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Preliminaries

Consider a single-input single-output nonlinear system in observability canonical
form, which we rewrite in compact form as

ż = f (z, u)
y = h(z, u) ,

(1)

with f (0, 0) = 0 and h(0, 0) = 0

Suppose there exists a feedback law u = u∗(z), with u∗(0) = 0, such that the
equilibrium z = 0 of

ż = f (z, u∗(z)) (2)

is globally asymptotically stable.

Assume, for the time being, that the Assumptions (i) and (ii) hold (we shall see
later how these can be removed) and consider an high-gain observer, which we
rewrite in compact form as

˙̂z = f (ẑ, u) + DκG0(y − h(ẑ, u)) , (3)

in which Dκ is the matrix

Dκ = diag(κ, κ2, . . . , κn) (4)

and G0 is the vector
G0 = col(cn−1, . . . , c1, c0) .
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Preliminaries

An obvious choice to achieve asymptotic stability, suggested by the analogy with
linear systems, would be to replace z by its estimate ẑ in the map u∗(z).

However, this simple choice may prove to be dangerous, for the following reason.

Bearing in mind the analysis carried out before, recall that

e =


κn−1 · · · 0 0
· · · · · ·
0 · · · κ 0
0 · · · 0 1

 (z − ẑ) = κnD−1
κ (z − ẑ) .

We have seen that, to secure asymptotic convergence of the observation error
e(t) to zero is necessary to increase κ.

This, even if the initial conditions z(0) and ẑ(0) of the plant and of the observer
are taken in a compact set, may entail large values of e(t) for (positive) times
close to t = 0.

In fact,
e(0) = κnD−1

κ (z(0)− ẑ(0))

and ‖e(0)‖ grows unbounded with increasing κ.

Since e(t) is a continuous function of t, we should expect that, if κ is large, there
is an initial interval of time on which ‖e(t)‖ is large. This phenomenon is
sometimes referred to as “peaking”.
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Preliminaries

Now, note that feeding the system (1) with a control u = u∗(ẑ) would result in a
system

ż = f (z, u∗(z − κ−nDκe)) .

This is viewed as a system with state z subject to an input κ−nDκe(t).

Now, if κ is large, the matrix κ−nDκ remains bounded, because all elements of
this (diagonal) matrix are non positive powers of κ. In fact ‖κ−nDκ‖ = 1 if
κ ≥ 1, as an easy calculation shows.

However, has remarked above, ‖e(t)‖ may become large for small values of t, if κ
is large. Since the system is nonlinear, this may result in a finite escape time.

To avoid such inconvenience, as a precautionary measure, it is appropriate to
“saturate” the control, by choosing instead a law of the form

u = g`(u
∗(ẑ))) (5)

in which g` : R→ R is a smooth saturation function, that is a function
characterized by the following properties:

(i) g`(s) = s if |s| ≤ `,
(ii) g`(s) is odd and monotonically increasing, with 0 < g ′`(s) ≤ 1,

(iii) lims→∞ g`(s) = `(1 + c) with 0 < c � 1.

The real number ` > 0 is usually referred to as the saturation level.
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Preliminaries

The consequence of choosing the control u as in (5) is that global asymptotic
stability is no longer assured. However, as it will be shown, semiglobal
stabilizability is still possible.

In fact, it can be showns, for every compact set C of initial conditions in the state
space, there is a choice of design parameters such that the equilibrium
(z, ẑ) = (0, 0) of the closed loop system is asymptotically stable, with a domain
of attraction that contains C.

The proposed control structure has the following form

ż = f (z, g`(u
∗(ẑ)))

˙̂z = f (ẑ, g`(u
∗(ẑ))) + DκG0[h(z, g`(u

∗(ẑ)))− h(ẑ, g`(u
∗(ẑ)))] .

