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Learning in Parametric Modeling

Parameter Estimation: The Deterministic Case

• The task of estimating the value of an unknown parameter vector,
θ, is at the center of interest in a number of scientific disciplines.
Curve fitting is a typical task. Given a set of data points, the aim
is to draw a curve or a surface that “fits” the data.

• The usual path to follow is to adopt a functional form, e.g., a
linear function or a quadratic one, and try to estimate the
associated unknown coefficients so that the graph of the function
“passes through” the data and follows their deployment in space
as close as possible.

• The data are given in sets of output-input pairs of points,
(yn,xn) ∈ R× Rl, n = 1, 2, . . . , N . In a more general setting,
the output variables could also be vectors, i.e., y ∈ Rk.
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Curve Fitting

• The parameter estimation task, in the curve fitting context, is
demonstrated below via the two examples.
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Curve Fitting

• The parameter estimation task, in the curve fitting context, is
demonstrated below via the two examples.

y = fθ(x) = θ0 + θ1x

The choice of the two parameters for the red curve
provides a much better fit.

y = fθ(x) = θ0 + θ1x + θ2x
2

The choice of the three parameters for the red curve
provides a much better fit.
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The choice of the two parameters for the red curve
provides a much better fit.

y = fθ(x) = θ0 + θ1x + θ2x
2

The choice of the three parameters for the red curve
provides a much better fit.

• The task comprises two steps: a) Choose a specific parametric
functional form and b) select the parameters to provide a “good”
fit.
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Choice of the Parametric Family of Functions

• In a more formal way, the parameter estimation task is cast as:
Given a set of data points, (yn,xn), yn ∈ R, xn ∈ Rl,
n = 1, 2, . . . , N , and a parametric set of functions,

F :=
{
fθ(·) : θ ∈ A ⊆ RK

}
,

find an optimal value θ∗ that defines a function in F , which will
be denoted as f(·) := fθ∗(·), such that given a value of x ∈ Rl,
f(x) best approximates the corresponding value y ∈ R.
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Choice of the Parametric Family of Functions

• To reach a decision with respect to the choice of F is not an easy
task. In practice, one has to use as much a-priori information as
possible, concerning the physical mechanism that underlies the
generation of the data.

• Most often, one has to use different families of functions and,
finally, to keep the one that results in the best performance,
according to a preselected criterion.
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The Loss and Cost Functions

• Having adopted a parametric family of functions, F , one has to
get an estimate for the unknown set of parameters. To this end, a
measure of fitness is adopted, which is expressed in terms of a
loss function.

• The loss function quantifies the deviation/error between the
measured value of y and that which is predicted, using the
corresponding measurement/observation x, i.e., fθ(x).

• In a more formal way, we first adopt a nonnegative (loss) function,

L(·, ·) : R× R 7−→ [0,∞) .
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The Loss and Cost Functions

• Then, θ∗ is computed so that to minimize the total loss, or as we
say the cost, over all the data points, i.e.,

f(·) := fθ∗(·) : θ∗ = arg min
θ∈A

J(θ), J(θ) :=

N∑
n=1

L
(
yn, fθ(xn)

)
,

assuming that a minimum exists. Note that, in general, there
may be more than one optimal values θ∗, depending on the shape
of J(θ).
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The Squared Error Loss and the Least-Squares Method

• The squared error loss function is defined as

L
(
y, fθ(x)

)
=
(
y − fθ(x)

)2
,

and it gives rise to the cost function corresponding to the total
(over all data points) squared-error loss

J(θ) =

N∑
n=1

(
yn − fθ(xn)

)2
.

• Minimizing the previous cost function is known as the
Least-Squares method (LS), which was first introduced and used
by Gauss.
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The Squared Error Loss and the Least-Squares Method

• The use of the LS method together with linear models has a
number of computational advantages that makes the method one
among, if not the most, popular techniques in machine learning.
More specifically:

The minimization leads to a unique solution in the parameters’
space.

The optimal set of the unknown parameters is given by the
solution of a linear system of equations.
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Linear Regression

• Regression is the task of modeling the relationship of a dependent
random variable, y, which is considered to be the response of a
system, when its input is activated by a set of random variables,
x1, x2, . . . , xl. The latter will be represented as the components
of a random vector, x. The relationship is modeled via an
additive disturbance or noise term, η. The noise variable, η, is an
unobserved random variable.

• The dependent variable is usually known as the output variable
and the vector x as the input vector or the regressor.

• The goal of the regression task is to estimate the parameter
vector, θ, that defines the input/output dependence, given a set
of observations, (yn,xn), n = 1, 2, . . . , N , that we have at our
disposal. This set is known as the training data set.
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Linear Regression

• For a linear model, we have that

y = θ0+θ1x1+ . . .+θlxl+η = θ0+θTx+η = [θT , θ0]

[
x
1

]
+η,

or in short
y = θTx + η,

where θ has absorbed θ0 and x has been extended by 1. The
parameter θ0 is known as the bias or the intercept.
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Linear Regression

• Prediction model for linear regression: Assuming an estimate, θ̂,
of θ is available, the following model is adopted

ŷ = θ̂0 + θ̂1x1 + . . .+ θ̂lxl := θ̂Tx.

• Using the squared error loss function, the estimate θ̂ is set equal
to θ∗, which minimizes the cost function,

J(θ) =
N∑
n=1

(yn − θTxn)2.

• Taking the derivative (gradient) with respect to θ and equating
to the zero vector, 0, we obtain(

N∑
n=1

xnx
T
n

)
θ̂ =

N∑
n=1

xnyn.
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Linear Regression

• Another way to write the previously obtained relation is via the so-called
input matrix, X, defined as the N × (l + 1) matrix, which has as rows
the (extended) regressor vectors, xTn , n = 1, 2, . . . , N , i.e.,

X :=


xT1
xT2

...
xTN

 =


x11 . . . x1l 1
x21 . . . x2l 1

...
. . .

...
xN1 . . . xNl 1

 .
Then, it is straightforward to see that the linear system that provides
the Least-Squares solution can be written as(

XTX
)
θ̂ = XTy, where y := [y1, y2, . . . , yN ]T .

• Thus, the LS estimate of the unknown set of parameters, describing to
the linear regression model, is given by

θ̂ =
(
XTX

)−1
XTy,

assuming, of course, that
(
XTX

)−1
exists.
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Linear Regression

• The LS solution for the linear regression model is unique.

• Assuming the model to be correct, the quality of the fit depends on the
noise variance.
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• The LS solution for the linear regression model is unique.

• Assuming the model to be correct, the quality of the fit depends on the
noise variance.

Small noise variance Large noise variance
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Classification

• Classification is the task of predicting the class to which an
object, known as pattern, belongs. The pattern is assumed to
belong to one and only one among a number of a-priori known
classes. Each pattern is uniquely represented by a set of
measurements, known as features.

• One of the early stages, in designing a classification system, is to
select an appropriate set of feature variables. These should
“encode” as much class-discriminatory information. Selecting the
appropriate, for each problem, set of features is not an easy task
and it comprises one of the most important areas within the field
of Pattern Recognition.

• Having selected, say, l feature (random) variables, x1, x2, . . . , xl,
we stack them as the components of the so called feature vector,
x ∈ Rl.
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Classification

• The goal is to design a classifier, i.e., a function f(x), so that
given the values in a feature vector, x, which corresponds to a
pattern, to be able to predict the class to which the pattern
belongs.

• Equivalently, the classifier defines a decision surface, f(x) = 0, in
Rl, which partitions the input space into regions. The pattern is
classified to a class, according to which region x lies. In the more
general setting, a set of functions need to be designed and
partition the input space accordingly.
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Classification

• To formulate the task in mathematical terms, each class is
represented by the class label variable, y. For the simple two-class
classification task, this can take either of two values, depending
on the class, e.g, 1,−1, or 1, 0, etc.

