
Machine Learning
A Bayesian and Optimization Perspective

Academic Press, 2015

Sergios Theodoridis1

1Dept. of Informatics and Telecommunications, National and Kapodistrian University
of Athens, Athens, Greece.

Spring 2017, Version III

Chapter 11
Learning In Reproducing Kernel Hilbert Spaces

Sergios Theodoridis University of Athens Machine Learning 1/89

The Need for Nonlinear Models

• The focus in this part of the lectures will be on learning nonlinear
models. For most of the problems met in real applications, linear
models cannot model sufficiently well the data and lead to poor
performance.

• For example, recall that given two jointly distributed random
vectors (y,x) ∈ Rk ×Rl, then we know that the optimal estimate
of y given x = x, in the mean-square-error sense (MSE), is the
corresponding conditional mean, i.e., E[y|x], which in general is a
nonlinear function of x.

Sergios Theodoridis University of Athens Machine Learning 2/89

The Need for Nonlinear Models

• The focus in this part of the lectures will be on learning nonlinear
models. For most of the problems met in real applications, linear
models cannot model sufficiently well the data and lead to poor
performance.

• For example, recall that given two jointly distributed random
vectors (y,x) ∈ Rk ×Rl, then we know that the optimal estimate
of y given x = x, in the mean-square-error sense (MSE), is the
corresponding conditional mean, i.e., E[y|x], which in general is a
nonlinear function of x.

Sergios Theodoridis University of Athens Machine Learning 2/89

The Need for Nonlinear Models

• Our emphasis will be on a path through the so called Reproducing
Kernel Hilbert Spaces (RKHS). The technique consists of a
mapping of the input variables to a new space, such that the
originally nonlinear task is transformed into a linear one.

• From a practical point of view, the beauty behind these spaces is
that their rich structure allows to perform inner product
operations in a very efficient way, with complexity independent of
the dimensionality of the respective RKH space. Moreover, note
that the dimension of such spaces can even be infinite.

Sergios Theodoridis University of Athens Machine Learning 3/89

The Need for Nonlinear Models

• Our emphasis will be on a path through the so called Reproducing
Kernel Hilbert Spaces (RKHS). The technique consists of a
mapping of the input variables to a new space, such that the
originally nonlinear task is transformed into a linear one.

• From a practical point of view, the beauty behind these spaces is
that their rich structure allows to perform inner product
operations in a very efficient way, with complexity independent of
the dimensionality of the respective RKH space. Moreover, note
that the dimension of such spaces can even be infinite.

Sergios Theodoridis University of Athens Machine Learning 3/89

Generalized Linear Models

• Given (y,x) ∈ R× Rl, a generalized linear estimator ŷ of y has
the form,

ŷ = f(x) := θ0 +

K∑
k=1

θkφk(x), (1)

where φ1(·), . . . , φK(·) are preselected (nonlinear) functions. A
popular family of functions is the polynomial one, e.g.,

ŷ = θ0 +

l∑
i=1

θixi +

l−1∑
i=1

l∑
m=i+1

θimxixm +

l∑
i=1

θiix
2
i .

• Assuming l = 2 (x = [x1, x2]
T), then the previous equation can

be brought into the form of (1), by setting K = 5 and
φ1(x) = x1, φ2(x) = x2, φ3(x) = x1x2, φ4(x) = x2

1, φ5(x) = x2
2.

Sergios Theodoridis University of Athens Machine Learning 4/89

Generalized Linear Models

• Given (y,x) ∈ R× Rl, a generalized linear estimator ŷ of y has
the form,

ŷ = f(x) := θ0 +

K∑
k=1

θkφk(x), (1)

where φ1(·), . . . , φK(·) are preselected (nonlinear) functions. A
popular family of functions is the polynomial one, e.g.,

ŷ = θ0 +

l∑
i=1

θixi +

l−1∑
i=1

l∑
m=i+1

θimxixm +

l∑
i=1

θiix
2
i .

• Assuming l = 2 (x = [x1, x2]
T), then the previous equation can

be brought into the form of (1), by setting K = 5 and
φ1(x) = x1, φ2(x) = x2, φ3(x) = x1x2, φ4(x) = x2

1, φ5(x) = x2
2.

Sergios Theodoridis University of Athens Machine Learning 4/89

Generalized Linear Models

• The generalization to r-th order polynomials will contain products
of the form xp11 xp22 · · · x

pl
l , with p1 + p2 + . . .+ pl ≤ r. It turns

out that the number of free parameters, K, for an r-th order
polynomial is equal to

K =
(l + r)!

r!l!
.

• Just to get a feeling, for l = 10 and r = 3, K = 286. The use of
polynomial expansions is justified by the Weierstrass theorem.

Sergios Theodoridis University of Athens Machine Learning 5/89

Generalized Linear Models

• The generalization to r-th order polynomials will contain products
of the form xp11 xp22 · · · x

pl
l , with p1 + p2 + . . .+ pl ≤ r. It turns

out that the number of free parameters, K, for an r-th order
polynomial is equal to

K =
(l + r)!

r!l!
.

• Just to get a feeling, for l = 10 and r = 3, K = 286. The use of
polynomial expansions is justified by the Weierstrass theorem.

Sergios Theodoridis University of Athens Machine Learning 5/89

Generalized Linear Models

• A common characteristic of this type of models is that, the basis
functions in the expansion are preselected and they are fixed and
independent of the data. The advantage of such a path is that
the associated models are linear with respect to the unknown set
of free parameters.

• For an expansion involving K fixed functions, the squared

approximation error cannot be made smaller than order
(
1
K

) 2
l . In

words, for high dimensional spaces, in order to get a small enough
error one has to use large values of K.

Sergios Theodoridis University of Athens Machine Learning 6/89

Generalized Linear Models

• A common characteristic of this type of models is that, the basis
functions in the expansion are preselected and they are fixed and
independent of the data. The advantage of such a path is that
the associated models are linear with respect to the unknown set
of free parameters.

• For an expansion involving K fixed functions, the squared

approximation error cannot be made smaller than order
(
1
K

) 2
l . In

words, for high dimensional spaces, in order to get a small enough
error one has to use large values of K.

Sergios Theodoridis University of Athens Machine Learning 6/89

Generalized Linear Models

• One way to bypass the dependence of the approximation error on
the input space dimensionality, l, is to employ an expansion in
terms of data-dependent functions, which are optimized with
respect to the specific data set. This is, for example, the case for
a class of neural networks, which are treated in Chapter 18.

• In the sequel, a different path will be followed to “embed”
linearity into the treatment of an originally nonlinear task, via the
use of RKH spaces.

