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Bayesian Classification

e In Chapter 3, the classification task was introduced and a linear classifier
was designed via the sum of squared errors loss criterion. However, the
LS estimator is an efficient one, only if the conditional distribution of
the output variable, y, given the feature values, x = x, follows a
Gaussian distribution of a special type. However, in classification, the
dependent variable is discrete, hence it is not Gaussian; thus, the use of
the LS criterion cannot be justified, in general.
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e Here, the classification task will be treated via Bayesian decision theory
arguments. Bayesian classification is a typical generative method, and
its very essence comprises the estimation of the joint probability p(y, ),
yeD, xe R, where D is a discrete set of class labels.
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e In Chapter 3, the classification task was introduced and a linear classifier
was designed via the sum of squared errors loss criterion. However, the
LS estimator is an efficient one, only if the conditional distribution of
the output variable, y, given the feature values, x = x, follows a
Gaussian distribution of a special type. However, in classification, the
dependent variable is discrete, hence it is not Gaussian; thus, the use of
the LS criterion cannot be justified, in general.

e Here, the classification task will be treated via Bayesian decision theory
arguments. Bayesian classification is a typical generative method, and
its very essence comprises the estimation of the joint probability p(y, ),
yeD, xe R, where D is a discrete set of class labels.

e Bayesian Classification Rule: Given a set of M classes,
wi, 1=1,2,..., M, as well as the respective posterior probabilities,
P(w;|x), classify an unknown feature vector, &, according to the rule,

Assign x to w; = argmax P(w;|x), j=1,2,..., M.
w;

In words, the unknown pattern, represented by x, is assigned to the
class for which the posterior probability becomes maximum.
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Bayesian Classification

e Note that prior to receiving any observation, our uncertainty concerning
the classes is expressed via the prior probabilities, denoted by
P(w;), i=1,2,..., M. Once the observation & has been obtained,
this extra information removes part of our original uncertainty, and the
related statistical information is now provided by the posterior
probabilities, which are then used for the classification.
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the classes is expressed via the prior probabilities, denoted by
P(w;), i=1,2,..., M. Once the observation & has been obtained,
this extra information removes part of our original uncertainty, and the
related statistical information is now provided by the posterior
probabilities, which are then used for the classification.

e Employing Bayes' theorem,

p(x|w;) P(w;)

p(x)
where p(x|w;) are the respective conditional probability distribution
densities (pdf), the Bayesian classification rule becomes,

Pwj|e) = v J=12,,M,

Assign x to w; = argmax p(z|w;)P(w;), Jj=1,2...,M.

In other words, the classifier depends on the a-priori class probabilities
and the respective conditional pdfs.
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e Note that prior to receiving any observation, our uncertainty concerning
the classes is expressed via the prior probabilities, denoted by
P(w;), i=1,2,..., M. Once the observation & has been obtained,
this extra information removes part of our original uncertainty, and the
related statistical information is now provided by the posterior
probabilities, which are then used for the classification.

e Employing Bayes' theorem,

p(x|w;) P(w;)

p(x)
where p(x|w;) are the respective conditional probability distribution
densities (pdf), the Bayesian classification rule becomes,

Pwj|e) = v J=12,,M,

Assign x to w; = argmax p(z|w;)P(w;), Jj=1,2...,M.

In other words, the classifier depends on the a-priori class probabilities
and the respective conditional pdfs.
e Also, note that
p(@|w;) P(w;) = p(wj, @) = p(y, @).
That is, the Bayesian classifier is a generative modeling technique.
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Bayesian Classification

e Training Bayesian Classifiers: Let us assume that we are given a set of
training points, (¢, Z,) € D x R, n=1,2,..., N, and consider the
general task comprising M classes. Assume that each class,
wi, 1=1,2,..., M, is represented by N; points in the training set, with
Zf\il N; = N. Then, the a-priori probabilities can be approximated by,

N;

P(wi)mﬁ, 1=1,2,..., M.
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Bayesian Classification

e Training Bayesian Classifiers: Let us assume that we are given a set of
training points, (yn,,) € D x Rl, n=1,2,..., N, and consider the
general task comprising M classes. Assume that each class,
wi, 1=1,2,..., M, is represented by N; points in the training set, with
Z;‘il N; = N. Then, the a-priori probabilities can be approximated by,

P(w;) =~

e For the conditional pdfs, p(x|w;), i =1,2..., M, any method for
estimating pdfs can be mobilized. For example, one can assume a
known parametric form for each one of the conditionals and adopt the
Maximum Likelihood method (ML), or the Maximum a-posteriori
(MAP) estimator, in order to obtain estimates of the parameters, using
the training data from each one of the classes. Another alternative is to
resort to nonparametric histogram-like techniques. Other methods for
pdf estimation can also be employed, such as mixture modeling.
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The Bayesian Classifier Minimizes The Misclassification Error

e Recall that the goal of any classifier is to partition the space, in which
the feature vectors lie, into regions and associate each one of the
regions to one and only one class. For a two-class task, let Ry, Ro be

the two regions in, say, R!, where we decide in favor of class w; and ws,

respectively. The probability of classification error is given by
P.=P(x € Ri,x € wa) + P(x € Ry, € wy).

That is, it is equal to the probability of the feature vector to belong to
class wy (w2) and at the same time to lie in the “wrong” region
R2 (R1) in the feature space.
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the two regions in, say, R!, where we decide in favor of class w; and ws,

respectively. The probability of classification error is given by
P.=P(x € Ri,x € wa) + P(x € Ry, € wy).

That is, it is equal to the probability of the feature vector to belong to
class wy (w2) and at the same time to lie in the “wrong” region
R2 (R1) in the feature space.

e The previous Equation can be written as,

p(x|ws)dx + P(w;) /R p(x|w)de.

12 ZP(W2)/

R1
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e Recall that the goal of any classifier is to partition the space, in which
the feature vectors lie, into regions and associate each one of the
regions to one and only one class. For a two-class task, let Ry, Ro be
the two regions in, say, R!, where we decide in favor of class w; and ws,
respectively. The probability of classification error is given by

P.=P(x € Ri,x € wa) + P(x € Ry, € wy).

That is, it is equal to the probability of the feature vector to belong to
class wy (w2) and at the same time to lie in the “wrong” region
R2 (R1) in the feature space.

e The previous Equation can be written as,

12 ZP(W2)/

721 p(x|ws)dx + P(wr) / p(x|w; )dz.

Ra2

e |t turns out that the Bayesian classifier minimizes P. with respect to Ry
and Ry. This is also true for the general case of M classes.
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The Bayesian Classifier Minimizes The Misclassification Error

e The previous probability of error minimization property of the Bayesian
classifier is illustrated in the following figures:

p(alwr) $p(zlwz) $p(xlwr) 3p(@|wa)

R1

Ra 4
£ 1

(2) (b)

a) The classification error probability for partitioning the feature space, according to the Bayesian optimal
classifier, is equal to the area of the shaded region. b) Moving the threshold value away from the value
corresponding to the optimal Bayes rule increases the probability of error, as it is indicated by the increase of the
area of the corresponding shaded region.
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The Bayesian Classifier Minimizes The Misclassification Error

e Since in classification the dependent variable (label), y, is of a discrete
nature, the classification error probability may sound to be the most

natural cost function to be optimized. However, this is not always true.