• Then, given the value of x, corresponding to a specific pattern,
its class label is predicted according to the rule,

ŷ = φ
(
f(x)

)
,

where φ is a non-linear function that indicates on which side of
the decision surface, f(x) = 0, x lies.
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Classification

• For example, if the class labels are ±1, the non-linear function is
chosen to be the sign function, i.e., φ(·) = sgn(·). The goal is to
estimate a function f . Function f is selected so as to belong in a
specific parametric class of functions, F .

• The parameters are obtained so that the deviation between the
true class labels, yn, and the predicted ones, ŷn, to be minimum
according to a preselected cost, defined over the training set.
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Classification

• The training set of points in a classification task is of the form
(yn,xn) ∈ D × Rl, n = 1, 2, . . . , N , where D is the discrete set
in which y lies. This is a main difference with regression, where
the dependent variable, y, can lie anywhere in an interval of the
real axis interval.

• The goal in regression is to estimate a function that follows the
deployment of the data in the (y,x) space, while in classification
the goal is to partition the space into regions and associate each
region with a specific class.
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Example: Classification via the LS cost

• The LS cost can be used for estimating the parameters of a linear
classifier. We set the labels of the training points, that originate
from one class, say ω1, equal to y = +1 and the labels of the
points originating from the other class, ω2 (for a two class
classification task) equal to y = −1. Then, obtain the parameters
that define the linear function

f(x) := θ0 + θ1x1 + . . .+ θlxl = θTx,

so that to minimize the LS cost

J(θ) =
N∑
n=1

(yn − θTxn)2

or

J(θ) =
∑

n:xn∈ω1

(
1− θTxn

)2
+

∑
n:xn∈ω2

(
−1− θTxn

)2
.
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Example: Classification via the LS cost

Linearly separable classes Nonseparable classes

• Due to the discrete nature of the dependent variable (label), y,
the LS cost is not well suited for classification tasks. For example,
(yn − θTxn)2 may be large and contribute to the error, yet, as
long as ynθ

Txn > 0, the pattern is classified in the correct class
and should not be counted as an error. Other, more appropriate
loss functions will be considered and used later on, such as the
probability of correct classification.
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Discriminative vs Generative Classification Learning

• The path, that we have followed for classification, so far, belongs to the
family of methods known as discriminative learning. A functional form
of the dependence of the label variable, y, on the input variables, x, was
established directly. The statistical nature that ties these two sets of
variables, as expressed by their joint distribution, was not taken into
account.

• Another form that the discriminative learning can take is to model the
conditional P (y|x) directly, which also bypasses the need to model the
joint distribution. Note that the latter, includes much more information,
since it takes into account the statistical nature of the input variables,
as well.

• From a statistical point of view, discriminative learning is justified as
follows: Recall that

p(y,x) = P (y|x)p(x).

Thus, only the first of the two terms in the product is considered. The
distribution of the input data is ignored. The advantage is that simpler
models can be used, especially if the input data are described by pdfs of
a complex form. The disadvantage is that important information,
concerning the input data, is ignored.
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Discriminative vs Generative Classification Learning

• In contrast, the alternative path, known as generative learning,
exploits the input data distribution, too. Once more, employing
the product rule, we have

p(y,x) = p(x|y)P (y).

P (y) is the probability concerning the classes and p(x|y) is the
conditional distribution of the input given the class label.

• For such an approach, it turns out that one distribution per class
has to be learned. Once the joint distribution has been learned,
the prediction of the class label of an unknown pattern, x, is
performed based on the a-posteriori probability,

P (y|x) =
p(y,x)

p(x)
=

p(y,x)∑
y p(y,x)

.

This is also known as the Bayesian classification rule, and we will
focus on such techniques later on.
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Supervised, Semisupervised and Unsupervised Learning

• Learning that relies on the availability of an input-output training
set is known as supervised learning. However, there are learning
tasks, where the dependent variable is not known, or it may be
known for a small percentage of the available training data. In
such cases, we refer to unsupervised and semisupervised learning,
respectively. Clustering is a case of unsupervised learning, where
the goal is to unravel how data are grouped together.

• In this series of lectures, most of the emphasis will be on
supervised learning. Clustering and semi-supervised learning are
treated in detail in

S. Theodoridis, K. Koutroumbas ”Pattern Recognition”, 4th Ed.,
Academic Press, 2009.
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Estimates and Estimators

• In supervised learning, we are given a set of training points,
(yn,xn), n = 1, 2, . . . , N , and an estimate of the unknown
parameter, say θ̂, is returned. However, the training points
themselves are random variables.

• If we are given another set of N observations of the same random
variables, these are going to have different values, and obviously
the resulting estimate will also be different. In other words, by
changing our training data different estimates result.

• Hence, the resulting estimate, of a fixed yet unknown parameter,
is itself a random variable. This, in turn, poses questions on how
good an estimate is. Each time, the obtained estimate is optimal
with respect to the adopted loss function and the specific training
set used. However, who guarantees that the resulting estimates
are “close” to the true value, assuming that there is one?
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Estimates and Estimators

• An estimate, e.g., θ̂ ∈ R, has a specific value, which is the result
of a function acting on a specific set of observations, on which
our chosen estimate depends, see, e.g., the equations providing
the LS estimate. In general, we can write that

θ̂ = f(y, X).

• However, as the set of observations changes, the estimate
becomes itself a random variable, and we write the previous
equation in terms of the corresponding random variables,

θ̂ = f(y,X).

This functional dependence is known as the estimator of the
corresponding unknown variable θ.
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Bias and Variance of an Estimator

• Adopting the squared error loss function to quantify deviations, a
reasonable criterion to measure the performance of an estimator,
with respect to the true value that is denoted here as θo,
assuming that one exists, is the mean-square error,

MSE = E
[
(θ̂− θo)2

]
,

where the mean E is taken over all possible training data sets of
size N .

• If the MSE is small, then we expect that, on average, the
resulting estimates to be close to the true value.

• Note that although θo is not known, still by studying the way the
MSE depends on various terms will help us to learn on how to
proceed in practice and unravel possible paths one has to follow
for obtaining good estimators.
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Bias and Variance of an Estimator

• Adding and subtracting in the above the expected value E[θ̂], we
get

MSE = E
[((

θ̂− E[θ̂]
)

+
(
E[θ̂]− θo

))2]
= E

[(
θ̂− E[θ̂]

)2]
︸ ︷︷ ︸

Variance

+
(
E[θ̂]− θo

)2
︸ ︷︷ ︸

Bias2

. (1)

• The second equality results if we take into account that the mean
value of the product of the two involved terms is zero. Thus, the
mean-square error consists of two terms. One is the variance
around the mean value and the second one is due to the bias;
that is, the deviation of the mean value from the true one.
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Bias or Unbiased Estimators

• After a first naive look, one may think that an unbiased
estimator, i.e., E[θ̂] = θo, is better than a biased one. However,
this is not what the last equation suggests.

• A good estimator is the one that results in small MSE. Making
the last term zero, does not mean that MSE becomes necessarily
small.

• As a matter fact, the opposite is in general true. Indeed, the
minimum of a constrained task can never become smaller than
that of an unconstrained one. That is,

min
θ

MSE(θ) ≤ min
θ: E[θ]=θo

MSE(θ),

• Thus, in general, we expect that an optimal biased estimator
cannot do worse compared to the unbiased one.

Sergios Theodoridis University of Athens Machine Learning 29/95



Bias or Unbiased Estimators

• After a first naive look, one may think that an unbiased
estimator, i.e., E[θ̂] = θo, is better than a biased one. However,
this is not what the last equation suggests.