Sergios Theodoridis University of Athens Machine Learning 7/89

Generalized Linear Models

• One way to bypass the dependence of the approximation error on
the input space dimensionality, l, is to employ an expansion in
terms of data-dependent functions, which are optimized with
respect to the specific data set. This is, for example, the case for
a class of neural networks, which are treated in Chapter 18.

• In the sequel, a different path will be followed to “embed”
linearity into the treatment of an originally nonlinear task, via the
use of RKH spaces.

Sergios Theodoridis University of Athens Machine Learning 7/89

Cover’s Theorem: Capacity of a Space in Linear Dichotomies

• We have already justified the expansion in (1) by mobilizing
arguments from the approximation theory. However, in the
context of classification tasks, looking at this expansion from a
different angle provides an alternative and important
interpretation.

• Let us consider N points, x1,x2, . . . ,xN ∈ Rl. We can say that
these points are in general position, if there is no subset of l + 1
of them lying on a (l − 1)-dimensional hyperplane. For example,
in the two dimensional space, any three of these points are not
permitted to lie on a straight line.

Sergios Theodoridis University of Athens Machine Learning 8/89

Cover’s Theorem: Capacity of a Space in Linear Dichotomies

• We have already justified the expansion in (1) by mobilizing
arguments from the approximation theory. However, in the
context of classification tasks, looking at this expansion from a
different angle provides an alternative and important
interpretation.

• Let us consider N points, x1,x2, . . . ,xN ∈ Rl. We can say that
these points are in general position, if there is no subset of l + 1
of them lying on a (l − 1)-dimensional hyperplane. For example,
in the two dimensional space, any three of these points are not
permitted to lie on a straight line.

Sergios Theodoridis University of Athens Machine Learning 8/89

Cover’s Theorem: Capacity of a Space in Linear Dichotomies

• Cover’s theorem: The number of groupings, denoted as O(N, l),
that can be formed by (l − 1)-dimensional hyperplanes to
separate the N points in two classes, exploiting all possible
combinations, is given by,

O(N, l) = 2

l∑
i=0

(
N − 1

i

)
,

where (
N − 1

i

)
=

(N − 1)!

(N − 1− i)!i!
.

Sergios Theodoridis University of Athens Machine Learning 9/89

Cover’s Theorem: Capacity of a Space in Linear Dichotomies

• Each one of these groupings in two classes is also known as a linear
dichotomy. The figure below illustrates the theorem for the case of
N = 4 points in the two dimensional space. Observe that the possible
groupings are: [(ABCD)], [A,(BCD)], [B,(ACD)], [C,(ABD)], [D,
(ABC)], [(AB), (CD)] and [(AC),(BD)]. Each grouping is counted twice,
since it can belong to either ω1 or ω2 class. Hence, the total number of
groupings is 14, which is equal to O(4, 2). Note that the number of all
possible combinations of N points in two groups is 2N , which is 16 in
our case. The grouping which is not counted is [(BC),(AD)], which is
not linearly separable.

Sergios Theodoridis University of Athens Machine Learning 10/89

Cover’s Theorem: Capacity of a Space in Linear Dichotomies

• Note that if N ≤ l + 1 then O(N, l) = 2N . That is, all possible
combinations in two groups are linearly separable; verify it for the case
of N = 3 in the two-dimensional space.

• Based on the previous theorem, given N points in the l-dimensional
space, the probability of grouping these points in two linearly separable
classes is,

P lN =
O(N, l)

2N
=

 1
2N−1

∑l
i=0

(
N − 1

i

)
, N > l + 1,

1 N ≤ l + 1.

Sergios Theodoridis University of Athens Machine Learning 11/89

Cover’s Theorem: Capacity of a Space in Linear Dichotomies

• Note that if N ≤ l + 1 then O(N, l) = 2N . That is, all possible
combinations in two groups are linearly separable; verify it for the case
of N = 3 in the two-dimensional space.

• Based on the previous theorem, given N points in the l-dimensional
space, the probability of grouping these points in two linearly separable
classes is,

P lN =
O(N, l)

2N
=

 1
2N−1

∑l
i=0

(
N − 1

i

)
, N > l + 1,

1 N ≤ l + 1.

Sergios Theodoridis University of Athens Machine Learning 11/89

Cover’s Theorem: Capacity of a Space in Linear Dichotomies

• Note that if N ≤ l + 1 then O(N, l) = 2N . That is, all possible
combinations in two groups are linearly separable; verify it for the case
of N = 3 in the two-dimensional space.

• Based on the previous theorem, given N points in the l-dimensional
space, the probability of grouping these points in two linearly separable
classes is,

P lN =
O(N, l)

2N
=

 1
2N−1

∑l
i=0

(
N − 1

i

)
, N > l + 1,

1 N ≤ l + 1.

Set r: N = r(l + 1). The figure shows the probability as a function of
r. For N > 2(l + 1) the probability of linear separability becomes
small. For large values of l, and provided N < 2(l+ 1), the probability
of any grouping of the data into two classes to be linearly separable
tends to unity. Also, if N ≤ (l + 1), all possible groupings in two
classes are linearly separable.

Sergios Theodoridis University of Athens Machine Learning 11/89

Cover’s Theorem: Capacity of a Space in Linear Dichotomies

• The way the previous theorem is exploited in practice is the
following: Given N feature vectors xn ∈ Rl, n = 1, 2, . . . , N , a
mapping

φ : Rl 3 xn 7−→ φ(xn) ∈ RK , K >> l,

is performed. Then according to the theorem, the higher the
value of K is the higher the probability becomes for the images of
the mapping, φ(xn) ∈ RK , n = 1, 2, . . . , N , to be linearly
separable in the space RK .

Sergios Theodoridis University of Athens Machine Learning 12/89

Cover’s Theorem: Capacity of a Space in Linear Dichotomies

• Note that the expansion of a nonlinear classifier (that predicts the
label in a binary classification task) is equivalent with a linear
task after such a mapping. Indeed,

ŷ = sgn
(
f(x)

)
, f(x) =

K∑
k=1

θkφk(x) + θ0 = θT
[
φ(x)

1

]
, (2)

where sgn(·) is the sign function and

φ(x) := [φ1(x), φ2(x), . . . , φK(x)]T .

• Provided that K is large enough, our task is linearly separable in
the new space, RK , with high probability, which justifies the use
of a linear classifier, θ, in (2).

Sergios Theodoridis University of Athens Machine Learning 13/89

Cover’s Theorem: Capacity of a Space in Linear Dichotomies

• Note that the expansion of a nonlinear classifier (that predicts the
label in a binary classification task) is equivalent with a linear
task after such a mapping. Indeed,

ŷ = sgn
(
f(x)

)
, f(x) =

K∑
k=1

θkφk(x) + θ0 = θT
[
φ(x)

1

]
, (2)

where sgn(·) is the sign function and

φ(x) := [φ1(x), φ2(x), . . . , φK(x)]T .