For example, in a medical diagnosis system, committing an error by

predicting the class of a finding in an x-ray image as being “malignant”

while its true class is “normal”, is less significant than an error in the
other way round.
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The Bayesian Classifier Minimizes The Misclassification Error

e Since in classification the dependent variable (label), y, is of a discrete
nature, the classification error probability may sound to be the most
natural cost function to be optimized. However, this is not always true.
For example, in a medical diagnosis system, committing an error by
predicting the class of a finding in an x-ray image as being “malignant”,
while its true class is “normal”, is less significant than an error in the
other way round.

e For such cases, relative weights on the errors according to their
importance have to be used. The resulting function is known as the
average risk.
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e For such cases, relative weights on the errors according to their
importance have to be used. The resulting function is known as the
average risk.

e For the M-class problem, the risk or loss associated with class wy, is

defined as, M
Tk = Z)\kl/ p(m|wk)daz,
i=1 Ri

where, Agr = 0 and Ag; is the weight that controls the significance of
committing an error by assigning a pattern from class wy to class w;.
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Since in classification the dependent variable (label), y, is of a discrete
nature, the classification error probability may sound to be the most
natural cost function to be optimized. However, this is not always true.
For example, in a medical diagnosis system, committing an error by
predicting the class of a finding in an x-ray image as being “malignant”,
while its true class is “normal”, is less significant than an error in the
other way round.

For such cases, relative weights on the errors according to their
importance have to be used. The resulting function is known as the
average risk.

For the M-class problem, the risk or loss associated with class wy, is

defined as, M
Tk = Z)\kl/ p(m|wk)dzc,
i=1 Ri

where, Agr = 0 and Ag; is the weight that controls the significance of
committing an error by assigning a pattern from class wy to class w;.
The average risk is given by,

M M M
r= Z P(wg)ry = Z/ (Z )\kiP(wk)p(m\wk))dm.
k=1 i=1 Y Ri =1

v
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Minimizing The Average Risk

e The average risk is minimized if we partition the input space by
selecting each R; (where we decide in favor of class w;) so that each
one of the M integrals in the last summation becomes minimum; this is
achieved if we adopt the rule:

M M
Assign x to w; : Z i P(wr)p(x|wi) < Z Ak P(wi)p(x|wg), Vi # 1,
k=1 k=1

e This is equivalent to

M M
Assign « to w; : Z)\MP(WH-’B) < Z)\ij(wk\ac), Vi # i.
=il lh=1l

e For the two-class case, it is readily seen that the rule becomes
Assign  to wy (w2) if : MaP(wi]|x) > (<) o1 P(wa|x),
or equivalently
Assign  to wy (ws2) if : A2 P(w1) p(z|wi) > (<) A2 P(w2) p(x|ws).
N N

P’ (w1) P’ (wz)

v
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e |In a two-class one-dimensional classification task, the data in the two
classes are distributed according to the following two Gaussians,

pleln) = <o (-2

plen) = o (-5 ).

The problem is more sensitive with respect to errors committed on
patterns form class wy, which is expressed via the following loss matrix,
which is the matrix comprising the respective weights,

I Ain A2 || 0 1
T )\21 )\22 o 05 0 |°
In other words, A\15 = 1 and A\9; = 0.5. The two classes are considered
equiprobable.

and
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e |In a two-class one-dimensional classification task, the data in the two
classes are distributed according to the following two Gaussians,

pleln) = <o (-2

plen) = o (-5 ).

The problem is more sensitive with respect to errors committed on
patterns form class wy, which is expressed via the following loss matrix,
which is the matrix comprising the respective weights,

I Aii A2 | | 0 1
T )\21 )\22 o 05 0 |°
In other words, A\15 = 1 and A\9; = 0.5. The two classes are considered

equiprobable.

e The goal is to derive the threshold values, x,., and z g, for the average
risk and the Bayesian classification respectively.

and
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Example Of Bayesian Classification

e Solution: According to the average risk rule, the region for which we
decide in favor of class w; is given by:

1 1
Rq: )\12§p($|wl) > Ao 5p(x|w2),

and the respective threshold value, x,., is computed by the equation,

2 _1)2
exp <—%> = 0.5exp (—%) ,

which after taking the logarithm and solving the respective equation,
trivially results in

(1—21n0.5).

T, =

DN | =
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e Solution: According to the average risk rule, the region for which we
decide in favor of class w; is given by:

1 1
Ri: /\12§p(:17|w1) > >‘21§P($|W2)a

and the respective threshold value, ., is computed by the equation,

2 _1)2
exp (—?) = 0.5exp (—(%21)) ,

which after taking the logarithm and solving the respective equation,
trivially results in

1
Bp = 5(1 —2In0.5).

e The threshold for the Bayesian classifier results if we set Ao; = 1, which
gives 1
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Example Of Bayesian Classification |

e The previous findings are illustrated in the figure below:

1p(@lwr) 3p(w|ws)

0 rp Tr 1
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Example Of Bayesian Classification

e The previous findings are illustrated in the figure below:

1p(@lwr) 3p(w|ws)

0 rp Tr 1

e Note that minimizing the average risk enlarges the region in which we
decide in favor of the most sensitive class, ws.
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Decision Hypersurfaces

e The goal of any classifier is to partition the feature space into regions.
The partition is achieved via points in R, curves in R?, surfaces in R?
and hypersurfaces in R!. Any hypersurface, S, is expressed in terms of a
function,

g: R — R,
and it comprises all the points such that

S={xeR: g(x)=0}.
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function,

g:R — R,
and it comprises all the points such that
S={xeR: g(x)=0}.

e Recall that all points lying on one side of this hypersurface score
g(x) > 0 and all the points on the other side score g(x) < 0. The
resulting (hyper)surfaces are knows as decision (hyper)surfaces.

Sergios Theodoridis University of Athens Machine Learning 12/49



Decision Hypersurfaces

e The goal of any classifier is to partition the feature space into regions.
The partition is achieved via points in R, curves in R?, surfaces in R?
and hypersurfaces in R!. Any hypersurface, S, is expressed in terms of a
function,

g:R — R,
and it comprises all the points such that
S={xeR: g(x)=0}.

e Recall that all points lying on one side of this hypersurface score
g(x) > 0 and all the points on the other side score g(x) < 0. The
resulting (hyper)surfaces are knows as decision (hyper)surfaces.

e For example, the respective decision hypersurface, which is formed by
the Bayesian classifier for a two class classification task, is given by

g(x) := P(w;|x) — P(wa|x) = 0.
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Decision Hypersurfaces

e The goal of any classifier is to partition the feature space into regions.
The partition is achieved via points in R, curves in R2, surfaces in R3
and hypersurfaces in R!. Any hypersurface, S, is expressed in terms of a
function,

g:R — R,
and it comprises all the points such that
S={xeR: g(x)=0}.

e Recall that all points lying on one side of this hypersurface score
g(x) > 0 and all the points on the other side score g(x) < 0. The
resulting (hyper)surfaces are knows as decision (hyper)surfaces.

e For example, the respective decision hypersurface, which is formed by
the Bayesian classifier for a two class classification task, is given by

g(x) := P(w;|x) — P(wa|x) = 0.
e Indeed, we decide in favor of class w; if « falls on the positive side of

the previous hypersurface, and in favor of wy for the points falling on
the negative side (regions Ry and Rs in the next figure).
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Decision Hypersurfaces I

g(®) = P(w|®) — P(w2|®)

R1

Ra

Y

Z1

The Bayesian classifier implicitly forms hypersurfaces defined by g(a) = P(w1|®) — P(w2|x) = 0.
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Decision Hypersurfaces

|

g(®) = P(w|®) — P(w2|®)

Z2

R1

Ra

Z1

The Bayesian classifier implicitly forms hypersurfaces defined by g(a) = P(w1|®) — P(w2|x) = 0.

e Once we move away from the Bayesian concept of designing classifiers,
different families of functions for selecting g(x) can be adopted and the

specific form will be obtained via different optimization criteria, which
are not necessarily related to the probability of error/average risk.