• A good estimator is the one that results in small MSE. Making
the last term zero, does not mean that MSE becomes necessarily
small.

• As a matter fact, the opposite is in general true. Indeed, the
minimum of a constrained task can never become smaller than
that of an unconstrained one. That is,

min
θ

MSE(θ) ≤ min
θ: E[θ]=θo

MSE(θ),

• Thus, in general, we expect that an optimal biased estimator
cannot do worse compared to the unbiased one.

Sergios Theodoridis University of Athens Machine Learning 29/95



Bias or Unbiased Estimators

• After a first naive look, one may think that an unbiased
estimator, i.e., E[θ̂] = θo, is better than a biased one. However,
this is not what the last equation suggests.

• A good estimator is the one that results in small MSE. Making
the last term zero, does not mean that MSE becomes necessarily
small.

• As a matter fact, the opposite is in general true. Indeed, the
minimum of a constrained task can never become smaller than
that of an unconstrained one. That is,

min
θ

MSE(θ) ≤ min
θ: E[θ]=θo

MSE(θ),

• Thus, in general, we expect that an optimal biased estimator
cannot do worse compared to the unbiased one.

Sergios Theodoridis University of Athens Machine Learning 29/95



Bias or Unbiased Estimators

• After a first naive look, one may think that an unbiased
estimator, i.e., E[θ̂] = θo, is better than a biased one. However,
this is not what the last equation suggests.

• A good estimator is the one that results in small MSE. Making
the last term zero, does not mean that MSE becomes necessarily
small.

• As a matter fact, the opposite is in general true. Indeed, the
minimum of a constrained task can never become smaller than
that of an unconstrained one. That is,

min
θ

MSE(θ) ≤ min
θ: E[θ]=θo

MSE(θ),

• Thus, in general, we expect that an optimal biased estimator
cannot do worse compared to the unbiased one.

Sergios Theodoridis University of Athens Machine Learning 29/95



Bias or Unbiased Estimators

• The unbiased estimator that results in minimum MSE (variance)
is known as the Minimum Variance Unbiased Estimator (MVUE).
If such an estimator exists, then it is unique. An MVUE does not
always exists.

Sergios Theodoridis University of Athens Machine Learning 30/95



Example Of A Biased Estimator That Does Better Than The MVUE

• The goal is to search for a biased estimator, θ̂b, which results in a
smaller MSE, compared to the unbiased one, assuming that it exists.

• Let us limit our search for θ̂b, within the class of scalar multiples of
θ̂MVU, i.e.,

θ̂b = (1 + α)θ̂MVU,

where α ∈ R is a free parameter.

• Notice that
E[θ̂b] = (1 + α)θo,

where θo is the unknown true one.

• Substituting in (1) and after some simple algebra we obtain

MSE(θ̂b) = (1 + α)2MSE(θ̂MVU) + α2θ2o.

• In order to get MSE(θ̂b) < MSE(θ̂MVU), α must be in the range

− 2MSE(θ̂MVU)

MSE(θ̂MVU) + θ2o
< α < 0.

• The previous range implies that |1 + α| < 1. Hence,

|θ̂b| = |(1 + α)θ̂MVU| < |θ̂MVU|.
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Example Of A Biased Estimator That Does Better Than The MVUE

• We can go a step further and try to compute the optimum value of α,
which corresponds to the minimum MSE. By taking the derivative of
MSE(θ̂b) with respect to α, it turns out that this occurs for

α∗ = − MSE(θ̂MVU)

MSE(θ̂MVU) + θ2o
= − 1

1 +
θ2o

MSE(θ̂MVU)

.

Therefore, we have found a way to obtain the optimum estimator,
among those in the set {θ̂b = (1 + α)θ̂MVU : α ∈ R}, which results in
minimum MSE.

• This is true, but as many nice things in life, this is not, in general,
realizable. The optimal value for α is given in terms of the unknown,
θo!

• However, as far as we are concerned, it says something very important.
If we want to do better than the MVUE, then, a possible way is to
shrink the norm of the MVU estimator. Shrinking the norm is a way of
introducing bias into an estimator. We will discuss ways on how to
achieve this soon, in the context of regularization.
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Example of an Unbiased Estimator

• Assume that we are given a set of noisy observations of an
unknown parameter, θ, i.e.,

yn = θ + ηn, n = 1, 2, . . . N,

and the goal is to obtain an estimate of the unknown parameter.
Moreover assume that E[η] = 0. Note that this is a special type
of a regression task, where the input samples are
xn = 1, n = 1, 2 . . . , N .

• The least squares estimate of θ is given by(
N∑
n=1

xnxn

)
θ̂ = Nθ̂ =

N∑
n=1

yn1,

or

θ̂ =
1

N

N∑
n=1

yn := ȳ
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Example of an Unbiased Estimator

• We will show that the previous result defines an unbiased
estimator of θ. Indeed,

E[ȳ] =
1

N

N∑
n=1

E[yn] =
1

N

N∑
n=1

E[θ + ηn] = θ.

• Assuming the noise to be white, the corresponding MSE is
computed as

E
[
(ȳ − θ)2

]
= E

 1

N2

(
N∑
n=1

yn −Nθ

)2
 =

1

N2
E

( N∑
n=1

(yn − θ)

)2


or

E
[
(ȳ − θ)2

]
=

1

N2

N∑
i=1

N∑
j=1

E[ηiηj ] =
1

N2

N∑
n=1

E[η2
n] =

σ2
η

N

• Note that this is NOT a MVUE. For this to happen, the noise
must be white as well as Gaussian.
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E[ȳ] =
1

N

N∑
n=1

E[yn] =
1

N

N∑
n=1

E[θ + ηn] = θ.

• Assuming the noise to be white, the corresponding MSE is
computed as

E
[
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MSE for Parameter Vectors

• Note that what we said, so far, is readily generalized to parameter
vectors. An unbiased parameter vector satisfies

E[θ̂] = θo.

• The MSE around the true value, θo, is defined as

MSE = E
[
(θ̂− θo)T (θ̂− θo)

]
.

• Looking carefully at the previous definition reveals that the MSE
for a parameter vector is the sum of the MSEs of the components,
θ̂i, i = 1, 2 . . . , l, around the corresponding true values θoi.
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The Cramér-Rao Lower Bound

• The Cramér-Rao theorem provides a lower bound for the variance
of any unbiased estimator, and it is one among the most well
known theorems in Statistics.

• Given the set, X = {x1, . . . ,xN}, of the observations, let p(X ; θ)
be the joint distribution describing the observations, which
depend on an unknown scalar parameter, θ ∈ R. Then, the
variance, σ2

θ̂
, of any unbiased estimator of the corresponding true

value of θ, is lower bounded as

σ2
θ̂
≥ 1

I(θ)
, I(θ) := −E

[∂2 ln p(X ; θ)

∂θ2

]
.
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The Cramér-Rao Lower Bound

• The necessary and sufficient condition for obtaining an unbiased
estimator, which attains the bound, is the existence of a function
g(·) such that for all possible values of θ,

∂ ln p(X ; θ)

∂θ
= I(θ)

(
g(X )− θ

)
.

• The MVU estimate is then given by

θ̂ = g(X ) := g(x1,x2, . . . ,xN ),

and the variance of the respective estimator is equal to 1/I(θ).
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Example Of An Efficient Estimator

• Assume, as before, that we are given a set of noisy observations of an
unknown parameter, θ, i.e.,

yn = θ + ηn, n = 1, 2, . . . N,

and the goal is to obtain an estimate of the unknown parameter. In
addition, now, it is assumed that the noise samples are i.i.d drawn from
a Gaussian random variable of zero mean and variance σ2

η.

