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Stabilization via full state feedback

If a system is strongly minimum-phase, it is quite easy to design a globally
stabilizing state feedback law.

Consider a system in normal form, which we assume to be globally defined, and
assume that the system is strongly minimum-phase, i.e. assume that f0(0, 0) = 0
and that

ż = f0(z, ξ) ,

viewed as a system with input ξ and state z, is input-to-state stable.

Since the coefficient b(z, ξ) is nowhere zero, consider the feedback law

u =
1

b(z, ξ)
(−q(z, ξ) + K̂ξ) , (1)

in which K̂ ∈ R× Rr is a vector of design parameters.

Under such feedback law, the system becomes

ż = f0(z, ξ)

ξ̇ = (Â + B̂K̂)ξ .
(2)

Since the pair (Â, B̂) is reachable, it is possible to pick K̂ so that the matrix

(Â + B̂K̂) is a Hurwitz matrix. If this is the case, system (2) appears as a
cascade-connection in which a globally asymptotically stable system (the lower
sub-system) drives an input-to-state stable system (the upper sub-system).

According a standard result, such cascade-connection is globally asymptotically
stable.
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Stabilization via full state feedback

The feedback law (1) is expressed in the (z, ξ) coordinates that characterize the
normal form. To express it in the original coordinates that characterize the model
of the system, it suffices to bear in mind that

b(z, ξ) = LgL
r−1
f h(x) , q(z, ξ) = Lrf h(x)

and to observe that, since ξi = Li−1
f h(x) for i = 1, . . . , r , then

K̂ξ =
r∑

i=1

k̂iL
i−1
f h(x)

in which k̂1, . . . , k̂r are the entries of the row vector K̂ . Thus, we can conclude
what follows.

Proposition Consider a system of the form

ẋ = f (x) + g(x)u

y = h(x)
(3)

with f (0) = 0 and h(0) = 0. Suppose the system has relative degree r and
possesses a globally defined normal form. Suppose the system is strongly
minimum-phase. If K̂ ∈ R× Rr is any vector such that σ(Â + B̂K̂) ∈ C−, the
state feedback law

u(x) =
1

LgL
r−1
f h(x)

(
−Lrf h(x) +

r∑
i=1

k̂iL
i−1
f h(x)

)
, (4)

globally asymptotically stabilizes the equilibrium x = 0.
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Stabilization via full state feedback

This design method is also known as feedback linearization. In fact, the dynamics
of the second set of equations, that is the only dynamics that affects the output,
is that of a linear system.

This feedback strategy, although very intuitive and elementary, is not useful in a
practical context because it relies upon exact cancelation of certain nonlinear
function and, as such, possibly non-robust.

Uncertainties in q(z, ξ) and b(z, ξ) would make this strategy un-applicable.

Moreover, the implementation of such control law requires the availability, for
feedback purposes, of the full state (z, ξ) of the system, a condition that might
be hard to ensure.

Motivated by these considerations, we will re-address the problem by seeking
feedback laws depending on fewer measurements (hopefully only on the measured
output y) and possibly robust with respect to model uncertainties. Of course, in
return, some price has to be paid.
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Backstepping

The assumption that the system is strongly minimum-phase can be weakened if a
system has the special structure

ż = f0(z, ξ1)

ξ̇1 = ξ2

· · ·
ξ̇r1 = ξr

ξ̇r = q(z, xi) + b(z, ξ)u .

(5)

The design of a stabilizing feedback law is based on a recursive procedure, known
as backstepping, by means of which it is possible to construct, for a system
having such special structure, a state feedback stabilizing law as well as a
Lyapunov function.

The procedure in question reposes on the following results.
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Backstepping

Lemma Consider a system described by equations of the form

ż = f (z, ξ)

ξ̇ = u
(6)

in which (z, ξ) ∈ Rn−r × R, and f (0, 0) = 0. Suppose the equilibrium z = 0 of
ż = f (z, 0) is globally asymptotically stable, with Lyapunov function V (z).