Machine Learning
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The Gaussian Distribution Case

e Plugging in the specific forms of the Gaussian conditionals, using
logarithms and after a bit of trivial algebra, the decision hypersurface

becomes,

giz) = = (2"Z5'z—a" ')

N | =

quadratic terms

+ul e - py Xyt

linear terms
1 T 1 1 T 1 P(wl) 1 |22|
—— 2 + = 2 +1 + —-In— =0.
2“1 1 M1 2;1,2 5 M2 n ( 2) 3 n| 1| 0

constant terms

This is of a quadratic nature, hence the corresponding (hyper)surfaces
are (hyper)quadrics, e.g., (hyper)ellipsoids, (hyper)parabolas,

hvoerbolas
JF
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The Gaussian Distribution Case

e The following figure shows two examples, in the two-dimensional space,
corresponding to P(w;) = P(ws), and

0.3 0.0 1.2 0.0
_ T _ T _ _
#1= 0,017, pz = [4,007, 21 = [ 0.0 0.35 ] ) 22 = [ 0.0 1.85 ]

and

_ 7 _ T 101 0.0 1 075 0.0
M1 = [070] , M2 = [3230] 3 21 = |: 0.0 0.75 9 22 S 0.0 071 s

(2) (b)
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When Covariance Matrices Are The Same In All Classes The Bayesian

Classifier Becomes Linear

e Looking carefully at the decision hypersurface derived for the Bayesian
classifier given before, it is readily noticed that once the covariance
matrices for the two classes become equal, then the quadratic terms
cancel out and the discriminant function becomes linear; thus, the
corresponding hypersurface is a hyperplane. After some straightforward
algebraic manipulations the decision hyperplane becomes:

glx) = 6T(x—xp) =0, where
0 = X '(p—pa),
1 Plwi)  p1—po
xry = = + —1In ,
R s Frge

where X' is the common to the two classes covariance matrix and

[l — p2l|s-1 = \/(M — p2) T X7y — pa),

is the so-called >~ !-norm of the vector (1 — p2).
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When Covariance Matrices Are The Same In All Classes The Bayesian
Classifier Becomes Linear

The full gray line corresponds to the Bayesian classifier for two equiprobable Gaussian classes, which share a common
covariance matrix of the specific form, X' = o2 I; the line bisects the segment joining the two mean values (minimum
Euclidean distance classifier). The red one is for the same case but for P(w1) > P(wg2). The dotted line is the optimal

classifier for equiprobable classes, and a common covariance of a more general form, different than 021 (minimum
Mahalanobis distance classifier).
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Minimum Distance Classifiers

e Minimum Euclidean Distance Classifier: Under the assumptions of a)
Gaussian distributed data in each one of the classes, b) equiprobable
classes, ¢) common covariance matrix in all classes of the special form
X = 0?1 (individual features are independent and sharing a common
variance), the Bayesian classification rule is equivalent with

Assign « to class w; : i = argmin(x — uj)T(:c — ), j=1,2,... M.
J
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Minimum Distance Classifiers

e Minimum Euclidean Distance Classifier: Under the assumptions of a)
Gaussian distributed data in each one of the classes, b) equiprobable
classes, ¢) common covariance matrix in all classes of the special form
X = 0?1 (individual features are independent and sharing a common
variance), the Bayesian classification rule is equivalent with

Assign « to class w; : i = argmin(x — uj)T(:c — ), j=1,2,... M.
J
In other words, the Euclidean distance of x is computed from the mean

values of all classes and it is assigned to the class for which this
distance becomes smaller (full black line in the previous figure).
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Minimum Distance Classifiers

e Minimum Euclidean Distance Classifier: Under the assumptions of a)
Gaussian distributed data in each one of the classes, b) equiprobable
classes, ¢) common covariance matrix in all classes of the special form
X = 0?1 (individual features are independent and sharing a common
variance), the Bayesian classification rule is equivalent with

Assign « to class w; : @ = argmin(x — uj)T(:c — ), j=1,2,... M.
J

In other words, the Euclidean distance of @ is computed from the mean
values of all classes and it is assigned to the class for which this
distance becomes smaller (full black line in the previous figure).

e Minimum Mahalanobis Distance Classifier: Under the previously
adopted assumptions, but with the covariance matrix being of the more
general form, X # 021, the rule becomes,

Assign z to class w; : i = argmin(z—p;) 7 (x—p,), j =1,2,... M.
J
Thus, instead of looking for the minimum Euclidean distance, one

searches for the minimum Mahalanobis distance. For the two-class case,
this rule corresponds to the dotted line of the previous figure.
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Minimum Distance Classifier Example I

e In a two-class classification task, the data in each one of the classes are
distributed according to the Gaussian distribution, with mean values,
w1 =1[0,0]7 and py = [3,3]7, respectively, sharing a common
covariance matrix, 11 03

L= [ 0.3 1.9 ] ’
Use the Bayesian classifier to classify the point = = [1.0,2.2]7 into one
of the two classes.
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e In a two-class classification task, the data in each one of the classes are
distributed according to the Gaussian distribution, with mean values,
w1 = (0,017 and py = [3,3]T, respectively, sharing a common

covariance matrix, o [ 11 03 ]

03 19 |-
Use the Bayesian classifier to classify the point z = [1.0,2.2]7 into one
of the two classes.

e The classes are distributed according to the Gaussian distribution and
share the same covariance matrix. Thus, the Bayesian classifier is
equivalent with the minimum Mahalanobis distance classifier. The
(square) Mahalanobis distance of the point « from the mean value of
class wj is,

—0.15 0.55 22

where the matrix in the middle of the left hand side is the inverse of the
covariance matrix.

2 = [10,2.2] { 0.95 —0.15 ] [ 1.0

} = 2.95,
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Minimum Distance Classifier Example

e Similarly for class w9, we obtain that

o o0 095 —0.15][ —20] _
43 = [-2.0, 0.8][_0.15 oss || o | =367

e Hence, the pattern is assigned to class wy, since its distance from
p1 is smaller compared to that from ps.

e Verify that if the Euclidean distance were used instead, the
pattern would be assigned to class wj.
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The Naive Bayes Classifier

e Assuming Gaussian classes, in order to estimate the required covariance
matrix, the number of unknown parameters is of the order of O(I?/2).
Indeed, a possible estimate for the covariance matrix is the ML one,

5 T
EML—NZ — ponen)(@n — o)’

which can be shown to correspond to a biased estimator. An estimate
associated to an unbiased estimator is given by
N

a 1 R R
L = m Z(mn - ,UML)($7L - /LML)T

n=1

where fiprr, is the sample mean.
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The Naive Bayes Classifier

e Assuming Gaussian classes, in order to estimate the required covariance
matrix, the number of unknown parameters is of the order of O(I?/2).
Indeed, a possible estimate for the covariance matrix is the ML one,

Sur = i Z — firr)(®n — fiarr)’

which can be shown to correspond to a biased estimator. An estimate
associated to an unbiased estimator is given by

N
=t D@ — )@ — faen)”
n=1
where fiprr, is the sample mean.