• We have already shown that

ȳ :=
1

N

N∑
n=1

yn,

defines an unbiased estimator. Under the current assumptions, we will
show that it also attains the Cramér-Rao lower bound. That is, it is an
efficient estimator. We have already seen that, θ̂ = ȳ is the LS estimate
for this specific task.

• First, recall that that the corresponding estimator is unbiased. Indeed

E[ȳ] =
1

N

N∑
n=1

E[yn] =
1

N

N∑
n=1

E[θ + ηn] = θ.
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Example Of An Efficient Estimator

• The joint pdf of the observations is given by

p(y; θ) =

N∏
n=1

1√
2πσ2

η

exp

(
− (yn − θ)2

2σ2
η

)
,

or

ln p(y; θ) = −N
2

ln(2πσ2
η)− 1

2σ2
η

N∑
n=1

(yn − θ)2.

• Taking the derivative, we obtain

∂ ln p(y; θ)

∂θ
=

1

σ2
η

N∑
n=1

(yn − θ) =
N

σ2
η

(ȳ − θ), ȳ :=
1

N

N∑
n=1

yn.

• The second derivative, as required by the theorem, is given by

∂2 ln p(y; θ)

∂θ2
= −N

σ2
η

, hence I(θ) =
N

σ2
η

.

• Thus, according to the theorem, ȳ is an unbiased estimator that attains

the minimum variance error bound with variance equal to
σ2
η

N .
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1

N

N∑
n=1

yn.

• The second derivative, as required by the theorem, is given by

∂2 ln p(y; θ)

∂θ2
= −N

σ2
η

, hence I(θ) =
N

σ2
η

.
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The LS Estimator And The Cramér-Rao Bound

• Let us now consider the linear regression task,

yn = θTx+ ηn,

• Assume that he noise samples are i.i.d drawn from a zero mean
Gaussian distribution, N (0, σ2η).

• It can easily be shown, following similar arguments as before, that
the LS estimator,

θ̂ = (XTX)−1XTy,

is an unbiased efficient estimator. That is, it is a MVUE.

• This is not true, however, if the noise is not Gaussian or if
successive noise samples are correlated; that is, if Ση 6= σ2ηI.
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Regularization

• We have already seen that the LS estimator is a minimum
variance unbiased estimator, under the assumptions of linearity of
the regression model and in the presence of a Gaussian white
noise source.

• We also know that one can improve the MSE performance of an
estimator by shrinking the norm of the MVU estimator.

• Regularization is a mathematical tool to impose a-priori
information on the structure of the solution, which comes as the
outcome of an optimization task. Regularization can also be
considered as a way to impose bias on an estimator.

• However, its use in Machine learning can be justified by more
general arguments, as it will become apparent soon.
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Regularization

• In the context of the LS regression task, and in order to shrink
the norm of the parameter vector estimate, the method of
regularization reformulates the LS task as,

minimize J(θ) =

N∑
n=1

(
yn − θTxn

)2
,

subject to ‖θ‖2 ≤ ρ,

where ‖·‖ stands for the Euclidean norm of a vector.

• Constraining the norm of the parameter vector, we do not allow
the LS criterion to be completely “free” to reach a solution, but
we limit the space in which to search for it.

• For the LS loss function and the previous constraint, it can be
shown that the optimization task can also be written as

minimize L(θ, λ) =

N∑
n=1

(
yn − θTx

)2
+ λ‖θ‖2.
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Ridge Regression

• It turns out that, for specific choices of λ ≥ 0 and ρ, the two
tasks are equivalent. Note that this new cost function, L(θ, λ),
involves one term that measures the model misfit and a second
one that quantifies the size of the norm of the parameter vector.

• Taking the gradient of L with respect to θ and equating to zero,
we obtain the regularized LS solution for the linear regression
task, i.e., (

N∑
n=1

xnx
T
n + λI

)
θ̂ =

N∑
n=1

ynxn,

where I is the identity matrix of appropriate dimensions. The
presence of λ biases the new solution away from that, which
would have been obtained from the unregularized LS formulation.
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Example of Ridge Regression

• The goal of this example is to demonstrate that the obtained via the
ridge regression estimate can score a better MSE performance compared
to the unconstrained LS solution. The following simple regression model
is adopted,

yn = θo + ηn, n = 1, 2, . . . , N,

where, for simplicity, we have assumed that the regressors xn ≡ 1, and
ηn, n = 1, 2, . . . , N , are i.i.d. samples drawn from a zero-mean
Gaussian distribution of variance σ2

η.

• We have already seen that the LS estimate of the unknown parameter
corresponds to the MVU estimator and it is the sample mean,
θ̂MVU = 1

N

∑N
n=1 yn. Moreover, this solution scores an MSE of σ2

η/N .

• It can be readily verified that the solution of the corresponding ridge
regression task is given by

θ̂b(λ) =
1

N + λ

N∑
n=1

yn =
N

N + λ
θ̂MVU,

where we have explicitly expressed the dependence of the estimate θ̂b on
the regularization parameter λ. Notice that for the associated
estimator, we have, E[θ̂b(λ)] = N

N+λθo.
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Example of Ridge Regression

• Taking into account the definition of the MSE and taking the derivative
with respect to λ, it turns out that that the minimum value of MSE(θ̂b)
is

MSE(θ̂b(λ∗)) =

σ2
η

N

1 +
σ2
η

Nθ2o

<
σ2
η

N
= MSE(θ̂MVU),

and it is attained at λ∗ = σ2
η/θ

2
o.

• Thus, the ridge regression estimator can offer an improvement to the
MSE performance. As a matter of fact, there exists always a λ > 0,
such that the ridge regression estimate gives an MSE lower than the
one corresponding to the MVU one.

• The following table shows the experimental values, for a specific
scenario, by averaging out different realizations to obtain values of the
involved MSE estimates. For this case, MSE(θ̂MVU) ≈ 10−3.

λ MSE(θ̂b(λ))

0.1 9.99082× 10−4

1.0 9.79790× 10−4

100.0 2.74811× 10−4

λ∗ = 103 9.09671× 10−5
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Inverse Problems: Ill-conditioning and Overfitting

• Most tasks in Machine Learning belong to the so called inverse
problems. The latter term encompasses all the problems where
one has to infer/ predict/ estimate the values of a model based
on a set of available output/input observations-training data.

• In a less mathematical terminology, in inverse problems, one has
to unravel unknown causes from known effects; in other words,
to reverse the cause-effect relations.
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Inverse Problems: Ill-conditioning and Overfitting

• Inverse problems are typically ill-posed, as opposed to the
well-posed ones.

• Well-posed problems are characterized by: a) the existence of a
solution, b) the uniqueness of the solution and c) the stability of
the solution. The latter condition is usually violated in machine
learning problems. This means that the obtained solution may be
very sensitive to changes of the training set. Ill conditioning is
another term used to describe this sensitivity.

• The reason for this behavior is that the model used to describe
the data can be complex, in the sense that the number of the
unknown free parameters is large, with respect to the number of
data points. The “face” with which this problem manifests itself
in machine learning is known as overfitting.
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Inverse Problems: Ill-conditioning and Overfitting

• Overfitting occurs if the estimated parameters of the unknown
model learn too much about the idiosyncrasies of the specific
training data set, and the model performs badly when it deals
with another set of data, other than that used for the training.

• As a matter of fact, the MSE criterion, defined before, attempts
to quantify exactly this data-dependence of the task; that is, the
mean deviation of the obtained estimates from the true value by
changing the training sets.
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Inverse Problems: Ill-conditioning and Overfitting

• When the number of training samples is small with respect to the
number of the unknown parameters, the available information is
not enough to “reveal” a sufficiently good model, which fits the
data, and it can be misleading due to the presence of the noise
and possible outliers.

• Regularization is an elegant and efficient tool to cope with the
complexity of the model; that is, to make it less complex, more
smooth.