• Provided that K is large enough, our task is linearly separable in
the new space, RK , with high probability, which justifies the use
of a linear classifier, θ, in (2).

Sergios Theodoridis University of Athens Machine Learning 13/89

Cover’s Theorem: Capacity of a Space in Linear Dichotomies

• The previous procedure is illustrated in the figure below.The points in
the two-dimensional space are not linearly separable. However, after the
mapping in the three-dimensional space,

[x1, x2]T 7→ φ(x) = [x1, x2, f(x1, x2)]T , f(x1, x2) = 4 exp
(
−(x21+x22)/

)
+5,

the points in the two classes become linearly separable.

Sergios Theodoridis University of Athens Machine Learning 14/89

Cover’s Theorem: Capacity of a Space in Linear Dichotomies

• Note, however, that after the mapping, the points lie on the
surface of a paraboloid. This surface is fully described in terms of
two free variables. Loosely speaking, we can think of the
two-dimensional plane, on which the data lie originally, to be
folded/transformed to form the surface of the paraboloid.

• This is basically the idea behind the more general problem. After
the mapping from the original l-dimensional space to the new
K-dimensional one, the images of the points
φ(xn), n = 1, 2, . . . , N , lie on an l-dimensional surface
(manifold) in RK .

Sergios Theodoridis University of Athens Machine Learning 15/89

Cover’s Theorem: Capacity of a Space in Linear Dichotomies

• Note, however, that after the mapping, the points lie on the
surface of a paraboloid. This surface is fully described in terms of
two free variables. Loosely speaking, we can think of the
two-dimensional plane, on which the data lie originally, to be
folded/transformed to form the surface of the paraboloid.

• This is basically the idea behind the more general problem. After
the mapping from the original l-dimensional space to the new
K-dimensional one, the images of the points
φ(xn), n = 1, 2, . . . , N , lie on an l-dimensional surface
(manifold) in RK .

Sergios Theodoridis University of Athens Machine Learning 15/89

Cover’s Theorem: Capacity of a Space in Linear Dichotomies

• Observe that we cannot fool nature. Since l variables were
originally chosen to describe each pattern (dimensionality, number
of free parameters) the same number of free parameters will be
required to describe the same objects after the mapping in RK .

• In other words, after the mapping, we embed an l-dimensional
manifold in a K-dimensional space, in such a way, so that the
data in the two classes to become linearly separable.

Sergios Theodoridis University of Athens Machine Learning 16/89

Cover’s Theorem: Capacity of a Space in Linear Dichotomies

• Observe that we cannot fool nature. Since l variables were
originally chosen to describe each pattern (dimensionality, number
of free parameters) the same number of free parameters will be
required to describe the same objects after the mapping in RK .

• In other words, after the mapping, we embed an l-dimensional
manifold in a K-dimensional space, in such a way, so that the
data in the two classes to become linearly separable.

Sergios Theodoridis University of Athens Machine Learning 16/89

Reproducing Kernel Hilbert Spaces

• Consider a linear space H, of real valued functions defined on a
set X . Furthermore, suppose that H is a Hilbert space; that is, it
is equipped with an inner product operation, 〈·, ·〉, that defines a
corresponding norm ‖ · ‖.
• Definition of RKHS: A Hilbert space H is called Reproducing

Kernel Hilbert Space, if there exists a function

κ : X × X 7−→ R,
with the following properties:

For every x ∈ X , κ(·,x) belongs to H.

κ(·, ·) has the so called reproducing property, i.e.,

f(x) = 〈f, κ(·,x)〉, ∀f ∈ H, ∀x ∈ X . (3)

Sergios Theodoridis University of Athens Machine Learning 17/89

Reproducing Kernel Hilbert Spaces

• Consider a linear space H, of real valued functions defined on a
set X . Furthermore, suppose that H is a Hilbert space; that is, it
is equipped with an inner product operation, 〈·, ·〉, that defines a
corresponding norm ‖ · ‖.

• Definition of RKHS: A Hilbert space H is called Reproducing
Kernel Hilbert Space, if there exists a function

κ : X × X 7−→ R,
with the following properties:

For every x ∈ X , κ(·,x) belongs to H.

κ(·, ·) has the so called reproducing property, i.e.,

f(x) = 〈f, κ(·,x)〉, ∀f ∈ H, ∀x ∈ X . (3)

Sergios Theodoridis University of Athens Machine Learning 17/89

Reproducing Kernel Hilbert Spaces

• Consider a linear space H, of real valued functions defined on a
set X . Furthermore, suppose that H is a Hilbert space; that is, it
is equipped with an inner product operation, 〈·, ·〉, that defines a
corresponding norm ‖ · ‖.

• Definition of RKHS: A Hilbert space H is called Reproducing
Kernel Hilbert Space, if there exists a function

κ : X × X 7−→ R,
with the following properties:

For every x ∈ X , κ(·,x) belongs to H.

κ(·, ·) has the so called reproducing property, i.e.,

f(x) = 〈f, κ(·,x)〉, ∀f ∈ H, ∀x ∈ X . (3)

Sergios Theodoridis University of Athens Machine Learning 17/89

Reproducing Kernel Hilbert Spaces

• A direct consequence of the reproducing property, if we set
f(·) = κ(·,y), y ∈ X , is that

〈κ(·,y), κ(·,x)〉 = κ(x,y) = κ(y,x).

• The RKHS, H, can be fully generated, given κ(·, ·) and X .
Moreover, H uniquely specifies κ(·, ·).

Sergios Theodoridis University of Athens Machine Learning 18/89

Reproducing Kernel Hilbert Spaces

• A direct consequence of the reproducing property, if we set
f(·) = κ(·,y), y ∈ X , is that

〈κ(·,y), κ(·,x)〉 = κ(x,y) = κ(y,x).

• The RKHS, H, can be fully generated, given κ(·, ·) and X .
Moreover, H uniquely specifies κ(·, ·).

Sergios Theodoridis University of Athens Machine Learning 18/89

Reproducing Kernel Hilbert Spaces

• Feature Map: Let H be an RKHS, associated with a kernel
function κ(·, ·), and X a set of elements. Then, the mapping

X 3 x 7−→ φ(x) := κ(·,x) ∈ H,

is known as feature map and the space, H, the feature space.

• In other words, if X is the set of our observation vectors, the
feature mapping maps each vector to the RKHS H. Note that, in
general, H can be of infinite dimension and its elements can be
functions. That is, each training point is mapped to a function.

Sergios Theodoridis University of Athens Machine Learning 19/89

Reproducing Kernel Hilbert Spaces

• Feature Map: Let H be an RKHS, associated with a kernel
function κ(·, ·), and X a set of elements. Then, the mapping

X 3 x 7−→ φ(x) := κ(·,x) ∈ H,

is known as feature map and the space, H, the feature space.