e For high dimensional spaces, besides that this estimation task is a
formidable one, it also requires a large number of data points, in order
to obtain statistically good estimates and avoid overfitting, as it has
already been discussed in Chapter 3. In such cases, one has to be
content with suboptimal solutions. Indeed, adopting an optimal
method, while using bad estimates of the involved parameters, it can
necessarily lead to a bad overall performance.
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The Naive Bayes Classifier

e The Naive Bayes Classifier is a typical and popular example of a
suboptimal classifier. The basic assumption is that the components
(features) in the feature vector are statistically independent; hence, the
joint pdf can be written as a product of [ marginals, i.e.,

l
p(x|w;) = H (zk|lwi), i=1,2,..., M.
k=1
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The Naive Bayes Classifier

e The Naive Bayes Classifier is a typical and popular example of a
suboptimal classifier. The basic assumption is that the components
(features) in the feature vector are statistically independent; hence, the
joint pdf can be written as a product of [ marginals, i.e.,

1
p(x|w;) = Hp(:rk|wi), i=1,2,..., M.
k=1
e Having adopted the Gaussian assumption, each one of the marginals is

described by two parameters, i.e., the mean and the variance; this leads
to a total of 2[, per class, unknown parameters to be estimated. This is

a substantial saving compared to the O(I%/2) number of parameters.
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The Naive Bayes Classifier

e The Naive Bayes Classifier is a typical and popular example of a
suboptimal classifier. The basic assumption is that the components
(features) in the feature vector are statistically independent; hence, the
joint pdf can be written as a product of [ marginals, i.e.,

p(x|w;) = Hp Tglwi), 1 =1,2,..., M.
k=1

e Having adopted the Gaussian assumption, each one of the marginals is
described by two parameters, i.e., the mean and the variance; this leads
to a total of 2[, per class, unknown parameters to be estimated. This is
a substantial saving compared to the O(I%/2) number of parameters.

e We already discussed the curse of dimensionality issue and it was
stressed out that high dimensional spaces are sparsely populated.
Roughly speaking, if, say, N data points are needed in order get a good
enough estimate of a pdf in the real axis, N! data points would be
needed for a similar accuracy in an [-dimensional space. Thus, by
assuming the features to be mutually independent, one will end up in
estimating [ one-dimensional pdfs, hence substantially reducing the
need for data.
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The k-Nearest Neighbor Rule

e Although the Bayesian rule provides the optimal solution, with respect
to the classification error probability, its application requires the
estimation of the respective conditional pdfs; this is not an easy task,
once the dimensionality of the feature space assumes relatively large
values. This paves the way for considering alternative classification
rules, which becomes our focus from now on.
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to the classification error probability, its application requires the
estimation of the respective conditional pdfs; this is not an easy task,
once the dimensionality of the feature space assumes relatively large
values. This paves the way for considering alternative classification
rules, which becomes our focus from now on.

e The k-nearest neighbor (k-NN) rule is a typical non-parametric classifier
and it is one among the most popular and well known classifiers. In
spite of its simplicity, it is still in use and stands next to more elaborate
schemes.
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The k-Nearest Neighbor Rule

e Although the Bayesian rule provides the optimal solution, with respect
to the classification error probability, its application requires the
estimation of the respective conditional pdfs; this is not an easy task,
once the dimensionality of the feature space assumes relatively large
values. This paves the way for considering alternative classification
rules, which becomes our focus from now on.

e The k-nearest neighbor (k-NN) rule is a typical non-parametric classifier
and it is one among the most popular and well known classifiers. In
spite of its simplicity, it is still in use and stands next to more elaborate
schemes.

e Consider N training points, (yn,®,), n =1,2,..., N, for an M-class
classification task. At the heart of the method lies a parameter £, which
is a user-defined parameter. Once k is selected, then given a pattern, x,
assign it to the class in which the majority of its k nearest (according to
a metric, e.g., Euclidean or Mahalanobis distance) neighbors, among the
training points, belong. The parameter k should not be a multiple of
M, in order to avoid ties. The simplest form of this rule is to assign the
pattern to the class in which its nearest neighbor belongs, i.e., k = 1.

v
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The k-Nearest Neighbor Rule

e |t turns out that this conceptually simple rule, tends to the Bayesian
classifier, if a) N — o0, b) k — oo and c¢) k/N — 0. More specifically,
it can be shown that the classification errors, Py and Py satisfy,
asymptotically, the following bounds,

Pg < Pyy < 2Pg, fork=1,

2P
Pp < Punn < Pp + 14/ ;CVN, for k # 1.

Pg is the error corresponding to the optimal Bayesian classifier.
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classifier, if a) N — o0, b) k — oo and c¢) k/N — 0. More specifically,
it can be shown that the classification errors, Py and Py satisfy,
asymptotically, the following bounds,

Pg < Pyy < 2Pg, fork=1,

2P,
Pp < Punn < Pp + 14/ ]iVN, for k # 1.

Pg is the error corresponding to the optimal Bayesian classifier.

e For k =1, the bound says that the simple NN rule will never give an
error larger than twice the optimal one. If, for example, Pg = 0.01,
then Py < 0.02. That is, if one has an easy task (as this is indicated
by the vary low value of Pg) the NN rule can also do a good job. This,
of course, is not the case for harder tasks.
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The k-Nearest Neighbor Rule

e |t turns out that this conceptually simple rule, tends to the Bayesian
classifier, if a) N — o0, b) k — oo and c¢) k/N — 0. More specifically,
it can be shown that the classification errors, Py and Py satisfy,
asymptotically, the following bounds,

Pg < Pyy < 2Pg, fork=1,

2P,
Pp < Punn < Pp + 14/ /iVN, for k # 1.

Pg is the error corresponding to the optimal Bayesian classifier.

e For k =1, the bound says that the simple NN rule will never give an
error larger than twice the optimal one. If, for example, Pg = 0.01,
then Py < 0.02. That is, if one has an easy task (as this is indicated
by the vary low value of Pg) the NN rule can also do a good job. This,
of course, is not the case for harder tasks.

e The bound for k # 1 says that for large values of k (provided, of course,
N s large enough) the performance of the k-NN tends to that of the
optimal classifier. In practice, one has to make sure that k& does not get
values close to NV, but it remains a fraction of it.
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e The following figures illustrate the decision curves for a two-class
classification task in the two-dimensional space, obtained by the
Bayesian, the 1-NN and the 13-NN classifier. A number of N = 100
data are generated, for each class, by Gaussian distributions. The
decision curve of the Bayes classifier has the form of a parabola, while
the 1-NN classifier exhibits a highly nonlinear nature. The 13-NN rule
forms a decision line close to the Bayesian one.
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13-NN
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«x 27«
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. # o,k
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The 1-NN Rule with the Bayesian classifier The 13-NN Rule with the Bayesian classifier
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Logistic Regression

e In Bayesian classification, the posteriors are estimated via the respective
conditional pdfs, which is not, in general, an easy task. The goal now
becomes to model the posterior probabilities directly, via the so-called
logistic regression method.This name has been established in the
statistics community, although the model refers to classification and not
to regression. This is a typical example of the discriminative modeling
technique, where the distribution of data is of no interest.