• There are different ways to achieve this. One way is by
constraining the norm of the unknown parameter, as ridge
regression does. When dealing with more complex, compared to
linear, models, one can use constraints on the smoothness of the
involved non-linear function, e.g., by involving derivatives of the
model function in the regularization term.
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Mean-Square Error Estimation

• In the same way, that we have already elaborated on the MSE
performance of a parameter estimator, we will turn our attention
to the task of regression. The more general nonlinear regression
task will be considered,

y = g(x) + η.

• As a first step, the MSE optimal estimate, ŷ, given a value of x
will be obtained. This is, in general, a nonlinear function of x.
Let, p(y,x) be the corresponding joint distribution. Then, given
any observation, x = x ∈ Rl, the task is to obtain a function
ŷ := ĝ(x) ∈ R, such that

ĝ(x) = arg minf :Rl→R E
[(

y − f(x)
)2]

,

where the expectation is taken with respect to the conditional
probability of y given the value of x, i.e., p(y|x).
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Mean-Square Error Estimation

• We will show that

ĝ(x) = E [y|x] :=
∫ +∞

−∞
yp(y|x)dy.
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Mean-Square Error Estimation

• Proof: We have that

E
[(

y − f(x)
)2]

= E
[(

y − E[y|x] + E[y|x]− f(x)
)2]

= E
[(

y − E[y|x]
)2]

+ E
[(
E[y|x]− f(x)

)2]
+2E

[(
y − E[y|x]

)(
E[y|x]− f(x)

)]
,

where the dependence of the expectation on x has been suppressed for
notational convenience.

• It is readily seen that the last (product) term on the right hand side is
zero, hence we are left with the following

E
[(

y − f(x)
)2]

= E
[(

y − E[y|x]
)2]

+
(
E[y|x]− f(x)

)2
,

where we have taken into account that, for fixed x, the terms E[y|x]
and f(x) are not random variables.

• Thus, we finally obtain our claim, i.e.,

E[
(
y − f(x)

)2
] ≥ E

[(
y − E[y|x]

)2]
.
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Mean-Square Error Estimation

• The previous is a very elegant result. The optimal, in the MSE
sense, estimate of the unknown function is ĝ(x) = E[y|x].
Sometimes, the latter is also known as the regression of y
conditioned on x = x. This is, in general, a nonlinear function.

• It can be shown that if (y,x) take values in R× Rl and are
jointly Gaussian, then the optimal MSE estimate E[y|x] is a linear
(affine) function of x.

• The previous results generalize to the case where y is a random
vector that takes values in Rk. The optimal MSE estimate, given
the values of x = x, is equal to

ĝ(x) = E[y|x],

where now ĝ(x) ∈ Rk . Moreover, if (y,x) are jointly Gaussian
random vectors, the MSE optimal estimate is also an affine
function of x.
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Sometimes, the latter is also known as the regression of y
conditioned on x = x. This is, in general, a nonlinear function.

• It can be shown that if (y,x) take values in R× Rl and are
jointly Gaussian, then the optimal MSE estimate E[y|x] is a linear
(affine) function of x.

• The previous results generalize to the case where y is a random
vector that takes values in Rk. The optimal MSE estimate, given
the values of x = x, is equal to
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Mean-Square Error Estimation

• The previous findings can be fully justified by physical reasoning.
Assume, for simplicity, that the noise variable is of zero mean.
Then, for a fixed value x = x, we have that E[y|x] = g(x) and
the respective MSE is equal to

MSE = E
[(

y − E[y|x]
)2]

= σ2η.

No other function of x can do better, since the optimal one
achieves an MSE equal to the noise variance, which is irreducible;
it represents the intrinsic uncertainty of the system. Any other
function, f(x), will result in an MSE larger by the factor
(E[y|x]− f(x))2, which corresponds to the deviation of the MSE
from the optimal one.
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Bias-Variance Tradeoff

• The optimal, in the MSE sense, estimate of the dependent
variable in a regression task is given by the conditional
expectation E[y|x].

• In practice, any estimator is computed based on a specific
training data set, say D. Let us make the dependence on the
training set explicit and express the estimate as a function of x
parametrized on D, i.e., f(x;D).
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Bias-Variance Tradeoff

• A reasonable measure to quantify the performance of an
estimator is its mean-square deviation from the optimal one, i.e.,
ED[

(
f(x;D)− E[y|x]

)2
], where the mean is taken with respect

to all possible training sets, since each one results in a different
estimate.

• Adding and subtracting the mean, as we did before for the case of
a single parameter, the following elegant formula is obtained

ED
[(
f(x;D)− E[y|x]

)2]
= ED

[(
f(x;D)− ED[f(x;D)]

)2]︸ ︷︷ ︸
Variance

+

(
ED[f(x;D)]− E[y|x]

)2
︸ ︷︷ ︸

Bias2

.
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Bias-Variance Tradeoff

• As it was the case for the MSE parameter estimation task, when
changing from one training set to another, the mean-square
deviation from the optimal estimate comprises two terms. The
first one is contributed by the variance of the estimator around its
own mean value and the second one by the difference of the mean
from the optimal estimate, i.e., the bias.

• It turns out that one cannot make both terms small
simultaneously. For a fixed number of training points, N , in the
data sets D, trying to minimize the variance term results in an
increase of the bias term and vice versa.
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Bias-Variance Tradeoff

• The previous “conflict” is due to the fact that in order to reduce
the bias term, one has to increase the complexity (more free
parameters) of the adopted estimator f(·;D). This, in turn,
results in higher variance as we change the training sets. This is a
manifestation of the overfitting issue that we have already
discussed.

• The only way to reduce both terms simultaneously is to increase
the number of the training data points, N , and at the same time
to increase the complexity of the model carefully, so that to
achieve the aforementioned goal. This is known as the
bias-variance dilemma or tradeoff.
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Occam’s Razor Rule

• The bias-variance dilemma is a manifestation of a more general
statement in machine learning/inverse problem tasks, known as the
Occam’s razor rule:

Plurality must never be posited without necessity

.• The great physicist Paul Dirac expressed the same statement from an
aesthetics point of view, which underlies mathematical theories: A
theory with a mathematical beauty is more likely to be correct than an
ugly one that fits the data. In our context of model selection, this is
understood that one has to select the simplest model that can explain
the data. Although this is not a scientifically proven result, it underlies
the rationale behind a number of developed model selection techniques.
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Bias-Variance Dilemma Example

(a) (b)

(c)
(d)

(a) Ten of the resulting curves from fitting a high order polynomial and (b) the corresponding average over 1000
different experiments, together with the (red) curve of the unknown polynomial. The dots indicate the points that give
birth to the training data, as described in the text. (c) and (d) illustrate the results from fitting a low order polynomial.
Observe the bias-variance tradeoff as a function of the complexity of the fitted model.
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Maximum Likelihood Method

• From now on, we are going to bring into the parameter
estimation task information related to the statistical nature of the
training data set. We will first formulate the method in a general
parameter estimation framework. In the sequel, we are going to
apply the methods to specific machine learning related tasks.

• We are given a set of N observations, X = {x1,x2, . . . ,xN},
drawn from a probability distribution. We assume that the joint
pdf of these N observations is of a known parametric functional
type, denoted as p(X ;θ), where the parameter θ ∈ RK is
unknown and the task is to estimate its value.
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Maximum Likelihood Method

• The joint pdf, p(X ;θ), is known as the likelihood function of θ
with respect to the given set of observations, X . According to
the maximum likelihood method, the estimate is provided by:

θ̂ML := arg max
θ

p(X ;θ).

