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Preliminaries

Consider a single-input single-output system having relative degree r > 1, and
possessing a globally defined normal form, which can be written as

ż = f (z, ξ)

ξ̇ = Âξ + B̂[q(z, ξ) + b(z, ξ)u]

y = Ĉξ ,

(1)

where z ∈ Rn−r , ξ ∈ Rr and

Â =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · · · 1
0 0 0 · · · 0

 , B̂ =


0
0
· · ·
0
1

 , Ĉ =
(
1 0 0 · · · 0

)
.

Assume that
q(0, 0) = 0 (2)

and that the coefficient b(z, ξ) satisfies

0 < bmin ≤ b(z, ξ) ≤ bmax for all (z, ξ) (3)

for some bmin, bmax.

Finally, assume that f (0, 0) = 0

ż = f (z, ξ) , (4)

viewed as a system with input ξ and state z, is input-to-state stable. That is,
assume that system (1) is strongly minimum phase.

c© Alberto Isidori Stabilization by Output Feedback



Control via extended observer

We have seen that the feedback law

u =
1

b(z, ξ)
(Kξ − q(z, ξ)) , (5)

if K is such that (Â + B̂K) is a Hurwitz matrix, globally asymptotically stabilizes
the equilibrium (z, ξ) = (0, 0) of the resulting closed-loop system.

However, the implementation of this law requires accurate knowledge of b(z, ξ)
and q(z, ξ) and availability of the full state (z, ξ).

We will see in what follows that a suitable “asymptotic proxy” of this law can be
designed, which does not suffer such limitations.

The idea is to use the measured output y to drive an appropriate dynamical
system to the purpose of estimating the components of ξ as well as to overcome
the necessity of knowing the functions b(z, ξ) and q(z, ξ).

To this end, let ψ(ξ, σ) be the function defined as

ψ(ξ, σ) =
1

b0
[Kξ − σ] ,

in which ξ ∈ Rr , σ ∈ R, b0 is a design parameter and K a vector with the
properties indicated above (i.e. such that (Â + B̂K) is a Hurwitz matrix).

Moreover, let g : R→ R be a smooth “saturation” function, characterized as
follows: g(s) = s if |s| ≤ `, g(s) is odd and monotonically increasing, with
0 < g ′(s) ≤ 1, and lims→∞ g(s) = L(1 + c) with 0 < c � 1.

The “saturation level” `, is a design parameter that will be determined later.
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Control via extended observer

System (1) is controlled by a feedback law of the form

u = g(ψ(ξ̂, σ)) , (6)

in which ξ̂ ∈ Rr and σ are states of the dynamical system

˙̂ξ1 = ξ̂2 + κα1(y − ξ̂1)
˙̂ξ2 = ξ̂3 + κ2α2(y − ξ̂1)

· · ·
˙̂ξr−1 = ξ̂r + κr−1αr−1(y − ξ̂1)

˙̂ξr = σ + b0g(ψ(ξ̂, σ)) + κrαr (y − ξ̂1)

σ̇ = κr+1αr+1(y − ξ̂1) .

(7)

The coefficients κ and α1, α2, . . . , αr+1 are design parameters.
The dynamical system thus defined has the typical structure of an “observer”. In
the analysis of the asymptotic properties of the resulting closed-loop system, it is
convenient to replace ξ̂1, . . . , ξ̂r , σ by means of (scaled) “error” variables, defined
as follows

e1 = κr (ξ1 − ξ̂1)

e2 = κr−1(ξ2 − ξ̂2)
· · ·

er = κ(ξr − ξ̂r )
er+1 = q(z, ξ) + [b(z, ξ)− b0]g(ψ(ξ, σ))− σ .

(8)

The first r of these relations can be trivially inverted, to recover each ξ̂i , as
function of ei and ξi .
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Inversion of the error map

To recover σ form the latter, b0 needs to be chosen appropriately. To this end,
bearing in mind the expression of ψ(ξ, σ), observe that the relation in question is
equivalent to the following one

Kξ − q(z, ξ) + er+1

b(z, ξ)
=

b0

b(z, ξ)

[(b(z, ξ)− b0

b0

)
g(ψ(ξ, σ)) + ψ(ξ, σ)

]
. (9)

If one sets

ψ∗(z, ξ, er+1) =
Kξ − q(z, ξ) + er+1

b(z, ξ)

and defines a function F : R→ R as

F (s) =
b0

b(z, ξ)

[(b(z, ξ)− b0

b0

)
g(s) + s

]
(10)

the relation (9) can be simply rewritten as

ψ∗ = F (ψ) .