• In other words, if X is the set of our observation vectors, the
feature mapping maps each vector to the RKHS H. Note that, in
general, H can be of infinite dimension and its elements can be
functions. That is, each training point is mapped to a function.

Sergios Theodoridis University of Athens Machine Learning 19/89

Reproducing Kernel Hilbert Spaces

• In special cases, where H becomes a (finite dimensional)
Euclidean space, RK , the image is a vector φ(x) ∈ RK . From
now on, the general infinite dimensional case will be treated and
the images will be denoted as functions, φ(·).

• After mapping from the original space to a high dimensional
RKHS one, we have gained something very important. Let
x,y ∈ X . Then, the inner product of the respective mapping
images is written as

〈φ(x), φ(y)〉 = 〈κ(·,x), κ(·,y)〉 = κ(x,y).

• In words, employing this type of mapping to our problem, we can
perform inner product operations in H, in a very efficient way;
that is, via a function evaluation in the original low dimensional
space! This property is also known as the kernel trick, and it
facilitates significantly the computations.

Sergios Theodoridis University of Athens Machine Learning 20/89

Reproducing Kernel Hilbert Spaces

• In special cases, where H becomes a (finite dimensional)
Euclidean space, RK , the image is a vector φ(x) ∈ RK . From
now on, the general infinite dimensional case will be treated and
the images will be denoted as functions, φ(·).

• After mapping from the original space to a high dimensional
RKHS one, we have gained something very important. Let
x,y ∈ X . Then, the inner product of the respective mapping
images is written as

〈φ(x), φ(y)〉 = 〈κ(·,x), κ(·,y)〉 = κ(x,y).

• In words, employing this type of mapping to our problem, we can
perform inner product operations in H, in a very efficient way;
that is, via a function evaluation in the original low dimensional
space! This property is also known as the kernel trick, and it
facilitates significantly the computations.

Sergios Theodoridis University of Athens Machine Learning 20/89

Reproducing Kernel Hilbert Spaces

• In special cases, where H becomes a (finite dimensional)
Euclidean space, RK , the image is a vector φ(x) ∈ RK . From
now on, the general infinite dimensional case will be treated and
the images will be denoted as functions, φ(·).

• After mapping from the original space to a high dimensional
RKHS one, we have gained something very important. Let
x,y ∈ X . Then, the inner product of the respective mapping
images is written as

〈φ(x), φ(y)〉 = 〈κ(·,x), κ(·,y)〉 = κ(x,y).

• In words, employing this type of mapping to our problem, we can
perform inner product operations in H, in a very efficient way;
that is, via a function evaluation in the original low dimensional
space! This property is also known as the kernel trick, and it
facilitates significantly the computations.

Sergios Theodoridis University of Athens Machine Learning 20/89

The Kernel Trick

• The way this property is exploited in practice involves the following
steps:

1 Map (implicitly) the input training data to an RKHS,

xn 7−→ φ(xn) ∈ H, n = 1, 2, . . . , N.

2 Solve a linear estimation task in H, involving the images φ(xn),
n = 1, 2, . . . , N.

3 Cast the algorithm that solves for the unknown parameters in
terms of inner product operations, in the form〈

φ(xi), φ(xj)
〉
, i, j = 1, 2, . . . , N.

4 Replace each inner product by a kernel evaluation, i.e.,〈
φ(xi), φ(xj)

〉
= κ(xi,xj).

Sergios Theodoridis University of Athens Machine Learning 21/89

The Kernel Trick

• The way this property is exploited in practice involves the following
steps:

1 Map (implicitly) the input training data to an RKHS,

xn 7−→ φ(xn) ∈ H, n = 1, 2, . . . , N.

2 Solve a linear estimation task in H, involving the images φ(xn),
n = 1, 2, . . . , N.

3 Cast the algorithm that solves for the unknown parameters in
terms of inner product operations, in the form〈

φ(xi), φ(xj)
〉
, i, j = 1, 2, . . . , N.

4 Replace each inner product by a kernel evaluation, i.e.,〈
φ(xi), φ(xj)

〉
= κ(xi,xj).

Sergios Theodoridis University of Athens Machine Learning 21/89

The Kernel Trick

• The way this property is exploited in practice involves the following
steps:

1 Map (implicitly) the input training data to an RKHS,

xn 7−→ φ(xn) ∈ H, n = 1, 2, . . . , N.

2 Solve a linear estimation task in H, involving the images φ(xn),
n = 1, 2, . . . , N.

3 Cast the algorithm that solves for the unknown parameters in
terms of inner product operations, in the form〈

φ(xi), φ(xj)
〉
, i, j = 1, 2, . . . , N.

4 Replace each inner product by a kernel evaluation, i.e.,〈
φ(xi), φ(xj)

〉
= κ(xi,xj).

Sergios Theodoridis University of Athens Machine Learning 21/89

The Kernel Trick

• The way this property is exploited in practice involves the following
steps:

1 Map (implicitly) the input training data to an RKHS,

xn 7−→ φ(xn) ∈ H, n = 1, 2, . . . , N.

2 Solve a linear estimation task in H, involving the images φ(xn),
n = 1, 2, . . . , N.

3 Cast the algorithm that solves for the unknown parameters in
terms of inner product operations, in the form〈

φ(xi), φ(xj)
〉
, i, j = 1, 2, . . . , N.

4 Replace each inner product by a kernel evaluation, i.e.,〈
φ(xi), φ(xj)

〉
= κ(xi,xj).

Sergios Theodoridis University of Athens Machine Learning 21/89

The Kernel Trick

• The way this property is exploited in practice involves the following
steps:

1 Map (implicitly) the input training data to an RKHS,

xn 7−→ φ(xn) ∈ H, n = 1, 2, . . . , N.

2 Solve a linear estimation task in H, involving the images φ(xn),
n = 1, 2, . . . , N.

3 Cast the algorithm that solves for the unknown parameters in
terms of inner product operations, in the form〈

φ(xi), φ(xj)
〉
, i, j = 1, 2, . . . , N.

4 Replace each inner product by a kernel evaluation, i.e.,〈
φ(xi), φ(xj)

〉
= κ(xi,xj).

Sergios Theodoridis University of Athens Machine Learning 21/89

The Kernel Trick

The nonlinear task in the original low dimensional space is mapped to a linear one
in the high dimensional RKHS H. Using the feature mapping, inner product
operations are efficiently performed via kernel evaluations in the original low

dimensional spaces.

Sergios Theodoridis University of Athens Machine Learning 22/89

The Kernel Trick

• One does not need to perform any explicit mapping of the data.
All is needed is to perform the kernel operations at the final step.
Once the algorithm for the prediction, ŷ, has been derived, one
can use different choices for κ(·, ·).