Sergios Theodoridis University of Athens Machine Learning 26/49



Logistic Regression

e In Bayesian classification, the posteriors are estimated via the respective
conditional pdfs, which is not, in general, an easy task. The goal now
becomes to model the posterior probabilities directly, via the so-called
logistic regression method.This name has been established in the
statistics community, although the model refers to classification and not
to regression. This is a typical example of the discriminative modeling
technique, where the distribution of data is of no interest.

e We will focus on the the two-class case. The starting point is to model
the ratio of the posteriors as:

In M =0Tz,
P(ws|z)

where the constant term, 6y, has been absorbed in 6.
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Logistic Regression

e In Bayesian classification, the posteriors are estimated via the respective
conditional pdfs, which is not, in general, an easy task. The goal now
becomes to model the posterior probabilities directly, via the so-called
logistic regression method.This name has been established in the
statistics community, although the model refers to classification and not
to regression. This is a typical example of the discriminative modeling
technique, where the distribution of data is of no interest.

e We will focus on the the two-class case. The starting point is to model
the ratio of the posteriors as:

In M =0Tz,
P(ws|z)
where the constant term, 6y, has been absorbed in 6.
e Taking into account that P(wi|x) + P(wz|x) = 1 and defining

t =0T,
it is readily seen that the previous model is equivalent to

Pllns) = olls) - ! Pllsls) = 1 — o) = m.

T T+exp (—t)’
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Logistic Regression

e The function o (t) is known as the logistic sigmoid or sigmoid link
function and it is shown in the figure below:
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Training The Logistic Regression Model

e The parameter vector, 6, is estimated via the Maximum
Likelihood method applied on a set of training samples, (y,, ),
n=1,...,N, y, € {0,1}. The likelihood function can be written
as,

N

Plys,.,yni0) = [ (067 2n))”" (1= 0(670))

n=1

1_yn
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Training The Logistic Regression Model

e The parameter vector, 6, is estimated via the Maximum
Likelihood method applied on a set of training samples, (y,, ),
n=1,...,N, y, € {0,1}. The likelihood function can be written
as,

1_yn

P(yi,...,yn;0) = ﬂ (a(OTa:n))yn (1 - U(Ochn)>

n=1

e Usually, we consider the negative log-likelihood given by,

N
L(6) =— Z (yn Ins, + (1 —y,)In(1 — sn)>, sn = o (0T x,).

n=1
The log-likelihood cost function is also known as the
cross-entropy error.
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Training The Logistic Regression Model

e Minimizing the negative log-likelihood: Minimization of L(0) with
respect to 0 is carried out iteratively by any iterative minimization
scheme, such as the gradient descent. L(8) is convex which guarantees
a unique minimum. The scheme needs the computation of the
respective gradient, which in turn is based on the derivative of the
sigmoid link function, which can be shown to be equal to

do(t)
dt

= o(t) (1 - o(t)).
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Training The Logistic Regression Model

e Minimizing the negative log-likelihood: Minimization of L(0) with
respect to 0 is carried out iteratively by any iterative minimization
scheme, such as the gradient descent. L(8) is convex which guarantees
a unique minimum. The scheme needs the computation of the
respective gradient, which in turn is based on the derivative of the
sigmoid link function, which can be shown to be equal to

do(t)
=o(t) (1 —0o(t)).
22 = o(t) (1- (1))
e The gradient is shown to be equal to
N
VL(O) = Z(sn - yn)azn = XT(S - y)a
n=1
where
XT =[xy,...,zn], s:=[s51,...,55]%, ¥ =1[y1,---,YnN]
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Training The Logistic Regression Model

e Minimizing the negative log-likelihood: Minimization of L(0) with
respect to 0 is carried out iteratively by any iterative minimization
scheme, such as the gradient descent. L(8) is convex which guarantees
a unique minimum. The scheme needs the computation of the
respective gradient, which in turn is based on the derivative of the
sigmoid link function, which can be shown to be equal to

do(t)
=o(t) (1 —0o(t)).
22 = o(t) (1- (1))
e The gradient is shown to be equal to
N
VL(O) = Z(sn - yn)azn = XT(S - y)a
n=1
where
XT =[xy,...,zxn], s:=[s51,...,sn5]", v=[y1,...,yn]"

e Hence, the gradient descent scheme for minimization becomes
00 — gli-1) _ /MXT(S(FU —y).
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Feature Generation and Scatter Matrices

e Two of the major phases in designing a pattern recognition
system are the so-called feature generation and feature selection
phases. Selecting information-rich features is of paramount
importance. If "bad” features are selected, whatever smart
classifier one adopts, the performance is bound to be poor. The
main goal in selecting features, i.e., in selecting the feature space
in which one is going to work, can be summarized as:
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Feature Generation and Scatter Matrices

e Two of the major phases in designing a pattern recognition
system are the so-called feature generation and feature selection
phases. Selecting information-rich features is of paramount
importance. If "bad” features are selected, whatever smart
classifier one adopts, the performance is bound to be poor. The
main goal in selecting features, i.e., in selecting the feature space
in which one is going to work, can be summarized as:

e Select the features to create a feature space in which the points,
which represent the training patterns, are distributed so that to
have:

Large Between-Classes Distance
and
Small Within-Class Variance
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Feature Generation and Scatter Matrices

12 12 12
» W
. . R
8 8 i‘%{ % 8

-
4 8 Y 8 2 4 8 12
(a) (b) (©)

Three different choices of two-dimensional feature spaces: a) Small within-class variance and small between-classes
distance. b) Large within-class variance and small between-classes distance. c) Small within-class variance and large
between-classes distance. The last one is the best choice out of the three.

e A possible way to quantify the previously stated rule is via the concept
of Scatter Matrices. There are various ways to define scatter matrices
and also different ways to use them.
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Feature Generation and Scatter Matrices

e Within-class scatter matrix

M
T =Y P(wm)Zm,
m=1

where, X, is the covariance matrix of the points in the mth among M
classes. In words, Y, is the average covariance matrix of the data in
the specific [-dimensional feature space.
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e Within-class scatter matrix

M
T =Y P(wm)Zm,
=il
where, X, is the covariance matrix of the points in the mth among M
classes. In words, Y, is the average covariance matrix of the data in

the specific [-dimensional feature space.
e Between-classes scatter matrix

Eb - Z P(wm)(“’m - /J/O)(/'l’m — NO)Tv

where g is the overall mean vector, i.e., po = 27]\,{:1 P(wm) -
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where, X, is the covariance matrix of the points in the mth among M
classes. In words, Y, is the average covariance matrix of the data in
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e Mixture scatter matrix
B e 3

Sergios Theodoridis University of Athens Machine Learning 32/49



Feature Generation and Scatter Matrices

e Within-class scatter matrix

M
T =Y P(wm)Zm,
m=1

where, X, is the covariance matrix of the points in the mth among M
classes. In words, Y, is the average covariance matrix of the data in
the specific [-dimensional feature space.

e Between-classes scatter matrix

Eb - Z P(wm)(“’m - /J/O)(/'l'm — /J/O)Tv

where g is the overall mean vector, i.e., po = foil P(wm) -

e Mixture scatter matrix
Yo = 2w+ 2.

e Three possible criteria that measure “goodness” of the selected feature
space are (| - | denotes the determinant of a matrix):
_ trace{X),} | Zn]

= vl g = T o=t y-ly.
VT ace{Zu ) 2T ml P race{ 27, " b}
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Example: Scatter Matrices

e Figure (a) corresponds to a very good feature selection case with
large between-class distance and small within-class variance. The
opposite is the case in Figure (b). The values of the resulting J3
index are 1350 and 4.5, respectively. Similarly, the differences in
the resulting values of the other two indices, J; and J, are very
large.