• Since the logarithmic function, ln(·), is monotone and increasing,
one can instead search for the maximum of the log-likelihood
function, i.e.,

∂ ln p(X ;θ)

∂θ

∣∣∣∣
θ=θ̂ML

= 0.
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Maximum Likelihood Method

• The ML estimator is asymptotically unbiased; that is, assuming that
the model of the pdf, which we have adopted, is correct and there exists
a true parameter θo, then

lim
N→∞

E[θ̂ML] = θo.

• The ML estimate is asymptotically consistent; that is, given any value
of ε > 0,

lim
N→∞

Prob
{∣∣∣θ̂ML − θo

∣∣∣ > ε
}

= 0,

• The ML estimator is asymptotically efficient; that is, it achieves the
Cramér-Rao lower bound.

Sergios Theodoridis University of Athens Machine Learning 63/95



Maximum Likelihood Method

• The ML estimator is asymptotically unbiased; that is, assuming that
the model of the pdf, which we have adopted, is correct and there exists
a true parameter θo, then

lim
N→∞

E[θ̂ML] = θo.

• The ML estimate is asymptotically consistent; that is, given any value
of ε > 0,

lim
N→∞

Prob
{∣∣∣θ̂ML − θo

∣∣∣ > ε
}

= 0,

• The ML estimator is asymptotically efficient; that is, it achieves the
Cramér-Rao lower bound.

Sergios Theodoridis University of Athens Machine Learning 63/95



Maximum Likelihood Method

• The ML estimator is asymptotically unbiased; that is, assuming that
the model of the pdf, which we have adopted, is correct and there exists
a true parameter θo, then

lim
N→∞

E[θ̂ML] = θo.

• The ML estimate is asymptotically consistent; that is, given any value
of ε > 0,

lim
N→∞

Prob
{∣∣∣θ̂ML − θo

∣∣∣ > ε
}

= 0,

• The ML estimator is asymptotically efficient; that is, it achieves the
Cramér-Rao lower bound.

Sergios Theodoridis University of Athens Machine Learning 63/95



Maximum Likelihood Method

• The ML estimator is asymptotically unbiased; that is, assuming that
the model of the pdf, which we have adopted, is correct and there exists
a true parameter θo, then

lim
N→∞

E[θ̂ML] = θo.

• The ML estimate is asymptotically consistent; that is, given any value
of ε > 0,

lim
N→∞

Prob
{∣∣∣θ̂ML − θo

∣∣∣ > ε
}

= 0,

• The ML estimator is asymptotically efficient; that is, it achieves the
Cramér-Rao lower bound.

Sergios Theodoridis University of Athens Machine Learning 63/95



ML Estimation of the The Mean Value

• Let x1, . . . ,xN be the observation vectors i.i.d drawn from a normal
distribution with known covariance matrix and unknown mean, that is,

p(xn;µ) =
1

(2π)l/2|Σ|1/2
exp

(
−1

2
(xn − µ)TΣ−1(xn − µ)

)
.

• The joint log-likelihood function, L(µ), is given by

ln

N∏
n=1

p(xn;µ) = −N
2

ln
(
(2π)l|Σ|

)
− 1

2

N∑
n=1

(xn − µ)TΣ−1(xn − µ)

• Taking the gradient with respect to µ, we obtain

∂L(µ)

∂µ
:=


∂L
∂µ1
∂L
∂µ2

...
∂L
∂µl

 =

N∑
n=1

Σ−1(xn − µ),

and equating to 0 leads to

µ̂ML =
1

N

N∑
n=1

xn.
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ML and Linear Regression: The Non-white Gaussian Noise Case

• Consider the linear regression model

y = θTx + η.

We are given N training data points (yn,xn), n = 1, 2 . . . , N .
The noise samples, ηn, n = 1, . . . , N , originate from a jointly
Gaussian distribution with zero mean and covariance matrix Ση.
Our goal is to obtain the ML estimate of θ.

• Collecting all the training points, i.e.,

yn = θTxn + ηn = xTnθ + ηn, n = 1, 2, . . . , N

together in vector and matrix forms (i.e., yT = [y1, y2, . . . , yN ],
ηT = [η1, η2, . . . , ηN ], XT = [x1,x2, . . . ,xN ]), we can write,

y −Xθ = η
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ML and Linear Regression: The Non-white Gaussian Noise Case

• The joint log-likelihood function of θ, with respect to the training
set, is given by

L(θ) = −N
2

ln(2π)− 1

2
ln |Ση| −

1

2
(y −Xθ)T Σ−1η (y −Xθ) ,

• Taking the gradient with respect to θ, we get

∂L(θ)

∂θ
= XTΣ−1η (y −Xθ) ,

and equating to the zero vector, we obtain

θ̂ML =
(
XTΣ−1η X

)−1
XTΣ−1η y.
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ML and Linear Regression: The Non-white Gaussian Noise Case

• Compare the previously derived ML with the LS solution. They
are different, unless the covariance matrix of the successive noise
samples, Ση, is diagonal and of the form σ2ηI; that is, if the noise
is Gaussian as well as white. In this case, the LS and the ML
solutions coincide.

• However, if the noise sequence is non-white, the two estimates
differ. Moreover, it can be shown that, in the case of colored
Gaussian noise, the ML estimate is an efficient one and it attains
the Cramér-Rao bound, even if N is finite.
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Bayesian Inference

• Given two jointly distributed random vectors, say, x, θ, Bayes
theorem states that

p(x,θ) = p(x|θ)p(θ) = p(θ|x)p(x).

• Assume that x,θ are two statistically dependent random vectors.
Let X = {xn ∈ Rl, n = 1, 2, . . . , N}, be the set of the
observations resulting from N successive experiments. Then,
Bayes theorem gives

p(θ|X ) =
p(X|θ)p(θ)

p(X )
=

p(X|θ)p(θ)∫
p(X|θ)p(θ)dθ

.

• Obviously, if the observations are i.i.d., then we can write

p(X|θ) =

N∏
n=1

p(xn|θ).
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Bayesian Inference

• In our discussion, so far, we have assumed that the parameters
associated with the functional form of the adopted model are
deterministic constants, whose values are unknown to us. Now,
we turn our attention to a different rationale. The unknown
parameters will be treated as random variables.

• Hence, whenever our goal is to estimate their values, this is
conceived as an effort to estimate the values of a specific
realization that corresponds to the observed data. The heart of
the method beats around the celebrated Bayes theorem.
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Bayesian Inference

• In the previous formulas, p(θ) is the a-priori pdf concerning the
statistical distribution of θ, and p(θ|X ) is the conditional or
a-posteriori pdf, formed after the set of N observations has been
obtained.

• The prior probability density, p(θ), can be considered as a
constraint that encapsulates our prior knowledge about θ. No
doubt, our uncertainty about θ is modified after the observations
have been received, since more information is now disclosed to us.
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Bayesian Inference

• We will refer to the process of approximating the pdf of a random
quantity, based on a set of training data, as inference, to
differentiate it from the process of estimation, that returns a
single value for each parameter/variable.

• So, according to the inference approach, one attempts to draw
conclusions about the nature of the randomness that underlies
the variables of interest. This information, can in turn be used to
make predictions and/or to take decisions.
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Bayesian Inference

• A first path to exploit the derived posterior pdf is to obtain a
single estimate concerning the unknown parameter vector. One
possibility is to make use of what we already know. Since x and
θ are two statistically dependent random vectors, the MSE
optimal estimate of the value of θ, given X , is

θ̂ = E[θ|X ] =

∫
θp(θ|X )dθ.
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Bayesian Inference

• Another direction is to obtain an estimate of the pdf of x given
the observations X . This can be done by marginalizing over a
distribution, i.e.,

p(x|X ) =

∫
p(x|θ)p(θ|X )dθ,

where the conditional independence of x on X , given the value
θ = θ, i.e., p

(
(x|X ,θ) = p(x|θ)

)
has been used.