• As we will see, different choices for κ(·, ·), correspond to different
types of nonlinearity.

• In practice, the four steps referred before are equivalent with:

Work in the original space and express all operations in terms of
inner products.

At the final step substitute the inner products with kernel
evaluations.

Sergios Theodoridis University of Athens Machine Learning 23/89

The Kernel Trick

• One does not need to perform any explicit mapping of the data.
All is needed is to perform the kernel operations at the final step.
Once the algorithm for the prediction, ŷ, has been derived, one
can use different choices for κ(·, ·).

• As we will see, different choices for κ(·, ·), correspond to different
types of nonlinearity.

• In practice, the four steps referred before are equivalent with:

Work in the original space and express all operations in terms of
inner products.

At the final step substitute the inner products with kernel
evaluations.

Sergios Theodoridis University of Athens Machine Learning 23/89

The Kernel Trick

• One does not need to perform any explicit mapping of the data.
All is needed is to perform the kernel operations at the final step.
Once the algorithm for the prediction, ŷ, has been derived, one
can use different choices for κ(·, ·).

• As we will see, different choices for κ(·, ·), correspond to different
types of nonlinearity.

• In practice, the four steps referred before are equivalent with:

Work in the original space and express all operations in terms of
inner products.

At the final step substitute the inner products with kernel
evaluations.

Sergios Theodoridis University of Athens Machine Learning 23/89

The Kernel Trick

• One does not need to perform any explicit mapping of the data.
All is needed is to perform the kernel operations at the final step.
Once the algorithm for the prediction, ŷ, has been derived, one
can use different choices for κ(·, ·).

• As we will see, different choices for κ(·, ·), correspond to different
types of nonlinearity.

• In practice, the four steps referred before are equivalent with:

Work in the original space and express all operations in terms of
inner products.

At the final step substitute the inner products with kernel
evaluations.

Sergios Theodoridis University of Athens Machine Learning 23/89

The Kernel Trick: An Example

• Consider the case of the two-dimensional space and the mapping,

R2 3 x 7−→ φ(x) = [x21,
√

2x1x2, x
2
2] ∈ R3.

Then, given two vectors x and y, it is straightforward to see that,

φT (x)φ(y) = (xTy)2.

That is, the inner product in the new space is given in terms of a
function of the variables in the original space,

κ(x,y) = (xTy)2.

Sergios Theodoridis University of Athens Machine Learning 24/89

The Kernel Trick: An Example

• Consider the case of the two-dimensional space and the mapping,

R2 3 x 7−→ φ(x) = [x21,
√

2x1x2, x
2
2] ∈ R3.

Then, given two vectors x and y, it is straightforward to see that,

φT (x)φ(y) = (xTy)2.

That is, the inner product in the new space is given in terms of a
function of the variables in the original space,

κ(x,y) = (xTy)2.

Sergios Theodoridis University of Athens Machine Learning 24/89

Examples of Kernel Functions

• We present some typical examples of kernel functions, which are
commonly used in various applications.

The Gaussian kernel is among the most popular ones and it is
given by our familiar form

κ(x,y) = exp

(
−‖x− y‖

2

2σ2

)
,

with σ > 0 being a parameter. The dimension of the
corresponding RKHS is infinite.

Sergios Theodoridis University of Athens Machine Learning 25/89

Examples of Kernel Functions

• We present some typical examples of kernel functions, which are
commonly used in various applications.

The Gaussian kernel is among the most popular ones and it is
given by our familiar form

κ(x,y) = exp

(
−‖x− y‖

2

2σ2

)
,

with σ > 0 being a parameter. The dimension of the
corresponding RKHS is infinite.

The Gaussian kernel for X = R, σ = 0.5. The element φ(0) = κ(·, 0) for different values of σ.

Sergios Theodoridis University of Athens Machine Learning 25/89

Examples of Kernel Functions

• Another popular example of a kernel function is the following:

The inhomogeneous polynomial kernel is given by

κ(x,y) = (xTy + c)r,

where c ≥ 0 and r > 0, r ∈ N parameters. The dimensionality of
the RKHS associated with polynomial kernels is finite.

Sergios Theodoridis University of Athens Machine Learning 26/89

Examples of Kernel Functions

• Another popular example of a kernel function is the following:

The inhomogeneous polynomial kernel is given by

κ(x,y) = (xTy + c)r,

where c ≥ 0 and r > 0, r ∈ N parameters. The dimensionality of
the RKHS associated with polynomial kernels is finite.

The inhomogeneous polynomial kernel for X = R, r = 2. The element φ(x) = κ(·, x0), for different values of x0.

Sergios Theodoridis University of Athens Machine Learning 26/89

Examples of Kernel Functions: String Kernels

• So far, our discussion has been focussed on input data, which
were vectors in a Euclidean space. However, the input data need
not to be necessarily vectors, and they can be elements of more
general sets.

• String kernels: Let us denote by S an alphabet set; that is, a set
with a finite number of elements, which we call symbols. For
example, this can be the set of all capital letters in the Latin
alphabet. A string is a finite sequence, of any length, of symbols
from S. For example, two examples of strings are:

T1 = “MYNAMEISSERGIOS”, T2 = “HERNAMEISDESPOINA”.

• In a number of applications, such as in text mining, spam
filtering, text summarization, bioinformatics, it is important to see
how “similar” two strings are.

Sergios Theodoridis University of Athens Machine Learning 27/89

Examples of Kernel Functions: String Kernels

• So far, our discussion has been focussed on input data, which
were vectors in a Euclidean space. However, the input data need
not to be necessarily vectors, and they can be elements of more
general sets.

• String kernels: Let us denote by S an alphabet set; that is, a set
with a finite number of elements, which we call symbols. For
example, this can be the set of all capital letters in the Latin
alphabet. A string is a finite sequence, of any length, of symbols
from S. For example, two examples of strings are:

T1 = “MYNAMEISSERGIOS”, T2 = “HERNAMEISDESPOINA”.

• In a number of applications, such as in text mining, spam
filtering, text summarization, bioinformatics, it is important to see
how “similar” two strings are.

Sergios Theodoridis University of Athens Machine Learning 27/89

Examples of Kernel Functions: String Kernels

• So far, our discussion has been focussed on input data, which
were vectors in a Euclidean space. However, the input data need
not to be necessarily vectors, and they can be elements of more
general sets.

• String kernels: Let us denote by S an alphabet set; that is, a set
with a finite number of elements, which we call symbols. For
example, this can be the set of all capital letters in the Latin
alphabet. A string is a finite sequence, of any length, of symbols
from S. For example, two examples of strings are:

T1 = “MYNAMEISSERGIOS”, T2 = “HERNAMEISDESPOINA”.