o ] . .
X

55 6 65 7 75 8 85 9 95 10 105 4 5 6 7 8 9 10 1
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Fisher's Linear Discriminant

e Our interest now turns on designing linear classifiers. We focus on the
two-class classification task. In other words, irrespective of the data
distribution in each class, we decide to partition the space in terms of

hyperplanes, i.e.,
g(x) =0Tx + 6y = 0.
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e Our interest now turns on designing linear classifiers. We focus on the
two-class classification task. In other words, irrespective of the data
distribution in each class, we decide to partition the space in terms of
hyperplanes, i.e.,

g(x) =0Tx + 6y = 0.

e In Fisher's linear discriminant analysis, the emphasis in estimating is
only on @; the bias term, 6y, is left out of the discussion. The inner
product 87z can viewed be as the projection of & along the vector 8.
From geometry, we know that the respective projection is also a vector,
Yy, given by 0Tz 0

Y= T
el 16|
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Fisher's Linear Discriminant

e Our interest now turns on designing linear classifiers. We focus on the
two-class classification task. In other words, irrespective of the data
distribution in each class, we decide to partition the space in terms of
hyperplanes, i.e.

yperp ] g(x) =0Tx + 6y = 0.

e In Fisher's linear discriminant analysis, the emphasis in estimating is
only on @; the bias term, 6y, is left out of the discussion. The inner
product 87z can viewed be as the projection of & along the vector 8.
From geometry, we know that the respective projection is also a vector,
Yy, given by - 0Tz 0

1ell el

e From now on, we will focus on the scalar value of the projection,

y := 0Tz, and ignore the scaling factor in the denominator, since
scaling all features by the same value has no effect on our discussion.
The goal, now, is to select that direction, 6, so that after projecting
along this direction, a) the data in the two classes to be as far away as
possible form each other and b) the respective variances of the points
around their means, in each one of the classes, to be as small as
possible.
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Fisher's Linear Discriminant

e A criterion, that quantifies the aforementioned goal, is the so-called
Fisher's discriminant ratio (FDR), defined as:

N2
FDR = A H2)” (1)
o] + 05

where, p; and ps are the (scalar) mean values of the two classes, after
the projection along 6, i.e.,

Hi = 0T“i7 1=1,2.
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where, p; and ps are the (scalar) mean values of the two classes, after
the projection along 6, i.e.,
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e |t can be shown that
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Fisher's Linear Discriminant

e A criterion, that quantifies the aforementioned goal, is the so-called
Fisher's discriminant ratio (FDR), defined as:

N2
FDR = A H2)” (1)
o] + 05

where, p; and ps are the (scalar) mean values of the two classes, after
the projection along 6, i.e.,

Hi = 0T“i7 1=1,2.

e |t can be shown that

073,60
FDR = .
orx.,0
e Proof: We have that,
(1 —p2)? = 0T (1 — p2) (1 — 12)"0 = 75,6,
Sp = (1 — p2)(p1 — p2)"

Note that if the classes are equiprobable, Sy, is a scaled version of the
between-classes scatter matrix X, (under this assumption,

Ho = 1/2(p1 + p2)).
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Fisher's Linear Discriminant I

e Thus we have,
(11 — 2)? o 67 £,0. 2)

Sergios Theodoridis University of Athens Machine Learning 36/49



Fisher's Linear Discriminant I

e Thus we have,
(11 — 2)? o< 67 548 2)
Moreover,
O'i2 =E [(y — /.ti)Q] =E [BT(:IZ — [,l/l)(.’li — [l,l>T0] = OTZJiO, = 1,2,

which leads to, o*f L a% _ OTSwG,

where S, = X1 + Xs.
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Fisher's Linear Discriminant

e Thus we have,
(11 — p2)? o< 87 ,6. (2)
Moreover,
0'12 =E [(y - :U/l)2:| =E I:BT(SC - NZ)(a: - p’l)TO:I = 0T2i07 1= 17 27

which leads to,
o2 +02=075,80,
where S, = X1 + X>.
e Note that if the classes are equiprobable, S,, becomes a scaled version
of the within-class scatter matrix, and we have that
o} +o3 x 675,80, (3)

Combining (1), (2) and (3) and neglecting the proportionality
constants, the claim has been proved. That is,

075,60

FDR_O T5.0'
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Fisher's Linear Discriminant

e Thus we have,

(11 — p2)? 67 548, (2)
Moreover,
O'i2 =E [(y — /.ti)2] =E [BT(SB — ll/l)(il: — [J,i)TO] = HTEiH, 1= 1, 2,
which leads to, a% o crg _ OTSwO,
where S, = X1 + Y.
e Note that if the classes are equiprobable, S,, becomes a scaled version
of the within-class scatter matrix, and we have that
o} +o3 x 675,80, (3)

Combining (1), (2) and (3) and neglecting the proportionality
constants, the claim has been proved. That is,

07 x,0
FDR = .
VEDIN’)
e The ratio in this form is also known as the generalized Rayleigh

quotient.
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Maximizing the Generalized Rayleigh Quotient

e Maximizing FDR: Our goal now becomes that of maximizing the FDR
with respect to 8. This is a case of the generalized Rayleigh ratio,
which is known that it is maximized if 0 satisfies,

20 = \X,0,

where ) is the maximum eigenvalue of the matrix X 1.
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Maximizing the Generalized Rayleigh Quotient

e Maximizing FDR: Our goal now becomes that of maximizing the FDR
with respect to 8. This is a case of the generalized Rayleigh ratio,
which is known that it is maximized if 0 satisfies,

20 = \X,0,
where ) is the maximum eigenvalue of the matrix X 1.

e However, for our specific case, where X, is a rank-one matrix and there
is only one nonzero eigenvalue, we can bypass the need for solving an
eigenvalue-eigenvector problem. Observe that,

AZ00 o< (1 — po) (1 — p2)" 0 o< (1 — pa).
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Maximizing the Generalized Rayleigh Quotient

e Maximizing FDR: Our goal now becomes that of maximizing the FDR
with respect to 8. This is a case of the generalized Rayleigh ratio,
which is known that it is maximized if 0 satisfies,

20 = \X,0,
where ) is the maximum eigenvalue of the matrix X 1.

e However, for our specific case, where X, is a rank-one matrix and there
is only one nonzero eigenvalue, we can bypass the need for solving an
eigenvalue-eigenvector problem. Observe that,

AZy0 o (1 — p2)(p1 — p2)"0 o (1 — o).

e In other words, X,,0 lies in the direction of (p17 — o), and since we are
only interested in the direction, we can finally write that,

0= 5, (1 — po2),

assuming, of course, that X, is invertible. In practice, X, is obtained
as the respective sample mean using the available observations.
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Fisher's Linear Discriminant I
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(a) (b)

a) The optimal direction resulting from Fisher's discriminant, for two spherically distributed classes. The direction on
which projection takes place is parallel to the segment joining the mean values of the data in the two classes. b) The line
on the bottom left of the figure corresponds to the direction that results from Fisher’s discriminant; observe that it is no

more parallel to ;1 — po, because the classes are not spherically distributed. Note that, projecting on the line on the
right, results in class overlap.

v
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Fisher's Linear Discriminant
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a) The optimal direction resulting from Fisher's discriminant, for two spherically distributed classes. The direction on
which projection takes place is parallel to the segment joining the mean values of the data in the two classes. b) The line
on the bottom left of the figure corresponds to the direction that results from Fisher’s discriminant; observe that it is no

more parallel to ;1 — po, because the classes are not spherically distributed. Note that, projecting on the line on the
right, results in class overlap.

e In order the Fisher's discriminant method to be used as a classifier, a
threshold 6y must be adopted, and the decision rule becomes:

_ > 0, class wq,
y=(m — p2)"Z x + 6 { !