• The last equation provides an estimate of the unknown pdf, by
exploiting the information that resides in the obtained
observations as well as in the adopted functional dependence on
the parameters θ.
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Bayesian Inference Example

• Consider the simplified linear regression task

y = θ + η.

Assume that the noise samples are i.i.d. drawn from a Gaussian process
of zero mean and variance σ2

η. We impose our a-priori knowledge
concerning the unknown θ, via the prior distribution

p(θ) = N (θ0, σ
2
0).

That is, we assume that we know that the values of θ lie around θ0, and
σ2
0 quantifies our degree of uncertainty about this prior knowledge. Our

goals are: a) to obtain the a-posteriori pdf, given the set of
measurements y = [y1, . . . , yN ]T , and b) to obtain E[θ|y].

• We have that

p(θ|y) =
p(y|θ)p(θ)
p(y)

=
1

p(y)

(
N∏
n=1

p(yn|θ)

)
p(θ)

=
1

p(y)

(
N∏
n=1

1√
2πση

exp

(
− (yn − θ)2

2σ2
η

))
×

1√
2πσ0

exp

(
− (θ − θ0)2

2σ2
0

)
.
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Bayesian Inference Example

• After some algebraic manipulations, one ends up in the following

p(θ|y) =
1√

2πσN
exp

(
− (θ − θ̄N )2

2σ2
N

)
,

where
θ̄N =

Nσ2
0 ȳN + σ2

ηθ0

Nσ2
0 + σ2

η

,

with ȳN = 1
N

∑N
n=1 yn being the sample mean of the observations and

σ2
N =

σ2
ησ

2
0

Nσ2
0 + σ2

η

.

In words, if the prior and the conditional pdfs are Gaussians, then the
posterior is also Gaussian.

• Observe that as the number of observations increases, θ̄N tends to the
sample mean, ȳN , of the observations; recall that the latter is the
estimate that results from the ML method. Also, note that the variance
keeps decreasing as the number of observations increases; which is in
line to common sense, since more observations reduce uncertainty.
These findings are illustrated by the following figure.
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0 ȳN + σ2

ηθ0

Nσ2
0 + σ2

η

,

with ȳN = 1
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sample mean, ȳN , of the observations; recall that the latter is the
estimate that results from the ML method. Also, note that the variance
keeps decreasing as the number of observations increases; which is in
line to common sense, since more observations reduce uncertainty.
These findings are illustrated by the following figure.

Sergios Theodoridis University of Athens Machine Learning 75/95



Bayesian Inference Example

In the Bayesian inference approach, note that as the number of observations increases, our uncertainty about the true
value of the unknown parameter is reduced and the mean of the posterior pdf tends to the true value (in this case equal

to 1) and the variance tends to zero.
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Maximum A-Posteriori Probability Estimation Method

• The Maximum A-Posteriori Probability estimation technique,
usually denoted as MAP, is based on the Bayesian theorem, but it
does not go as far as the Bayesian philosophy allows to. The goal
becomes that of obtaining an estimate by maximizing

θ̂MAP := arg max
θ

p(θ|X ) =
p(X|θ)p(θ)

p(X )

• Because p(X ) is independent of θ, this leads to

θ̂MAP = arg max
θ

p(X|θ)p(θ)

= arg max
θ

{
ln p(X|θ) + ln p(θ)

}
.
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Maximum A-Posteriori Probability Estimation Method

• For the case of the estimation of the parameter hidden in noise
(y = θ + η), using as prior the Gaussian N (θ0, σ

2
0), one can

readily obtain,

θ̂MAP =
NȳN +

σ2
η

σ2
0
θ0

N +
σ2
η

σ2
0

= θ̄N ,

where θ̄N is the mean value of the posterior obtained via the
Bayesian inference method. Note that even for this very simple
case, the Bayesian inference approach provides an extra piece of
information; that is, the variance around θ̄N .
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When Ridge Regression, MAP and Bayesian Inference Meet

• Let us focus, for simplicity, to the model (y = θ + η), of
estimating a parameter via its noisy observations, y1, . . . , yN .

• Let us assume that we have prior knowledge concerning the
unknown parameter that is located close to a value, θ0. We will
“embed” this information in the LS criterion in the form of a
constraint. This can be done by modifying the constraint used in
the ridge regression, such that

(θ − θ0)2 ≤ ρ,

which leads to the minimization of the following Lagrangian

minimize L(θ, λ) =

N∑
n=1

(yn − θ)2 + λ
(
(θ − θ0)2 − ρ

)
.
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When Ridge Regression, MAP and Bayesian Inference Meet

• Taking the derivative of the previous cost with respect to θ and
equating to zero, we obtain

θ̂ =
NȳN + λθ0
N + λ

.

• Note that this is exactly the same like the MAP estimate, if one
sets the regularization parameter λ = σ2η/σ

2
0. In other words, the

effect of a prior in MAP and the Bayesian inference is equivalent
to the use of a regularizer in the LS (and not only) method. The
estimates are the same only for the special case of white Gaussian
noise and Gaussian priors.
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Curse Of Dimensionality

• In a number of places, we mentioned the need of having a large
number of training points. While talking for the bias-variance
tradeoff, it was stated that in order to end up with a low overall
MSE, the complexity (number of parameters) of the model should
be small enough with respect to the number of training points.

• Also, overfitting was discussed and it was pointed out that, if the
number of training points is small with respect to the number of
parameters, overfitting occurs.

• The question that is now raised is how big a data set should be.
The answer to the previous question depends largely on the
dimensionality of the input space. It turns out that, the larger the
dimension of the input space is the more data points are needed.
This is related to the so-called curse of dimensionality.
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Curse Of Dimensionality

• Let us assume that we are given the same number of points, N ,
thrown randomly in a unit cube (hypercube) in two different
spaces, one being of low and the other of very high dimension.

• Then, the average distance of the points in the latter case will be
much larger than that in the low-dimensional space case. As a
matter of fact, the average distance shows a dependence that is
analogous to the exponential term (N−1/l), where l is the
dimensionality of the space.
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Curse Of Dimensionality

• For example, the average distance of 1010 points in the
2-dimensional space is 10−5 and in the 40-dimensional space is
equal to 1.83.

• The figure below shows two cases, each one consisting of 100
points. The red points lie on a (one-dimensional) line segment of
length equal to one and were generated according to the uniform
distribution. Gray points cover a (two-dimensional) square region
of unit area, which were also generated by a two-dimensional
uniform distribution. The square area is more sparsely populated
compared to the line segment.
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Curse Of Dimensionality

• What was discussed in the example before is the general trend
and high dimensional spaces are sparsely populated; thus, many
more data points are needed in order to fill in the space with
enough data.

• Fitting a model in a parameter space, one must have enough data
covering sufficiently well all regions in the space, in order to be
able to learn well enough the input-output functional dependence.
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Curse Of Dimensionality

• There are various ways to cope with the curse dimensionality and
try to exploit the available data set in the best possible way. A
popular direction is to resort to suboptimal solutions by projecting
the input/feature vectors in a lower dimensional subspace or
manifold.

• Very often, such an approach leads to small performance losses,
since the original training data, although they are generated in a
high dimensional space, in fact they may “live” in a lower
dimensional subspace or manifold, due to physical dependencies
that restrict the number of free parameters. The challenge, now,
becomes that of learning the subspace/manifold onto which to
project.

Sergios Theodoridis University of Athens Machine Learning 85/95



Curse Of Dimensionality

• There are various ways to cope with the curse dimensionality and
try to exploit the available data set in the best possible way. A
popular direction is to resort to suboptimal solutions by projecting
the input/feature vectors in a lower dimensional subspace or
manifold.

