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Preliminaries

Comparison Functions

A continuous function α : [0, a)→ [0,∞) is said to belong to class K if it is
strictly increasing and α(0) = 0.

If a =∞ and limr→∞ α(r) =∞, the function is said to belong to class K∞.

Examples

α = Ar , α = Ar2, α = A
√
r , α(r) = tan−1(r)

A continuous function β : [0, a)× [0,∞)→ [0,∞) is said to belong to class KL
if, for each fixed t, the function

α : [0, a) → [0,∞)
r 7→ β(r , t)

belongs to class K and, for each fixed r , the function

ϕ : [0,∞) → [0,∞)
t 7→ β(r , t)

is decreasing and limt→∞ ϕ(t) = 0.

Examples

β(r , t) = Are−λt , β(r , t) = Ar2e−λt , β(r , t) =
A
√
r

1 + t2
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The Theorem of Lyapunov

Consider an autonomous nonlinear system

ẋ = f (x) (1)

in which x ∈ Rn, f (0) = 0 and f (x) is locally Lipschitz. The stability, or
asymptotic stability, properties of the equilibrium x = 0 of this system can be
tested via the well known criterion of Lyapunov.

Let Bd denote the open ball of radius d in Rn, i.e.

Bd = {x ∈ Rn : ‖x‖ < d} .

Theorem Let V : Bd → R be a C1 function such that, for some class K functions
α(·), α(·), defined on [0, d),

α(‖x‖) ≤ V (x) ≤ α(‖x‖) for all x ∈ Bd . (2)

If
∂V

∂x
f (x) ≤ 0 for all x ∈ Bd , (3)

the equilibrium x = 0 of (1) is stable.

If, for some class K function α(·), defined on [0, d),

∂V

∂x
f (x) ≤ −α(‖x‖) for all x ∈ Bd , (4)

the equilibrium x = 0 of (1) is locally asymptotically stable.

If d =∞ and, in the above inequalities, α(·), α(·) are class K∞ functions, the
equilibrium x = 0 of (1) is globally asymptotically stable.
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Boundeness of trajectories

Sometimes, in the design of feedback laws, while it is difficult to obtain a system
whose equilibrium x = 0 is globally asymptotically stable, it is relatively more easy
to obtain a system in which trajectories are bounded (maybe for a specific set of
initial conditions) and have suitable decay properties.

Instrumental, in such context, is the notion of sublevel set of a Lyapunov function
V (x) which, for a fixed non-negative real number c, is defined as

Ωc = {x ∈ Rn : V (x) ≤ c}.

As an example of how sublevel sets can be used to analyze boundedness and
decay of trajectories, consider the following.

Let r1 and r2 be two positive numbers, with r2 > r1. Suppose V (x) is a function
satisfying (2), with α(·) a class K∞ function. Pick any pair of positive numbers
c1, c2, such that

Ωc1 ⊂ Br1 ⊂ Br2 ⊂ Ωc2 .

Let Sc2
c1

denote the “annular” compact set

Sc2
c1

= {x ∈ Rn : c1 ≤ V (x) ≤ c2} .

Suppose that, for some a > 0,

∂V

∂x
f (x) ≤ −a for all x ∈ Sc2

c1
.
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The Theorem of Lyapunov

Then, for each initial condition x(0) ∈ Br2 , the trajectory x(t) of (1) is defined
for all t and there exists a finite time T such that x(t) ∈ Br1 for all t ≥ T .

In fact, take any x(0) ∈ Br2 \Ωc1 . Such x(0) is in Sc2
c1

. So long as x(t) ∈ Sc2
c1

, the
function V (x(t)) satisfies

d

dt
V (x(t) ≤ −a

and hence
V (x(t)) ≤ V (x(0))− at ≤ c2 − at .

Thus, at a time T ≤ (c2 − c1)/a, x(T ) is on the boundary of the set Ωc1 .

On the boundary of Ωc1 the derivative of V (x(t)) with respect to time is negative
and hence the trajectory enters the set Ωc1 and remains there for all t ≥ T .
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Input-to-state stability

In the analysis of forced nonlinear systems, the property of input-to-state
stability, introduced and thoroughly studied by E.D. Sontag, plays a role of
paramount importance.

Consider a forced nonlinear system

ẋ = f (x , u) (5)

with state x ∈ Rn, input u ∈ Rm, in which f (0, 0) = 0 and f (x , u) is locally
Lipschitz on Rn × Rm.

The input function u : [0,∞)→ Rm of (5) can be any piecewise continuous
bounded function. The space of all such functions is endowed with the so-called
supremum norm ‖u(·)‖[0,t), which is defined as

‖u(·)‖[0,t) = sup
τ∈[0,t)

‖u(τ)‖ .

Definition System (5) is said to be input-to-state stable if there exist a class KL
function β(·, ·) and a class K function γ(·), called a gain function, such that, for
any bounded input u(·) and any x(0) ∈ Rn, the response x(t) of (5) in the initial
state x(0) satisfies

‖x(t)‖ ≤ β(‖x(0)‖, t) + γ(‖u(·)‖[0,t)) (6)

for all t ≥ 0.
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Input-to-state stability

An alternative way to say that a system is input-to-state stable is to say that
there exists a class KL function β(·, ·) and a class K function γ(·) such that, for
any bounded input u(·) and any x(0) ∈ Rn, the response x(t) of (5) in the initial
state x(0) satisfies

‖x(t)‖ ≤ max{β(‖x(0)‖, t), γ(‖u(·)‖[0,t)} for all t ≥ 0 (7)

Note that input-to-state stability implies global asymptotic stability of the
equilibrium z = 0 of ẋ = f (x , 0).

