lr−1

f h(x(t)) = ξr (t) .

while for ξr we obtain

dξr

d t
= Lrf h(x(t)) + LgL

r−1
f h(x(t))u(t).
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Relative degree and changes of coordinates

On the right-hand side of this equation, x must be replaced by its expression as a
function of x̃ , which will be written as x = Φ−1(z, ξ). Thus, setting

q(z, ξ) = Lrf h(Φ−1(z, ξ))

b(z, ξ) = LgL
r−1
f h(Φ−1(z, ξ))

the equation in question can be rewritten as

dξr

d t
= q(z(t), ξ(t)) + b(z(t), ξ(t))u(t) .

Note that, by definition of relative degree, at the point x̃◦ = col(z◦, ξ◦) = Φ(x◦),

we have b(z◦, ξ◦) = LgL
r−1
f h(x◦) 6= 0 . Thus, the coefficient b(z, ξ) is nonzero

for all (z, ξ) in a neighborhood of (z◦, ξ◦).
As far as the other new coordinates are concerned, we cannot expect any special
structure for the corresponding equations. However, if ψ1(x), . . . , ψn−r (x) have
been chosen in such a way that Lgψi (x) = 0, then

dzi

d t
=
∂ψi

∂x
[f (x(t)) + g(x(t))u(t)] = Lf ψi (x(t)) + Lgψi (x(t))u(t) = Lf ψi (x(t)).

Setting

f0(z, ξ) =

 Lf ψ1(Φ−1(z, ξ))
· · ·

Lf ψn−r (Φ−1(z, ξ))


the latter can be rewritten as

dz

d t
= f0(z(t), ξ(t)) .
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Normal forms

Thus, in summary, in the new (local) coordinates the system is described by
equations of the form

ż = f0(z, ξ)

ξ̇1 = ξ2

ξ̇2 = ξ3

· · ·
ξ̇r−1 = ξr

ξ̇r = q(z, ξ) + b(z, ξ)u .

(2)

In addition to these equations one has to specify how the output of the system is
related to the new state variables. Being y = h(x), it is immediately seen that

y = ξ1 . (3)

The equations thus introduced are said to be in strict normal form. They are
useful in understanding how certain control problems can be solved.
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Normal forms

The equations in question can be given a compact expression if we use the three
matrices Â ∈ Rr × Rr , B̂ ∈ Rr × R and Ĉ ∈ R× Rr defined as

Â =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · · · 1
0 0 0 · · · 0

 , B̂ =


0
0
· · ·
0
1

 , Ĉ =
(
1 0 0 · · · 0

)
.

With the aid of such matrices, the equations (2) and (3) can be re-written as

ż = f0(z, ξ)

ξ̇ = Âξ + B̂[q(z, ξ) + b(z, ξ)u]

y = Ĉξ .

(4)

Assumptions are known under which a normal form exists globally.
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Zero dynamics

Consider again system (1), assume that f (0) = 0 and h(0) = 0, suppose that the
system has relative degree r at x◦ = 0 and consider its normal form (4), in which
f0(0, 0) = 0 and q(0, 0) = 0.

Consider the problem of finding all pairs consisting of an initial state x◦ and of an
input function u(·), for which the corresponding output y(t) of the system is
identically zero for all t in a neighborhood of t = 0.

Recalling that in the normal form y(t) = ξ1(t) , it is seen that if y(t) = 0 for all
t, then

ξ1(t) = ξ2(t) = . . . = ξr (t) = 0 ,

that is ξ(t) = 0 for all t.

Thus, when the output of the system is identically zero, its state is constrained to
evolve in such a way that also ξ(t) is identically zero.

In addition, the input u(t) must necessarily be the unique solution of the equation

0 = q(z(t), 0) + b(z(t), 0)u(t)

(recall that b(z(t), 0) 6= 0 if z(t) is close to 0).

As far as the variable z(t) is concerned, it is seen that

ż(t) = f0(z(t), 0) .
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Zero dynamics

From this analysis we deduce the following facts. If the output y(t) is identically
zero, then necessarily the initial state of the system must be such that ξ(0) = 0,
whereas z(0) = z◦ can be arbitrary. According to the value of z◦, the input must
be

u(t) = −
q(z(t), 0)

b(z(t), 0)

where z(t) denotes the solution of the differential equation

ż = f0(z, 0) z(0) = z◦. (5)

The dynamics of (5) characterize the forced state behavior of the system when
input and initial conditions are chosen in such a way as to constrain the output to
remain identically zero. These dynamics, which are rather important in many of
the subsequent developments, are called the zero dynamics of the system.

If the system is linear, the dynamics of (5) are linear dynamics

ż = F0z

and it can be shown that the eigenvalues of F0 are exactly the zeros of the
transfer function of the system.
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Minimum-phase systems

Definition Consider a system of the form (1), with f (0) = 0 and h(0) = 0.
Suppose the system has relative degree r and possesses a globally defined normal.
The system is globally minimum-phase if the equilibrium z = 0 of the zero
dynamics

ż = f0(z, 0) (6)

is globally asymptotically stable. The system is strongly minimum-phase if system

ż = f0(z, ξ) , (7)

viewed as a system with input ξ and state z, is input-to-state stable.

By definition – then – a system is strongly minimum-phase if there exist a class
KL function β(·, ·) and a class K function γ(·) such that, for any z(0) ∈ Rn−r

and any piecewise-continuous bounded function ξ(·) : [0,∞)→ Rr , the response
z(t) of (7) from the initial state z(0) at time t = 0 satisfies,

‖z(t)‖ ≤ β(‖z(0)‖, t) + γ(‖ξ(·)‖[0,t]) for all t ≥ 0. (8)

Definition A system is strongly – and also locally exponentially – minimum-phase
if for any z0 ∈ Rn−r and any piecewise-continuous bounded function
ξ0(·) : [0,∞)→ Rr , an estimate of the form (8) holds, where β(·, ·) and γ(·) are
a class KL function and, respectively, a class K function bounded as

γ(r) ≤ ` r β(r , t) ≤ Are−αt for |r | ≤ d .
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