< 0, class ws.

Various rules for 6y can be used. Note that the previous rule is the same
with the optimal (linear) Bayesian one; however, now, no assumption
concerning Gaussianity was adopted.
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Classification Trees

e Classification trees are multistage systems and classification of a pattern
into a class is achieved sequentially. Via a series of tests, classes are
rejected in a sequential fashion, till a decision is finally reached in favor
of one, remaining, class. Each one of the tests, whose outcome decides
which classes are rejected, is of a binary “Yes” or “No” type and it is
applied to a single feature.
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into a class is achieved sequentially. Via a series of tests, classes are
rejected in a sequential fashion, till a decision is finally reached in favor
of one, remaining, class. Each one of the tests, whose outcome decides
which classes are rejected, is of a binary “Yes” or “No” type and it is
applied to a single feature.

e Our goal is to present the main philosophy around a special type of
trees, known as ordinary binary classification trees (OBCT). They
belong to a more general class of methods which construct trees, both
for classification as well as regression, known as classification and
regression trees (CART)
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Classification Trees

e Classification trees are multistage systems and classification of a pattern
into a class is achieved sequentially. Via a series of tests, classes are
rejected in a sequential fashion, till a decision is finally reached in favor
of one, remaining, class. Each one of the tests, whose outcome decides
which classes are rejected, is of a binary “Yes” or “No” type and it is
applied to a single feature.

e Our goal is to present the main philosophy around a special type of
trees, known as ordinary binary classification trees (OBCT). They
belong to a more general class of methods which construct trees, both
for classification as well as regression, known as classification and
regression trees (CART)

e The basic idea around OBCTs is to partition the feature space into
(hyper)rectangles; that is, the space is partitioned via hyperplanes,
which are parallel to the axes. The division of the space in
(hyper)rectangles is performed via a series of “questions”, of the form:
is the value of the feature z; < a? This is also known as the splitting
criterion. The sequence of questions can nicely be realized via the use
of a tree.
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Classification Trees

e The previous descriptions are illustrated in the following figures:
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Partition of the features space, via an OBCT tree. The corresponding classification tree.
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Classification Trees

e The previous descriptions are illustrated in the following figures:
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Partition of the features space, via an OBCT tree. The corresponding classification tree.

e Starting from the root node, a path of successive decisions is realized,
till a leaf node is reached. Each leaf node is associated with a single
class. The assignment of a point to a class is done according to the
label of the respective leaf node. This type of classification is
conceptually simple and easily interpretable.
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Constructing Classification Trees

e Once a tree has been developed, classification is straightforward. The
major challenge lies in constructing the tree, by exploiting the
information which resides in the training data set. The main questions
one is confronted with, while designing a tree, are:

o Which splitting criterion to be adopted?
o When to stop growing a tree and declare a node as final?
o How a leaf node is associated with a specific class?
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e Splitting Criterion: The questions asked at each node are of the type,
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Constructing Classification Trees

e Once a tree has been developed, classification is straightforward. The
major challenge lies in constructing the tree, by exploiting the
information which resides in the training data set. The main questions
one is confronted with, while designing a tree, are:

o Which splitting criterion to be adopted?
o When to stop growing a tree and declare a node as final?
o How a leaf node is associated with a specific class?

e Splitting Criterion: The questions asked at each node are of the type,
isx; <a?

e The goal is to select an appropriate value for the threshold value a.
Assume that starting from the root node, the tree has grown up to the
current node, say ¢. Each node, ¢, is associated with a subset X; € X
of the training data set, X. This is the set of the training points that
have survived to this node after the tests, which have taken place at the
previous nodes in the tree. The goal is to split X; into two disjoint
subsets, namely X}y, and Xy, depending on the answer in the specific
question at node t.
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Constructing Classification Trees I

e For every split, the following is true,
XtY N XtN = 07
Xoy UXyy = Xi.
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Constructing Classification Trees

e For every split, the following is true,
XtY N XtN = wa
Xiy UXey = Xi

e The goal in each node is to select which feature is to be tested and also
what is the best value of the corresponding threshold value a. The
adopted philosophy is to make the choice so that every split to generate
sets, X;y, Xi¢n, which are more class-homogeneous compared to X;. In
other words, the data in each one of the two descendant sets must show
a higher preference to specific classes, compared to the ancestor set.
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e For every split, the following is true,
XtY N XtN = wa
Xiy UXey = Xi

e The goal in each node is to select which feature is to be tested and also
what is the best value of the corresponding threshold value a. The
adopted philosophy is to make the choice so that every split to generate
sets, X;y, Xi¢n, which are more class-homogeneous compared to X;. In
other words, the data in each one of the two descendant sets must show
a higher preference to specific classes, compared to the ancestor set.

e For example, assume that the data in X; consist of points which belong
to four classes, e.g., wy, wa, w3, wy. The idea is to perform the
splitting so that most of the data in X;y to belong to, say, wy, wy and
most of the data in X;y to w3, wy.
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Constructing Classification Trees

e For every split, the following is true,

XtY thN = wa
Xy UXeny = Xi.

e The goal in each node is to select which feature is to be tested and also
what is the best value of the corresponding threshold value a. The
adopted philosophy is to make the choice so that every split to generate
sets, X;y, Xi¢n, which are more class-homogeneous compared to X;. In
other words, the data in each one of the two descendant sets must show
a higher preference to specific classes, compared to the ancestor set.

e For example, assume that the data in X; consist of points which belong
to four classes, e.g., wy, wa, w3, wy. The idea is to perform the
splitting so that most of the data in X;y to belong to, say, wy, wy and
most of the data in X;y to w3, wy.

e In the adopted terminology, the sets X;y and X;x should be purer
compared to X;. Thus, we must first select a criterion, which measures
node impurity and then compute a) the threshold value and b) choose
the specific feature (to be tested), so that to maximize the decrease in
node impurity.

4
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Constructing Classification Trees

e A common measure to quantify node impurity is the associated with a
node, t, entropy, defined as

M
Z (wm|t) logs P(wm|t),

where log,(+) is the base-two logarithm. The maximum value of I(¢)
occurs if all probabilities are equal (maximum impurity) and the smallest
value, which is equal to zero, when only one of the probability values is
one and the rest equal to zero. Probabilities are approximated as,

m

N,
P(wmlt) = Ttt, m=1,2,...,M,

where, N[™ is the number of the points from class m in X;, and N; the
total number of points in X;. The decrease in node impurity, after
splitting the data into two sets, is defined as:

Niy
Ny Nt
where I(ty) and I(ty) are the impurities associated with the two new
sets, respectively.

AI(t) = I(t) —

I(ty) —

N I(tw),
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Constructing Classification Trees

e Another popular impurity measuring index, which results in slightly
sharper maximum compared to the entropy one, is the so-called Gini
index, defined as,

M
I(t)= Y Pwnlt) (1 = Plwmlt).

This index is also zero if one of the probability values is equal to 1 and
the rest are zero, and it takes its maximum value when all classes are
equiprobable.
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e Another popular impurity measuring index, which results in slightly
sharper maximum compared to the entropy one, is the so-called Gini
index, defined as,

M
I(t) = ) P(wmlt) (1 — P(wmlt)).