• In a number of applications, such as in text mining, spam
filtering, text summarization, bioinformatics, it is important to see
how “similar” two strings are.

Sergios Theodoridis University of Athens Machine Learning 27/89

Examples of Kernel Functions: String Kernels

• However, kernels, by their definition are similarity measures; they
are constructed so that to express inner products in the high
dimensional feature space. An inner product is a similarity
measure.

• Two vectors are most similar if they point to the same direction.
Starting form this observation, there has been a lot of activity on
defining kernels that measure similarity between strings.

Sergios Theodoridis University of Athens Machine Learning 28/89

Examples of Kernel Functions: String Kernels

• However, kernels, by their definition are similarity measures; they
are constructed so that to express inner products in the high
dimensional feature space. An inner product is a similarity
measure.

• Two vectors are most similar if they point to the same direction.
Starting form this observation, there has been a lot of activity on
defining kernels that measure similarity between strings.

Sergios Theodoridis University of Athens Machine Learning 28/89

Examples of Kernel Functions: String Kernels

• However, kernels, by their definition are similarity measures; they
are constructed so that to express inner products in the high
dimensional feature space. An inner product is a similarity
measure.

• Two vectors are most similar if they point to the same direction.
Starting form this observation, there has been a lot of activity on
defining kernels that measure similarity between strings.

Sergios Theodoridis University of Athens Machine Learning 28/89

Examples of Kernel Functions: String Kernels

• Let us denote by S∗ the set of all possible strings that can be
constructed using symbols form S. Also, a string, s, is said to be
a substring of x if x = bsa, where a and b are other strings
(possibly empty) from the symbols of S. Given two strings
x, y ∈ S∗, define,

κ(x, y) :=
∑
s∈S∗

wsφs(x)φs(y),

where, ws ≥ 0, and φs(x) is the number of times substring s
appears in x. It turns out that this is indeed a kernel, in the sense
that it complies with the properties of a kernel definition; such
kernels constructed from strings are known as string kernels.

• Obviously, a number of different variants of this kernel are
available. The so-called k-spectrum kernel considers common
substrings only of length k. For example, for the two strings given
before in the previous slide, the value of the 6-spectrum string
kernel, as defined before, is equal to one (one common substring
of length 6 is identified: “NAMEIS”).

Sergios Theodoridis University of Athens Machine Learning 29/89

Examples of Kernel Functions: String Kernels

• Let us denote by S∗ the set of all possible strings that can be
constructed using symbols form S. Also, a string, s, is said to be
a substring of x if x = bsa, where a and b are other strings
(possibly empty) from the symbols of S. Given two strings
x, y ∈ S∗, define,

κ(x, y) :=
∑
s∈S∗

wsφs(x)φs(y),

where, ws ≥ 0, and φs(x) is the number of times substring s
appears in x. It turns out that this is indeed a kernel, in the sense
that it complies with the properties of a kernel definition; such
kernels constructed from strings are known as string kernels.

• Obviously, a number of different variants of this kernel are
available. The so-called k-spectrum kernel considers common
substrings only of length k. For example, for the two strings given
before in the previous slide, the value of the 6-spectrum string
kernel, as defined before, is equal to one (one common substring
of length 6 is identified: “NAMEIS”).

Sergios Theodoridis University of Athens Machine Learning 29/89

Representer Theorem

• Representer Theorem: This theorem is of major importance from
a practical point of view. It allows to perform empirical function
optimization, based on a finite set of training points, in a very
efficient way even if the function to be estimated belongs to a
very high (even infinite) dimensional RKHS, H.

• Let
Ω : [0,+∞) 7−→ R,

be an arbitrary strictly monotonic increasing function.

• Let also
L : R2 7−→ R ∪ {∞}

be an arbitrary loss function.

Sergios Theodoridis University of Athens Machine Learning 30/89

Representer Theorem

• Representer Theorem: This theorem is of major importance from
a practical point of view. It allows to perform empirical function
optimization, based on a finite set of training points, in a very
efficient way even if the function to be estimated belongs to a
very high (even infinite) dimensional RKHS, H.

• Let
Ω : [0,+∞) 7−→ R,

be an arbitrary strictly monotonic increasing function.

• Let also
L : R2 7−→ R ∪ {∞}

be an arbitrary loss function.

Sergios Theodoridis University of Athens Machine Learning 30/89

Representer Theorem

• Representer Theorem: This theorem is of major importance from
a practical point of view. It allows to perform empirical function
optimization, based on a finite set of training points, in a very
efficient way even if the function to be estimated belongs to a
very high (even infinite) dimensional RKHS, H.

• Let
Ω : [0,+∞) 7−→ R,

be an arbitrary strictly monotonic increasing function.

• Let also
L : R2 7−→ R ∪ {∞}

be an arbitrary loss function.

Sergios Theodoridis University of Athens Machine Learning 30/89

Representer Theorem

• Then each minimizer, f ∈ H, of the regularized minimization
task,

min
f∈H

J(f) :=

N∑
n=1

L
(
yn, f(xn)

)
+ λΩ(‖f‖2)

admits an elegant representation of the form,

f(·) =

N∑
n=1

θnκ(·,xn), (4)

where θn ∈ R, n = 1, 2, . . . , N .

Sergios Theodoridis University of Athens Machine Learning 31/89

Representer Theorem

• Then each minimizer, f ∈ H, of the regularized minimization
task,

min
f∈H

J(f) :=

N∑
n=1

L
(
yn, f(xn)

)
+ λΩ(‖f‖2)

admits an elegant representation of the form,

f(·) =

N∑
n=1

θnκ(·,xn), (4)

where θn ∈ R, n = 1, 2, . . . , N .

Sergios Theodoridis University of Athens Machine Learning 31/89

Representer Theorem

• Proof of the theorem. The linear span, A := span
{
κ(·,x1), . . . , κ(·,xN)

}
,

forms a closed subspace. Then, each f ∈ H can be decomposed into two
parts, i.e.,

f(·) =

N∑
n=1

θnκ(·,xn) + f⊥,

where f⊥ is the part of f which is orthogonal to A. From the reproducing
property, we obtain

f(xm) =
〈
f, κ(·,xm)

〉
=
〈 N∑
n=1

θnκ(·,xn), κ(·,xm)
〉

=
N∑
n=1

θnκ(xm,xn),

where we used the fact that
〈
f⊥, κ(·,xn)

〉
= 0, n = 1, 2, . . . , N .

• In other words, the expansion guarantees that at the training points, the value
of f(·) does not depend on f⊥. Hence, the first term in the associated cost
function, corresponding to the empirical loss, does not depend on f⊥.
Moreover, for all f⊥ we have,

Ω(‖f‖2) = Ω

∥∥∥∥∥
N∑
n=1

θnκ(·,xn)

∥∥∥∥∥
2

+ ‖f⊥‖2
 ≥ Ω

∥∥∥∥∥
N∑
n=1

θnκ(·,xn)

∥∥∥∥∥
2
 .