Express f (z, ξ) in the form 1

f (z, ξ) = f (z, 0) + p(z, ξ)ξ (7)

where p(z, ξ) is a smooth function.

Set

u(z, ξ) = −ξ −
∂V

∂z
p(z, ξ) . (8)

Then, the equilibrium (z, ξ) = (0, 0) of (10) controlled by (8) is globally
asymptotically stable, with Lyapunov function

W (z, ξ) = V (z) +
1

2
ξ2 .

1To check that this is always possible, observe that the difference

f̄ (z, ξ) = f (z, ξ)− f (z, 0)

is a smooth function vanishing at ξ = 0, and express f̄ (z, ξ) as

f̄ (z, ξ) =

∫ 1

0

∂ f̄ (z, sξ)

∂s
ds =

∫ 1

0

[ ∂ f̄ (z, ζ)

∂ζ

]
ζ=sξ

ξds .
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Backstepping

Proof. By assumption, V (z) is positive definite and proper, which implies that the
function W (z, ξ) in the Lemma is positive definite and proper as well. Moreover,

∂V

∂z
f (z, 0) ≤ −α(‖z‖) ∀z ∈ Rn−r

for some class K function α(·). Observe that

Ẇ =
∂W

∂z
f (z, ξ) +

∂W

∂ξ
u =

∂V

∂z
f (z, 0) +

∂V

∂z
p(z, ξ)ξ + ξu .

Choosing u as in (8) yields

Ẇ ≤ −α(‖z‖)− ξ2 ∀(z, ξ) ∈ Rn−r × R .

The quantity on the right-hand side is negative for all nonzero (z, ξ) and this
proves the Lemma.
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Backstepping

This result can extended by showing that, to the purpose of stabilizing the
equilibrium (z, ξ) = (0, 0) of system (10), it suffices to assume that the
equilibrium z = 0 of

ż = f (z, ξ) ,

viewed as a system with state z and input ξ, is stabilizable by means of a smooth
control law ξ = ξ∗(z).

To see that this is the case, change the variable ξ of (10) into

ζ = ξ − ξ∗(z) ,

which transforms (10) into a system

ż = f (z, ξ∗(z) + ζ)

ζ̇ = −
∂ξ∗

∂z
f (z, ξ∗(z) + ζ) + u .

(9)

Pick now

u = −
∂ξ∗

∂z
f (z, ξ∗(z) + ζ) + ū

so as to obtain a system of the form

ż = f (z, ξ∗(z) + ζ)

ζ̇ = ū .
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Backstepping

This system has the same structure as that of system (10), and – by construction
– satisfies the assumptions of the Lemma.

Thus, this system can be globally stabilized by means of a control ū having the
structure of the control indicated in that Lemma.

The function ξ∗(z), which is seen as a “control” imposed on the upper subsystem
of (10), is usually called a virtual control.

Lemma Consider a system described by equations of the form

ż = f (z, ξ)

ξ̇ = u
(10)

in which (z, ξ) ∈ Rn−r × R, and f (0, 0) = 0. Suppose the equilibrium z = 0 of
ż = f (z, ξ) is globally asymptotically stabilized by means of a virtual control
ξ∗(z).

Then, the system can be globally asymptotically stabilized by means of a control
u(z, ξ).
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Backstepping

The property indicated above can be used repeatedly, to address the problem of
stabilizing a system of the form (5).

In the first iteration, beginning from a virtual control ξ∗1 (z) that stabilizes the
equilibrium z = 0 of

ż = f0(z, ξ∗1 (z)) ,

one finds a virtual control ξ∗2 (z, ξ1) that stabilizes the equilibrium (z, ξ1) = (0, 0)
of

ż = f0(z, ξ1)

ξ̇1 = ξ∗2 (z, ξ1) .