Since b(z, ξ), by assumption, is bounded as in (3), it is always possible to pick b0

so as to make ∣∣∣b(z, ξ)− b0

b0

∣∣∣ ≤ δ0 < 1 for some δ0. (11)

Thus, since 0 < g ′(s) ≤ 1 by hypothesis, if b0 is chosen in this way, F ′(s) is
strictly positive, i.e. F (s) is a strictly increasing (odd) function.
Moreover, since lims→∞ g(s) = L(1 + c), it is seen that lims→∞ F (s) =∞, and
consequently F (R) = R.
In summary, F (s) is globally invertible.
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The dynamics of the observation error

It is also worth noting that, so long as |s| ≤ L, the function F (s) is an identity,
i.e. F (s) = s.

Hence, if b0 is chosen to satisfy (11), one has

ψ = F−1(ψ∗)

and this – bearing in mind the expressions of ψ and ψ∗ – shows that σ can
always be recovered, from the last of (8), as a smooth function of z, ξ, er+1. That

is, ξ̂ = ξ̂(ξ, e) and σ = σ(z, ξ, e).

Appropriate calculations show that the variable e = col(e1, . . . , er+1) thus defined
satisfies an equation having the following structure

ė = κ[A− BC∆0(z, ξ, e)]e + B1∆1(z, ξ, e) + B2∆2(z, ξ, e) , (12)

in which

A =


−α1 1 0 · · · 0
−α2 0 1 · · · 0
· · · · · · 0
−αr · · · · · 1
−αr+1 · · · · · 0

 , B = B2 =


0
0
· · ·
0
1

 , B1 =


0
0
· · ·
1
0

 ,

C =
(
αr+1 0 · · · 0 0

)
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The overall system

Thus, in summary, the controlled system is viewed as interconnection of the form

ż = f (z, ξ)

ξ̇ = (Â + B̂K)ξ + B̂[q(z, ξ) + b(z, ξ)g(K ξ̂−σ
b0

)− Kξ] ,
(13)

in which ξ̂ and σ are to be seen as functions of e, namely ξ̂ = ξ̂(ξ, e) and
σ = σ(z, ξ, e),

ė = κ[A− BC∆0(z, ξ, e)]e + B1∆1(z, ξ, e) + B2∆2(z, ξ, e) (14)

The “coupling terms” ∆0(z, ξ, e),∆1(z, ξ, e),∆2(z, ξ, e) are suitable real-valued
functions having the following properties.

If b0 is chosen so as to satisfy (11), then |∆0(z, ξ, e)| ≤ δ0 < 1, for some δ0.
|∆1(z, ξ, e)| < δ1|e| for some δ1. For any compact set S there is a number MS
such that |∆2(z, ξ, e)| ≤ MS for all (z, ξ) ∈ S and all e ∈ Rr+1. This number
MS is independent of κ.

If the design parameter κ is large, the system (14)–(??) has the standard form of
a two-time-scale system.

c© Alberto Isidori Stabilization by Output Feedback



Main results

Lemma There exist a choice of the coefficients α0, · · · , αr , a positive definite and
symmetric (r + 1)× (r + 1) matrix P and a number λ > 0 such that

P[A− BC∆0(z, ξ, e)] + [A− BC∆0(z, ξ, e)]>P ≤ −λI . (15)

Lemma Let the αi ’s be chosen so as to make (15) satisfied. Suppose

(z(t), ξ(t)) ∈ S for all t ∈ [0,Tmax) and suppose that ‖(ξ̂, σ)(0)‖ ≤ R. Then, for
every 0 < T ≤ Tmax and every ε > 0, there is a κ∗ such that, for all κ ≥ κ∗,

‖e(t)‖ ≤ 2ε for all t ∈ [T ,Tmax).

Proposition Consider system (1), controlled by (6)–(7). Suppose that (2) holds
and that b(x , ξ) is bounded as in (3). Suppose (1) is strongly minimum phase

(with respect to the set A = {0}). Let K be such that Â + B̂K is Hurwitz. For
every choice of a compact set C, there is a choice of the design parameters b0, L
and α1, . . . , αr+1 and a number κ∗ such that, for all κ ≥ κ∗, the equilibrium
(z, ξ, ξ̂, σ) = (0, 0, 0, 0) is asymptotically stable, with a domain of attraction that
contains the set C.
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Asymptotic performance recovery

It can be shown that, for t ≥ T (where T can be made arbitrarily small), the
upper system of the interconnection becomes

ż = f (z, ξ)

ξ̇ = (Â + B̂K)ξ +O(e(t)) ,

in which e(t) asymptotically decays to zero.

Thus, the behavior of the system asymptotically converges to the behavior of the
feedback linearized system

ż = f (z, ξ)

ξ̇ = (Â + B̂K)ξ ,

In other words, the proposed robust control law asymptotically recovers the
performance achieved by means of the non-robust feedback linearizing law.
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