Thus, for any choice of θn, n = 1, 2, . . . , N , the cost function is minimized for
f⊥ = 0. Thus, the claim is proved.

Sergios Theodoridis University of Athens Machine Learning 32/89

Representer Theorem

• Proof of the theorem. The linear span, A := span
{
κ(·,x1), . . . , κ(·,xN)

}
,

forms a closed subspace. Then, each f ∈ H can be decomposed into two
parts, i.e.,

f(·) =

N∑
n=1

θnκ(·,xn) + f⊥,

where f⊥ is the part of f which is orthogonal to A. From the reproducing
property, we obtain

f(xm) =
〈
f, κ(·,xm)

〉
=
〈 N∑
n=1

θnκ(·,xn), κ(·,xm)
〉

=
N∑
n=1

θnκ(xm,xn),

where we used the fact that
〈
f⊥, κ(·,xn)

〉
= 0, n = 1, 2, . . . , N .

• In other words, the expansion guarantees that at the training points, the value
of f(·) does not depend on f⊥. Hence, the first term in the associated cost
function, corresponding to the empirical loss, does not depend on f⊥.
Moreover, for all f⊥ we have,

Ω(‖f‖2) = Ω

∥∥∥∥∥
N∑
n=1

θnκ(·,xn)

∥∥∥∥∥
2

+ ‖f⊥‖2
 ≥ Ω

∥∥∥∥∥
N∑
n=1

θnκ(·,xn)

∥∥∥∥∥
2
 .

Thus, for any choice of θn, n = 1, 2, . . . , N , the cost function is minimized for
f⊥ = 0. Thus, the claim is proved.

Sergios Theodoridis University of Athens Machine Learning 32/89

Representer Theorem

• Proof of the theorem. The linear span, A := span
{
κ(·,x1), . . . , κ(·,xN)

}
,

forms a closed subspace. Then, each f ∈ H can be decomposed into two
parts, i.e.,

f(·) =

N∑
n=1

θnκ(·,xn) + f⊥,

where f⊥ is the part of f which is orthogonal to A. From the reproducing
property, we obtain

f(xm) =
〈
f, κ(·,xm)

〉
=
〈 N∑
n=1

θnκ(·,xn), κ(·,xm)
〉

=
N∑
n=1

θnκ(xm,xn),

where we used the fact that
〈
f⊥, κ(·,xn)

〉
= 0, n = 1, 2, . . . , N .

• In other words, the expansion guarantees that at the training points, the value
of f(·) does not depend on f⊥. Hence, the first term in the associated cost
function, corresponding to the empirical loss, does not depend on f⊥.
Moreover, for all f⊥ we have,

Ω(‖f‖2) = Ω

∥∥∥∥∥
N∑
n=1

θnκ(·,xn)

∥∥∥∥∥
2

+ ‖f⊥‖2
 ≥ Ω

∥∥∥∥∥
N∑
n=1

θnκ(·,xn)

∥∥∥∥∥
2
 .

Thus, for any choice of θn, n = 1, 2, . . . , N , the cost function is minimized for
f⊥ = 0. Thus, the claim is proved.

Sergios Theodoridis University of Athens Machine Learning 32/89

Representer Theorem

• The importance of this theorem is that in order to optimize the
cost function with respect to f , one uses the expansion in (4) and
minimization is carried out with respect to the finite set of
parameters, θn, n = 1, 2, . . . , N .

• Note that when working in high (even infinite) dimensional
spaces, the presence of a regularizer can hardly be avoided;
otherwise, the obtained solution will suffer from overfitting, since
only a finite number of data samples are used for training.

Sergios Theodoridis University of Athens Machine Learning 33/89

Representer Theorem

• The importance of this theorem is that in order to optimize the
cost function with respect to f , one uses the expansion in (4) and
minimization is carried out with respect to the finite set of
parameters, θn, n = 1, 2, . . . , N .

• Note that when working in high (even infinite) dimensional
spaces, the presence of a regularizer can hardly be avoided;
otherwise, the obtained solution will suffer from overfitting, since
only a finite number of data samples are used for training.

Sergios Theodoridis University of Athens Machine Learning 33/89

Representer Theorem

• Usually, a bias term is often added and it is assumed that the
minimizing function admits the following representation,

f̃ = f + b, f(·) =

N∑
n=1

θnκ(·,xn).

In practice, the use of a bias term (which does not enter in the
regularization) turns out to improve performance.

• First, it enlarges the class of functions in which the solution is
searched and potentially leads to better performance. Moreover,
due to the penalization that is imposed by the regularizing term,
Ω(‖f‖2), the minimizer pushes the values, which the function
takes at the training points, to smaller values. The existence of b
tries to “absorb’’ some of this action.

Sergios Theodoridis University of Athens Machine Learning 34/89

Representer Theorem

• Usually, a bias term is often added and it is assumed that the
minimizing function admits the following representation,

f̃ = f + b, f(·) =

N∑
n=1

θnκ(·,xn).

In practice, the use of a bias term (which does not enter in the
regularization) turns out to improve performance.

• First, it enlarges the class of functions in which the solution is
searched and potentially leads to better performance. Moreover,
due to the penalization that is imposed by the regularizing term,
Ω(‖f‖2), the minimizer pushes the values, which the function
takes at the training points, to smaller values. The existence of b
tries to “absorb’’ some of this action.

Sergios Theodoridis University of Athens Machine Learning 34/89

Representer Theorem

• Usually, a bias term is often added and it is assumed that the
minimizing function admits the following representation,

f̃ = f + b, f(·) =

N∑
n=1

θnκ(·,xn).

In practice, the use of a bias term (which does not enter in the
regularization) turns out to improve performance.

• First, it enlarges the class of functions in which the solution is
searched and potentially leads to better performance. Moreover,
due to the penalization that is imposed by the regularizing term,
Ω(‖f‖2), the minimizer pushes the values, which the function
takes at the training points, to smaller values. The existence of b
tries to “absorb’’ some of this action.

Sergios Theodoridis University of Athens Machine Learning 34/89

Kernel Ridge Regression

• Ridge regression has been discussed in Chapters 3 and 7. Here,
we will state the task in a general RKH space. The path to be
followed is a typical one used to extend techniques, which have
been developed for linear models, to the more general RKH
spaces.

• We assume that the generation mechanism of the data,
represented by the training set (yn,xn) ∈ R× Rl, is modelled via
a nonlinear regression task,

yn = g(xn) + ηn, n = 1, 2, . . . , N.