(6)
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The nonlinear separation principle

Replacing ẑ by its expression in terms of z and e, we obtain for the first equation
a system that can be written as

ż = f (z, g`(u
∗(z − κ−nDκe)))

= f (z, u∗(z))− f (z, u∗(z)) + f (z, g`(u
∗(z − κ−nDκe)))

= F (z) + ∆(z, e)

in which

F (z) = f (z, u∗(z))

∆(z, e) = f (z, g`(u
∗(z − κ−nDκe)))− f (z, u∗(z)) .

Note that, by the inverse Lyapunov theorem, since the equilibrium z = 0 of (2) is
globally asymptotically stable, there exists a smooth function V (z), satisfying

α(‖z‖) ≤ V (z) ≤ α(‖z‖) and
∂V

∂z
F (z) ≤ −α(‖z‖) for all z,

for some class K∞ functions α(·), α(·), α(·).
For simplicity, let the compact set C in which initial conditions are taken be a set
of the form C = BR × BR in which BR denotes the closure of BR , the ball of
radius R in Rn.
Choose a number c such that

Ωc = {z ∈ Rn : V (z) ≤ c} ⊃ BR ,

and then choose the parameter ` in the definition of g`(·) as

` = max
z∈Ωc+1

u∗(z) + 1 .
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The nonlinear separation principle (proof)

Since e enters in ∆(z, e) through the bounded function g`(·), it is easy to realize
that there is a number δ1 such that

‖∆(z, e)‖ ≤ δ1, for all z ∈ Ωc+1 and all e ∈ Rn .

Note also that, if z ∈ Ωc+1 and ‖κ−nDκe‖ is small,

g`(u
∗(z − κ−nDκe)) = u∗(z − κ−nDκe) (7)

and hence ∆(z, 0) = 0.

Assuming, without loss of generality, κ ≥ 1, it is seen that ‖κ−nDκ‖ = 1 and
hence ‖e‖ small implies ‖κ−nDκe‖ small. Therefore, there are numbers δ2, ε
such that

‖∆(z, e)‖ ≤ δ2‖e‖, for all z ∈ Ωc+1 and all ‖e‖ ≤ ε .

These numbers δ1, δ2, ε are independent of κ (so long as κ ≥ 1) and only depend
on the number R that characterizes the radius of the ball BR in which z(0) is
taken.
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The nonlinear separation principle (proof)

Let z(0) ∈ BR ⊂ Ωc . Regardless of what e(t) is, so long as z(t) ∈ Ωc+1, we have

V̇ (z(t)) =
∂V

∂z
[F (z) + ∆(z, e)] ≤ −α(‖z‖) + ‖

∂V

∂z
‖δ1 .

Setting

M = max
z∈Ωc+1

‖
∂V

∂z
‖

we observe that the previous estimate yields, in particular

V̇ (z(t)) ≤ Mδ1

which in turn yields

V (z(t)) ≤ V (z(0)) + Mδ1t ≤ c + Mδ1t .

From this it is deduced that z(t) remains in Ωc+1 at least until time
T0 = 1/Mδ1. This time may be very small but, because of the presence of the
saturation function g`(·), it is independent of κ. It rather only depends on the
number R that characterizes the radius of the ball BR in which z(0) is taken.
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The nonlinear separation principle (proof)

Recall now that the variable e decays exponentially. Letting V (e) denote the
quadratic form V (e) = eTSe, we know that

V̇ (e(t)) ≤ −2ακV (e(t))

in which

ακ =
1

2
(κλ− 2‖S‖L

√
n) :=

1

2
(κλ− a0)

is a number that can be made arbitrarily large by increasing κ (recall that λ and
‖S‖ only depend of the bounds α and β in Assumption (ii) and L on the
Lipschitz constants in Assumption (i)).

From this inequality, bearing in mind the fact that

a1‖e‖2 ≤ V (e) ≤ a2‖e‖2

in which a1, a2 are numbers depending on S and hence only on α, β, we obtain

‖e(t)‖ ≤ A e−ακt ‖e(0)‖ , with A =
√

a2
a1
,

which is valid for all t, so long as z(t) exists.
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The nonlinear separation principle (proof)

Recall now that e(0) = κnD−1
κ (z(0)− ẑ(0)). Since κ ≥ 1, it is seen that

‖κnD−1
κ ‖ = κn−1. Thus, if initial conditions are such that

(z(0), ẑ(0)) ∈ BR × BR , we have

‖e(0)‖ ≤ 2κn−1R .