A C1 function V : Rn → R is called an ISS-Lyapunov function for system (5) if
there exist class K∞ functions α(·), α(·), α(·), and a class K function χ(·) such
that

α(‖x‖) ≤ V (x) ≤ α(‖x‖) for all x ∈ Rn (8)

and

∂V

∂x
f (x , u) ≤ −α(‖x‖) for all (x , u) ∈ Rn × Rm satisfying ‖x‖ ≥ χ(‖u‖). (9)

An alternative, equivalent, definition is the following one. A C1 function
V : Rn → R is an ISS-Lyapunov function for system (5) if and only if there exist
class K∞ functions α(·), α(·), α(·), and a class K function σ(·) such that (8)
holds and

∂V

∂x
f (x , u) ≤ −α(‖x‖) + σ(‖u‖) for all (x , u) ∈ Rn × Rm . (10)
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Input-to-state stability

Theorem System (5) is input-to-state stable if and only if there exists an
ISS-Lyapunov function. In particular, if such function exists, then an estimate of
the form (6) holds with γ(r) = α−1(α(χ(r))).

Example: A stable linear system

ẋ = Ax + Bu

is input-to-state stable, with a linear gain function.

Example: The system
ẋ = −axk + bxpu

with a > 0 and k > p is input-to-state stable, with gain function

γ(r) = A r
1

k−p .

Counterexample: The system
ẋ = −x + xu

is not input-to-state stable.
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Cascade-connected systems

In the design of stabilizing feedback laws, it often occurs to determine the
stability of a cascade-connected system of the form

ż = f (z, ξ)

ξ̇ = g(ξ) ,
(11)

in which z ∈ Rn, ξ ∈ Rm, f (0, 0) = 0, g(0) = 0.

Lemma Suppose the equilibrium z = 0 of

ż = f (z, 0) (12)

is locally asymptotically stable and the equilibrium ξ = 0 of ξ̇ = g(ξ) is stable.
Then the equilibrium (z, ξ) = (0, 0) of (11) is stable. If the equilibrium ξ = 0 of
ξ̇ = g(ξ) is locally asymptotically stable, then the equilibrium (z, ξ) = (0, 0) of
(11) is locally asymptotically stable.

It should be stressed, however, that the global asymptotic stability of z = 0 as an
equilibrium of (12) and the global asymptotic stability of ξ = 0 as an equilibrium
of ξ̇ = g(ξ) do not imply, in general, global asymptotic stability of the equilibrium
(z, ξ) = (0, 0) of the cascade.
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Cascade-connected system

Example: Consider the system

f (z, ξ) = −z + z2ξ
g(ξ) = −ξ .

Clearly z = 0 is a globally asymptotically equilibrium of ż = f (z, 0) and ξ = 0 is a
globally asymptotically equilibrium of ξ̇ = g(ξ). However, this system has finite
escape times.

Theorem Suppose that system

ż = f (z, ξ) , (13)

viewed as a system with input ξ and state z is input-to-state stable and that
system

ξ̇ = g(ξ, u) , (14)

viewed as a system with input u and state ξ is input-to-state stable as well.
Then, system

ż = f (z, ξ)

ξ̇ = g(ξ, u)

is input-to-state stable.
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Feedback-connected systems

Consider a nonlinear system modeled by equations of the form

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2) ,
(15)

in which x1 ∈ Rn1 , x2 ∈ Rn2 , and f1(0, 0) = 0, f2(0, 0) = 0 (see Fig. 11). This is
seen as interconnection of a system Σ1 with internal state x1 and input x2 and of
a system Σ2 with internal state x2 and input x1.

Assume that both Σ1 and Σ2 are input-to-state stable.
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Feedback-connected systems

This means that there exists two class KL functions β1(·, ·), β2(·, ·) and two class
K functions γ1(·), γ2(·) such that,

for any bounded input x2(·) and any x1(0) ∈ Rn1 , the response x1(t) of

ẋ1 = f1(x1, x2)

in the initial state x1(0) satisfies

‖x1(t)‖ ≤ max{β1(‖x1(0)‖, t), γ1(‖x2(·)‖[0,t])} (16)

for all t ≥ 0,

and for any bounded input x1(·) and any x2(0) ∈ Rn2 , the response x2(t) of

ẋ2 = f2(x1, x2)

in the initial state x2(0) satisfies

‖x2(t)‖ ≤ max{β2(‖x2(0)‖, t), γ2(‖x1(·)‖[0,t])} (17)

for all t ≥ 0.
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The Small-Gain Theorem

It can be proven that ,if the composite function γ1 ◦ γ2(·) satisfies 1

γ1 ◦ γ2(r) < r for all r > 0 , (18)

the pure feedback interconnection of Σ1 and Σ2 is globally asymptotically stable.

This result is usually referred to as the small-gain theorem for input-to-state
stable systems.

Theorem Suppose Σ1 and Σ2 are two input-to-state stable systems. If the
condition (18) holds, system (15)is globally asymptotically stable.

1A function γ : [0,∞)→ [0,∞) satisfying γ(0) = 0 and γ(r) < r for all r > 0 is called a simple
contraction. Observe that if γ1 ◦ γ2(·) is a simple contraction, then also γ2 ◦ γ1(·) is a simple contraction. In

fact, let γ−1
1 (·) denote the inverse of the function γ1(·), which is defined on an interval of the form [0, r∗1 ) where

r∗1 = lim
r→∞

γ1(r) .

If γ1 ◦ γ2(·) is a simple contraction, then

γ2(r) < γ
−1
1 (r) for all 0 < r < r∗1 ,

and this shows that
γ2(γ1(r)) < r for all r > 0 ,

i.e. γ2 ◦ γ1(·) is a simple contraction.
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