Then, using the Lemma again, one finds a virtual control ξ∗3 (z, ξ1, ξ2) that
stabilizes the equilibrium (z, ξ1, ξ2) = (0, 0, 0) of

ż = f0(z, ξ1)

ξ̇1 = ξ2

ξ̇2 = ξ∗3 (z, ξ1) .

and so on.
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Backstepping

Note that, while the feedback law (1) has a very simple expression, the feedback
law derived above cannot be easily expressed in closed form.

Rather, it can only be derived by means of a recursive procedure.

The actual expression of the law in question also requires the explicit knowledge
of the function V (z).

In return, the stabilization method just described does not require the upper
sub-system of the form (5) to be input-to-state stable, as assumed in the case of
the law (1), but only relies upon the assumption that the sub-system in question
is stabilizable, by means of an appropriate virtual control ξ∗1 (z).

Note also that the method in question requires availability of the full state and is
not robust, as it reposes on exact cancelations.
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Stabilization via Partial State Feedback

We address now the issue of using only a partial state information to stabilize the
system.

We consider first the case of a system having relative degree 1, which in normal
form is written as

ż = f0(z, ξ)

ξ̇ = q(z, ξ) + b(z, ξ)u

y = ξ

(11)

in which z ∈ Rn−1 and ξ ∈ R. As before, we assume that

f0(0, 0) = 0
q(0, 0) = 0 .

The coefficient b(z, ξ) is by definition nowhere zero. Being a continuous function
of (z, ξ), it is either always positive or always negative. Witout loss of generality,
we assume

b(z, ξ) > 0 for all (z, ξ) .

We retain the assumption that the system is globally minimum-phase.
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Stabilization via Partial State Feedback

The system is controlled by the very simple feedback law

u = −ky (12)

with k > 0, which yields a closed-loop system

ż = f0(z, ξ)

ξ̇ = q(z, ξ)− b(z, ξ)kξ .
(13)

Set
x = col(z, ξ)

and rewrite (13) as
ẋ = Fk (x) (14)

in which

Fk (x) =

(
f0(z, ξ)

q(z, ξ)− b(z, ξ)kξ

)
.
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Stabilization via Partial State Feedback

Proposition Consider system (3), with f (0) = 0 and h(0) = 0. Suppose the
system has relative degree 1 and possesses a globally defined normal form.
Suppose the system is globally minimum-phase. Let the control be provided by
the output feedback u = −ky so that a closed-loop system modeled as in (14) is
obtained. Then, for every choice of a compact set C and of a number ε > 0,
there is a number k∗ and a finite time T such that, if k ≥ k∗, all trajectories of
the closed-loop system with initial condition x(0) ∈ C remain bounded and satisfy
‖x(t)‖ < ε for all t ≥ T .

This Proposition shows that, no matter how large the set C of initial conditions is
chosen and no matter how small a “target set” Bε is chosen, there is a value k∗

of the gain in (12) and a finite time T such that, if the actual gain parameter k is
larger than or equal to k∗, all trajectories of the closed-loop system with origin in
C are bounded and, for all t ≥ T , remain in the set Bε.

This property is commonly referred to by saying that the control law (12) is able
to semi-globally and practically stabilize the point (z, ξ) = (0, 0).

The term “practical” (as opposite to asymptotic) is meant to stress the fact that
the convergence is not to a point, but rather to a neighborhood of that point,
that can be chosen arbitrarily small, while the term “semiglobal” (as opposite to
global) is meant to stress the fact that the convergence to the target set is not
for all initial conditions, but rather for a compact set of initial conditions, that
can be chosen arbitrarily large.
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Stabilization via Partial State Feedback

The standing assumption here is that the system is globally minimum-phase (as
opposite to strongly minimum phase) and the stability result is obtained via
high-gain output feedback.

The minimal value k∗ of the feedback gain k is determined by the choice of the
set C and by the value of ε. In particular, as it appears from the proof, k∗

increases as C “increases” (in the sense of set inclusion) and also increases as ε
decreases.