Consequently
‖e(t)‖ ≤ 2AR e−ακtκn−1 ,

which is valid so long as z(t) is defined. Note that

2AR e−ακT0κn−1 = 2AR e
a0T0

2 e−
λT0

2
κκn−1 .

The function e−
λT0

2
κκn−1 is a polynomial function of κ multiplied by an

exponentially decaying function of κ (recall that T0 > 0). Thus, it tends to 0 as
κ→∞. As a consequence, for any ε there is a number κ∗ such that, if κ > κ∗,

‖e(T0)‖ ≤ ε .

This also implies (since ακ > 0)

‖e(t)‖ ≤ 2AR e−ακ(t−T0)e−ακT0κn−1 ≤ ε ,

for all t > T0, so long as z(t) is defined.
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The nonlinear separation principle (proof)

Return now to the inequality

V̇ (z(t)) =
∂V

∂z
[F (z) + ∆(z, e)] ≤ −α(‖z‖) + ‖

∂V

∂z
‖‖∆(z, e)‖ .

Pick κ ≥ κ∗, so that ‖ e(t)‖ ≤ ε for all t ≥ T0 and hence, so long as
z(t) ∈ Ωc+1,

V̇ (z(t)) ≤ −α(‖z(t)‖) + Mδ2ε .

Pick any number d � c and consider the “annular” compact set

Sc+1
d = {z : d ≤ V (z) ≤ c + 1} .

Let r be
r = min

z∈Sc+1
d

‖z‖ .

By construction
α(‖z‖) ≥ α(r) for all z ∈ Sc+1

d .

If ε is small enough

Mδ2ε ≤
1

2
α(r) ,

and hence

V̇ (z(t)) ≤ −
1

2
α(r) ,

so long as z(t) ∈ Sc+1
d .
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The nonlinear separation principle (proof)

By standard arguments, this proves that any trajectory z(t) which starts in BR ,
in a finite time (which only depends on the choice of R and d), enters the set Ωd

and remains in this set thereafter.

Observing that for any (small) ε′ there is a number d such that Ωd ⊂ Bε′ , it can
be concluded that, for any choice of ε′ � R there exist a number κ∗ and a time
T∗ such that, if κ > κ∗, all trajectories with initial conditions
(z(0), ẑ(0)) ∈ BR × BR are bounded and satisfy

(z(t), ẑ(t)) ∈ Bε′ × Bε′ for all t ≥ T∗ .

Moreover, limt→∞ e(t) = 0. If ε′ is small enough, on the set Bε′ × Bε′ , the first
equation of (6) becomes (see (7))

ż = F (z) + f (z, u∗(z − κ−nDκe))− f (z, u∗(z) .

Thus, it is concluded that also limt→∞ z(t) = 0.

Proposition Consider system (1), assumed to be expressed in uniform
observability canonical form, and suppose Assumptions (i) and (ii) hold. Suppose
that a state feedback law u = u∗(z) globally asymptotically stabilizes the
equilibrium z = 0 of (2). Let the system be controlled by (5), in which ẑ is
provided by the observer (3). Then, for every choice of R, there exist a number `
and a number κ∗ such that, if κ > κ∗, all trajectories of the closed-loop system
with initial conditions in BR × BR are bounded and limt→∞(z(t), ẑ(t)) = (0, 0).
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The nonlinear separation principle (proof)

It remains to discuss the role of the Assumptions (i) and (ii). Having proven that
the trajectories of the system starting in BR × BR remain in a bounded region, it
suffices to look for numbers α and β and a Lipschitz constant L making
Assumptions (i) and (ii) valid only on this bounded region, which is always
possible.
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