This index is also zero if one of the probability values is equal to 1 and
the rest are zero, and it takes its maximum value when all classes are
equiprobable.

e Besides the splitting criterion, the following three steps are needed for
completing the construction of a tree:
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e Another popular impurity measuring index, which results in slightly
sharper maximum compared to the entropy one, is the so-called Gini
index, defined as,

M
I(t) = ) P(wmlt) (1 — P(wmlt)).

This index is also zero if one of the probability values is equal to 1 and
the rest are zero, and it takes its maximum value when all classes are
equiprobable.

e Besides the splitting criterion, the following three steps are needed for
completing the construction of a tree:

Stop splitting rule: The obvious question that is posed, while
constructing a tree, is when to stop growing it. One possible way is to
adopt a threshold value, T', and stop splitting a node once the
maximum value AI(t), for all possible splits, is smaller than 7. Another
possibility is to stop when the cardinality of X; becomes smaller than a
certain number or if the node is pure, in the sense that all points in the
node belong to a single class.

4
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Constructing Classification Trees

e Class Assignment Rule: Once a node, t, is declared to be a leaf node, it
is assigned a class label; usually this is done on a majority voting

rationale. That is, it is assigned the label of the class where most of the
data points in X; belong.
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Constructing Classification Trees

e Class Assignment Rule: Once a node, t, is declared to be a leaf node, it
is assigned a class label; usually this is done on a majority voting
rationale. That is, it is assigned the label of the class where most of the
data points in X; belong.

e Pruning a Tree: Experience has shown that growing a tree and using a
stopping rule does not always work well in practice; growing may either
stop early or may result in trees of very large size. A common recipe in
practice is to first grow a tree up to a large size and then adopt a
pruning technique to eliminate nodes. Different pruning criteria can be
used; a popular one is to combine an estimate of the error probability
with a complexity measuring index.
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Constructing Classification Trees

e Class Assignment Rule: Once a node, ¢, is declared to be a leaf node, it
is assigned a class label; usually this is done on a majority voting
rationale. That is, it is assigned the label of the class where most of the
data points in X; belong.

e Pruning a Tree: Experience has shown that growing a tree and using a
stopping rule does not always work well in practice; growing may either
stop early or may result in trees of very large size. A common recipe in
practice is to first grow a tree up to a large size and then adopt a
pruning technique to eliminate nodes. Different pruning criteria can be
used; a popular one is to combine an estimate of the error probability
with a complexity measuring index.

e Advantages of Classification Trees: a) They can naturally treat mixtures
of numeric and categorical variables, b) they scale well with large data
sets, c) they can treat in an effective way missing variables and c) they
are easily interpretable; in other words, it is possible for a human to
understand the reason of the output of the learning algorithm. In some
applications, such as in financial decisions, this is a legal requirement.

v
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Constructing Classification Trees

e Drawbacks of Classification Trees:

e The prediction performance of the tree classifiers is not, in general,
as good as other methods, e.g., support vector machines and
neural networks.

o Another major drawback is that they are unstable classifiers. That
is, a small change in the training data set can result in a very
different tree. The reason for this lies in the hierarchical nature of
the tree classifiers. An error that occurs in a node at a high level
of the tree propagates all the way down to the leaves below it.
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e Drawbacks of Classification Trees:

e The prediction performance of the tree classifiers is not, in general,
as good as other methods, e.g., support vector machines and
neural networks.

o Another major drawback is that they are unstable classifiers. That
is, a small change in the training data set can result in a very
different tree. The reason for this lies in the hierarchical nature of
the tree classifiers. An error that occurs in a node at a high level
of the tree propagates all the way down to the leaves below it.

e Bagging (Bootstrap Aggregating) is a technique that can reduce the
variance and improve the generalization error performance. The basic
idea is to create a number of, say, B variants, X7, Xs,..., Xp, of the
training set, X, using bootstrap techniques, by uniformly sampling from
X with replacement. For each of the training set variants, X;, a tree,
T;, is constructed. The final decision for the classification of a given
point is in favor of the class predicted by the majority of the
subclassifiers, T;, i =1,2,...,B.
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Which Classifier Then? The No-Free Lunch Theorem

e We have discussed a number of classifiers and more methods are
discussed in the book, such as concerning support vector
machines, Bayesian methods and neural/deep networks. The
obvious question that may be naturally raised is: which method
then? Unfortunately, there is no definite answer to it.
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Which Classifier Then? The No-Free Lunch Theorem

e We have discussed a number of classifiers and more methods are
discussed in the book, such as concerning support vector
machines, Bayesian methods and neural/deep networks. The
obvious question that may be naturally raised is: which method
then? Unfortunately, there is no definite answer to it.

e No Free Lunch Theorem: The goal of the design of any classifier,
and in general of any learning scheme, is to provide a good
generalization performance. However, there is no
context-independent or usage-independent reasons to support one
learning technique from another. Each learning task, represented
by the available data set, will show a preference to a specific
learning scheme, which fits the specificities of the particular
problem at hand. An algorithm, which scores top in one problem,
can score low for another.
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Combining Classifiers

e A trend in order to improve performance is to combine different
classifiers together and exploit their individual advantages. An
observation that justifies such an approach is that during testing, there
are patterns on which even the best classifier, for a particular task, fails
to predict their true class. In contrast, the same patterns can be
classified correctly by other classifiers, with an inferior overall
performance. This points out that there may be some complimentarily
among different classifiers and combination can lead to a boosted
performance, compared to that obtained from the best (single)
classifier. Recall that bagging, previously mentioned for trees, is a type
of classifier combination. There are a number of different combination
schemes. For example, having trained a number of different classifiers,
on the same training set, then use:

o The arithmetic averaging rule.
o The geometric averaging rule.
e The Majority voting rule.

Sergios Theodoridis University of Athens Machine Learning 48/49



The Boosting Approach

e This approach is built around the boosting rationale. That is, a weak
learning algorithm, i.e., one which does slightly better than a random
guessing, can be boosted into a strong one, with a good performance
index. At the heart of such techniques lies the so-called base learner,
which is a weak one. Boosting consists of an iterative scheme, where at
each step the base learner is optimally computed, using a different
training set; the set at the current iteration is generated via a weighting
of the training samples, each time using a different set of weights. The
latter are computed so that to take into account the achieved
performance up to the current iteration step. The final learner is
obtained via a weighted average of all the hierarchically designed base
learners. Thus, boosting can also be considered as a scheme for
combining different learners.
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e This approach is built around the boosting rationale. That is, a weak
learning algorithm, i.e., one which does slightly better than a random
guessing, can be boosted into a strong one, with a good performance
index. At the heart of such techniques lies the so-called base learner,
which is a weak one. Boosting consists of an iterative scheme, where at
each step the base learner is optimally computed, using a different
training set; the set at the current iteration is generated via a weighting
of the training samples, each time using a different set of weights. The
latter are computed so that to take into account the achieved
performance up to the current iteration step. The final learner is
obtained via a weighted average of all the hierarchically designed base
learners. Thus, boosting can also be considered as a scheme for
combining different learners.

e |t turns out that, one can significantly improve the (poor) performance
of the weak learner. This is very interesting indeed. Training a weak
classifier, by appropriate manipulation of the training data (as a matter
of fact, the weighting mechanism identifies hard samples, i.e., the ones
which keep failing, and places more emphasis on them) one can obtain
a strong classifier.
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