To obtain asymptotic stability, either a nonlinear control law u = −κ(y) is needed
or, if one insists in using a linear law u = −ky , the extra assumption that the
system is also locally exponentially minimum phase, is necessary.

c© Alberto Isidori Stabilization of Nonlinear Systems via State Feedback



Stabilization via Partial State Feedback

Consider, the candidate Lyapunov function

W (x) = V (z) +
1

2
ξ2

For any real number a > 0, let Ωa denote the sublevel set of W (x)

Ωa = {x ∈ Rn : W (x) ≤ a}

and let Bε = {x ∈ Rn : ‖x‖ < ε} denote the (open) ball radius ε. Assume,
without loss of generality, that C is such that Bε ⊂ C.

Since W (x) is positive definite and proper, there exist numbers 0 < d < c such
that

Ωd ⊂ Bε ⊂ C ⊂ Ωc .

Consider also the compact “annular” region

Sc
d = {x ∈ Rn : d ≤W (x) ≤ c} .

It will be shown that – if the gain coefficient k is large enough – the function

Ẇ (x) :=
∂W

∂x
Fk (x) =

∂V

∂z
f0(z, ξ) + ξq(z, ξ)− b(z, ξ)kξ2

is negative at each point of Sc
d .
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Stabilization via Partial State Feedback

To this end, proceed as follows. Consider the compact set

S0 = {x ∈ Sc
d : ξ = 0} .

At each point of S0

Ẇ (x) =
∂V

∂x
f0(z, 0) ≤ −α(‖z‖)

Since minx∈S0
‖z‖ > 0, there is a number a > 0 such that

Ẇ (x) ≤ −a ∀x ∈ S0 .

Hence, by continuity, there is an open set S ′ ⊃ S0 such

Ẇ (x) ≤ −a/2 ∀x ∈ S ′ . (15)

Consider now the set
S ′′ = {x ∈ Sc

d : x 6∈ S ′} .
which is a compact set (and note that S ′′ ∪ S ′ = Sc

d ), let

M = max
x∈S ′′

{
∂V

∂z
f0(z, ξ) + ξq(z, ξ)} m = min

x∈S ′′
{b(z, ξ)ξ2}

and observe that m > 0 because b(z, ξ) > 0 and ξ cannot vanish at any point of
S ′′.
Thus, since k > 0, we obtain

Ẇ (x) ≤ M − km ∀x ∈ S ′′ .

Let k1 be such that M − k1m = −a/2. Then, if k ≥ k1,

Ẇ (x) ≤ −a/2 ∀x ∈ S ′′ . (16)
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Stabilization via Partial State Feedback

This, together with (15) shows that

k ≥ k1 ⇒ Ẇ (x) ≤ −a/2 ∀x ∈ Sc
d ,

as anticipated.

This being the case, suppose the initial condition x(0) of (14) is in Sc
d . It follows

from known arguments that x(t) ∈ Ωc for all t ≥ 0 and, at some time

T ≤ 2(c − d)/a ,

x(T ) is on the boundary of the set Ωd .

On the boundary of Ωd the derivative of W (x(t)) with respect to time is negative
and hence the trajectory enters the set Ωd and remains there for all t ≥ T . Since
all x ∈ Ωd are such that ‖x‖ < ε, this completes the proof.
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Stabilization via Partial State Feedback

The case of a system having relative degree r > 1 can be reduced to the case
discussed above by means of a technique which is reminiscent of the technique of
“adding stable zeros” used to similar purposes in linear systems.