• Very often, such an approach leads to small performance losses,
since the original training data, although they are generated in a
high dimensional space, in fact they may “live” in a lower
dimensional subspace or manifold, due to physical dependencies
that restrict the number of free parameters. The challenge, now,
becomes that of learning the subspace/manifold onto which to
project.

Sergios Theodoridis University of Athens Machine Learning 85/95



Curse Of Dimensionality

• Dimensionality of the input space may not be always the crucial
issue. In pattern recognition, it has been shown that the critical
factor is the so-called VC-dimension of a classifier. In a number
of classifiers, such as (generalized) linear classifiers or neural
networks, the VC-dimension is directly related to the
dimensionality of the input space.

• However, one can design classifiers, such as the Support Vector
Machines, whose performance is not directly related to the input
space and they can be efficiently designed in spaces of very high
(of even infinite) dimensionality.
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Validation

• A major phase, in any machine learning task, is to
quantify/predict the performance that the designed (prediction)
model is expected to exhibit in practice. Evaluating the
performance against the training data set would lead to an
optimistic value of the performance index, since this is computed
on the same set on which the estimator was optimized.

• For example, if the model is complex enough, with a large
number of free parameters, the training error may even become
zero, since a perfect fit to the data can be achieved. What is
more meaningful and fair is to look for the so-called
generalization performance of an estimator; that is, its average
performance computed over different data sets, which did not
participate in the training.
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Validation

• The figure below shows a typical performance trend, that is expected to
result in practice. The error measured on the (single) training data set
is shown together with the (average) test/generalization error as the
model complexity varies.

• The training error tends to zero as the model complexity increases; for
complex enough models with a large number of free parameters, a
perfect fit to the training data is possible. However, the test error
initially decreases, since more complex models “learn” the data better,
till a point. After that point of complexity, the test error increases.
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Cross-Validation

• Cross-validation is a very common technique that is usually
employed in practice. According to this method, the data set is
split into, say K, roughly equal-sized, parts. We repeat training
K times, each time selecting one (different each time) part of the
data for testing and the remaining K − 1 parts for training.

• This gives us the advantage of testing with a part of the data
that has not been involved in the training, hence it can be
considered as being independent, and at the same time using,
eventually, all the data both for training and testing.
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Cross-Validation

• Once we finish, we can a) combine the obtained K estimates,
e.g., by averaging or via another more advanced way and b)
combine the test errors to get a better estimate of the
generalization error that our estimator is expected to exhibit in
real life applications. The method is known as K-fold
cross-validation.

• An extreme case is when we use K = N ; that is, each time one
sample is left for testing. This is sometimes referred to as the
Leave-One-Out (LOO) cross-validation method. The price one
pays for K-fold cross-validation is the complexity of training K
times. In practice, the value of K depends very much on the
application, but typical values are of the order of 5 to 10.
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Expected and Empirical Loss Functions

• What was said before concerning the generalization and the
training set-based performance of an estimator can be given a
more formal statement via the notion of expected loss.

• Adopting a loss function, L(·, ·), to quantify the deviation
between the predicted value, ŷ = f(x), and the respective true
one, y, the corresponding expected loss is defined as

J(f) := E [L (y, f(x))] , (2)

or more explicitly

J(f) =

∫
. . .

∫
L
(
y, f(x)

)
p(y,x)dydx

• As a matter of fact, this is the ideal cost function one would like
to optimize with respect to f(·), in order to get the optimal
estimator over all possible values of the input-output pairs.
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Expected and Empirical Loss Functions

• However, such an optimization would in general be a very hard
task, even if one knew the functional form of the joint
distribution. Thus, in practice, one has to be content with two
approximations.

• First, the functions to be searched are constrained within a
certain family, F , (so far, we have focused on parametrically
described families of functions).

• Second, the expected loss is approximated by the so-called
empirical loss version, defined as

JN (f) =
1

N

N∑
n=1

L
(
yn, f(xn)

)
.

As an example, the MSE function, discussed earlier, is the
expected loss associated with the squared error loss function and
the sum of squared errors cost is the respective empirical version.
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Expected and Empirical Loss Functions

• For large enough values of N and provided that the family of
functions is restricted enough, we expect that the outcome from
optimizing JN to be close to that which would be obtained by
optimizing J .

• From the validation point of view, given any prediction function,
f , what we called generalization error corresponds to the
corresponding value of J .

• Let f∗ be the function that optimizes the expected loss,

f∗ := arg min
f
J(f),

and fF the optimal after constraining the task within the family
of functions F ,

fF := arg min
f∈F

J(f).
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Expected and Empirical Loss Functions

• Let us also define
fN := arg min

f∈F
JN (f).

• Then, we can readily write that

E [J(fN )− J(f∗)] = E [J(fF )− J(f∗)]︸ ︷︷ ︸
approximation error

+E [J(fN )− J(fF )]︸ ︷︷ ︸
estimation error

.

• The approximation error measures the deviation in the
generalization error, if instead of the overall optimal function one
uses the optimal obtained within a certain family of functions.
The estimation error measures the deviation due to optimizing
the empirical instead of the expected loss.
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Expected and Empirical Loss Functions

• If one chooses the family of functions to be very large, then it is
expected that the approximation error will be small, because there
is high probability f∗ will be close to one of the members of the
family.

• However, the estimation error is expected to be large, because for
a fixed number of data points, N , fitting a complex function is
likely to lead to overfitting. The opposite is true if the class of
functions is a small one.

• In parametric modeling, complexity of a family of functions is
related to the number of free parameters. However, this is not
the whole story. As a matter of fact, complexity is really
measured by the so-called capacity of the associated set of
functions. The VC-dimension, mentioned before, is directly
related to the capacity of the family of the considered classifiers.

Sergios Theodoridis University of Athens Machine Learning 95/95



Expected and Empirical Loss Functions

• If one chooses the family of functions to be very large, then it is
expected that the approximation error will be small, because there
is high probability f∗ will be close to one of the members of the
family.

• However, the estimation error is expected to be large, because for
a fixed number of data points, N , fitting a complex function is
likely to lead to overfitting. The opposite is true if the class of
functions is a small one.

• In parametric modeling, complexity of a family of functions is
related to the number of free parameters. However, this is not
the whole story. As a matter of fact, complexity is really
measured by the so-called capacity of the associated set of
functions. The VC-dimension, mentioned before, is directly
related to the capacity of the family of the considered classifiers.

Sergios Theodoridis University of Athens Machine Learning 95/95



Expected and Empirical Loss Functions

• If one chooses the family of functions to be very large, then it is
expected that the approximation error will be small, because there
is high probability f∗ will be close to one of the members of the
family.

• However, the estimation error is expected to be large, because for
a fixed number of data points, N , fitting a complex function is
likely to lead to overfitting. The opposite is true if the class of
functions is a small one.

• In parametric modeling, complexity of a family of functions is
related to the number of free parameters. However, this is not
the whole story. As a matter of fact, complexity is really
measured by the so-called capacity of the associated set of
functions. The VC-dimension, mentioned before, is directly
related to the capacity of the family of the considered classifiers.

Sergios Theodoridis University of Athens Machine Learning 95/95



Expected and Empirical Loss Functions

• If one chooses the family of functions to be very large, then it is
expected that the approximation error will be small, because there
is high probability f∗ will be close to one of the members of the
family.

• However, the estimation error is expected to be large, because for
a fixed number of data points, N , fitting a complex function is
likely to lead to overfitting. The opposite is true if the class of
functions is a small one.

• In parametric modeling, complexity of a family of functions is
related to the number of free parameters. However, this is not
the whole story. As a matter of fact, complexity is really
measured by the so-called capacity of the associated set of
functions. The VC-dimension, mentioned before, is directly
related to the capacity of the family of the considered classifiers.

Sergios Theodoridis University of Athens Machine Learning 95/95