Suppose the normal form

ż = f0(z, ξ1, . . . , ξr−1, ξr )

ξ̇1 = ξ2

· · ·
ξ̇r−1 = ξr

ξ̇r = q(z, ξ1, . . . , ξr−1, ξr ) + b(z, ξ1, . . . , ξr−1, ξr )u

. (17)

is globally defined and let the variable ξr be replaced by a new state variable
defined as

θ = ξr + a0ξ1 + a1ξ2 + · · ·+ ar−2ξr−1

in which a0, a1, . . . , ar−2 are design parameters.
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Stabilization via Partial State Feedback

After this change of coordinates, the system becomes

ż = f0(z, ξ1, . . . , ξr−1,−
∑r−1

i=1 ai−1ξi + θ)

ξ̇1 = ξ2

· · ·
ξ̇r−2 = ξr−1

ξ̇r−1 = −
∑r−1

i=1 ai−1ξi + θ

θ̇ = a0ξ2 + a1ξ3 + · · ·+ ar−2(−
∑r−1

i=1 ai−1ξi + θ)

+ q(z, ξ1, . . . , ξr−1,−
∑r−1

i=1 ai−1ξi + θ)

+ b(z, ξ1, . . . , ξr−1,−
∑r−1

i=1 ai−1ξi + θ)u .

This system, with θ regarded as output, has a structure which is identical to that
of system (11)

In fact, if we set
ζ = col(z, ξ1, . . . , ξr−1) ∈ Rn−1

ȳ = θ

we obtain a system of the form

ζ̇ = f̄0(ζ, θ)

θ̇ = q̄(ζ, θ) + b̄(ζ, θ)u

ȳ = θ .

(18)
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Stabilization via Partial State Feedback

In order to be able to use the stabilization results deduced above, it remains to
check whether system (18) is globally minimum-phase (respectively, globally – and
also locally exponentially – minimum-phase) i.e. whether the equilibrium ζ = 0 of

ζ̇ = f̄0(ζ, 0)

is globally asymptotically stable (respectively, globally asymptotically and locally
exponentially stable).
This system has the structure of a cascade interconnection

ż = f0(z, ξ1, . . . , ξr−1,−
∑r−1

i=1 ai−1ξi )
ξ̇1

ξ̇2

· · ·
ξ̇r−2

ξ̇r−1

 =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · · · 1
−a0 −a1 −a2 · · · −ar−2




ξ1

ξ2

· · ·
ξr−2

ξr−1

 .
(19)

If the ai ’s are such that the polynomial

d(λ) = λr−1 + ar−2λ
r−2 + · · ·+ a1λ+ a0 (20)

is Hurwitz, the lower subsystem of the cascade is (globally) asymptotically stable.
If system (17) is strongly minimum-phase, the upper subsystem of the cascade,
viewed as a system with input (ξ1, . . . , ξr−1) and state z is input-to-state stable.
Thus, system (19) is globally asymptotically stable.
If, in addition, the zero dynamics of (17) are also locally exponentially stable,
then system (19) is also locally exponentially stable.
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Stabilization via Partial State Feedback

As far as the stabilizing law is concerned, observe that – in the present context –
the stabilizing feedback (12) becomes

u = −kθ = −k(a0ξ1 + a1ξ2 + · · ·+ ar−2ξr−1 + ξr )

Bearing in mind the fact that ξi = Li−1
f h(x) for i = 1, . . . , r , one can conclude

that the stabilizing feedback as the form

u = −k
( r∑

i=1

aiL
i−1
f h(x)

)
. (21)

with the ai ’s such that the polynomial (20) is Hurwitz and ar−1 = 1.

Proposition For every choice of a compact set C and of a number ε > 0, there is
a number k∗ and a finite time T such that, if k ≥ k∗, all trajectories of the
closed-loop system with initial condition x(0) ∈ C remain bounded and satisfy
‖x(t)‖ < ε for all t ≥ T . If the system is strongly – and also locally exponentially
– minimum-phase, for every choice of a compact set C there is a number k∗ such
that, if k ≥ k∗, the equilibrium x = 0 of the resulting closed-loop system is
asymptotically (and locally exponentially) stable, with a domain of attraction A
that contains the set C.
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