Sergios Theodoridis University of Athens Machine Learning 35/89

Kernel Ridge Regression

• Ridge regression has been discussed in Chapters 3 and 7. Here,
we will state the task in a general RKH space. The path to be
followed is a typical one used to extend techniques, which have
been developed for linear models, to the more general RKH
spaces.

• We assume that the generation mechanism of the data,
represented by the training set (yn,xn) ∈ R× Rl, is modelled via
a nonlinear regression task,

yn = g(xn) + ηn, n = 1, 2, . . . , N.

Sergios Theodoridis University of Athens Machine Learning 35/89

Kernel Ridge Regression

• Let us denote by f the estimate of the unknown g. Sometimes, f
is called the hypothesis and the space H, in which f is searched,
is known as the hypothesis space. We will further assume that f
lies in an RKHS, associated with a kernel,

κ : Rl × Rl 7−→ R.

• The adopted regularized cost function to be minimized is chosen
to be:

f = arg min
f̃∈H

J(f̃) =

N∑
n=1

(
yn − f̃(xn)

)2
+ C||f̃ ||2.

Sergios Theodoridis University of Athens Machine Learning 36/89

Kernel Ridge Regression

• Let us denote by f the estimate of the unknown g. Sometimes, f
is called the hypothesis and the space H, in which f is searched,
is known as the hypothesis space. We will further assume that f
lies in an RKHS, associated with a kernel,

κ : Rl × Rl 7−→ R.

• The adopted regularized cost function to be minimized is chosen
to be:

f = arg min
f̃∈H

J(f̃) =
N∑
n=1

(
yn − f̃(xn)

)2
+ C||f̃ ||2.

Sergios Theodoridis University of Athens Machine Learning 36/89

Kernel Ridge Regression

• The solution: The obtained kernel ridge regression predictor turns
out to be,

ŷ(x) = yT (K + CI)−1κ(x).

where
κ(x) := [κ(x,x1), . . . ,κ(x,xN)]T .

and K is the corresponding kernel matrix defined as,

K :=

κ(x1,x1) · · · κ(x1,xN)
...

...
...

κ(xN ,x1) · · · κ(xN ,xN)

 . (5)

Sergios Theodoridis University of Athens Machine Learning 37/89

Kernel Ridge Regression

• Proof of the result: Motivated by the representer theorem, we adopt the
following expansion

f(x) =

N∑
n=1

θnκ(x,xn).

• Constraining f̃ in the cost to be of the above form, the unknown coefficients
are estimated by the following task

θ̂ = arg min
θ
J(θ) =

N∑
n=1

(
yn −

N∑
m=1

θmκ(xn,xm)

)2

+ C〈f, f〉,

• The last cost function can be rewritten as,

J(θ) = (y −Kθ)T (y −Kθ) + CθTKTθ,
where

y = [y1, . . . , yN]T , θ = [θ1, . . . , θN]T ,

and K is the kernel matrix defined before; the latter is completely specified by
the set of training points and the kernel function that defines the
corresponding RKHS, H.

Sergios Theodoridis University of Athens Machine Learning 38/89

Kernel Ridge Regression

• Proof of the result: Motivated by the representer theorem, we adopt the
following expansion

f(x) =

N∑
n=1

θnκ(x,xn).

• Constraining f̃ in the cost to be of the above form, the unknown coefficients
are estimated by the following task

θ̂ = arg min
θ
J(θ) =

N∑
n=1

(
yn −

N∑
m=1

θmκ(xn,xm)

)2

+ C〈f, f〉,

• The last cost function can be rewritten as,

J(θ) = (y −Kθ)T (y −Kθ) + CθTKTθ,
where

y = [y1, . . . , yN]T , θ = [θ1, . . . , θN]T ,

and K is the kernel matrix defined before; the latter is completely specified by
the set of training points and the kernel function that defines the
corresponding RKHS, H.

Sergios Theodoridis University of Athens Machine Learning 38/89

Kernel Ridge Regression

• Proof of the result: Motivated by the representer theorem, we adopt the
following expansion

f(x) =

N∑
n=1

θnκ(x,xn).

• Constraining f̃ in the cost to be of the above form, the unknown coefficients
are estimated by the following task

θ̂ = arg min
θ
J(θ) =

N∑
n=1

(
yn −

N∑
m=1

θmκ(xn,xm)

)2

+ C〈f, f〉,

• The last cost function can be rewritten as,

J(θ) = (y −Kθ)T (y −Kθ) + CθTKTθ,
where

y = [y1, . . . , yN]T , θ = [θ1, . . . , θN]T ,

and K is the kernel matrix defined before; the latter is completely specified by
the set of training points and the kernel function that defines the
corresponding RKHS, H.

Sergios Theodoridis University of Athens Machine Learning 38/89

Kernel Ridge Regression

• Minimizing J(θ) w.r. to θ leads to

(KTK+ CKT)θ̂ = KTy,
or

(K+ CI)θ̂ = y,

where KT = K has been assumed to be invertible.

• Once θ̂ has been obtained, given an unknown vector, x ∈ Rl, the
corresponding prediction value of the dependent variable is given by

ŷ =
N∑
n=1

θ̂nκ(x,xn) = θ̂Tκ(x),

which readily leads to the previously stated result.

Sergios Theodoridis University of Athens Machine Learning 39/89

Kernel Ridge Regression

• Minimizing J(θ) w.r. to θ leads to

(KTK+ CKT)θ̂ = KTy,
or

(K+ CI)θ̂ = y,

where KT = K has been assumed to be invertible.

• Once θ̂ has been obtained, given an unknown vector, x ∈ Rl, the
corresponding prediction value of the dependent variable is given by

ŷ =
N∑
n=1

θ̂nκ(x,xn) = θ̂Tκ(x),

which readily leads to the previously stated result.

Sergios Theodoridis University of Athens Machine Learning 39/89

Kernel Ridge Regression: An Example

• In this example, the prediction power of the kernel ridge regression, in
the presence of Gaussian noise as well as of outliers, will be tested. The
original data were samples from a music recording from Blade Runner
by Vangelis Papathanasiou. A white Gaussian noise was then added at a
15dB level and a number of outliers were intentionally randomly
introduced and “hit” some of the values (10%). The kernel ridge
regression method was used, employing the Gaussian kernel with
σ = 0.004. A bias term was also present, as discussed before. The
prediction (fitted) curve, ŷ(x), for various value of x, is shown in the
figure below, together with the (noisy) data used for training.

0 0.005 0.01 0.015 0.02 0.025
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

time in sec

a
m

p
lit

u
d
e

Sergios Theodoridis University of Athens Machine Learning 40/89

Loss Functions For Robust Learning

• Learning in the presence of outliers: The least squares cost
function is not always the best criterion for optimization, in spite
its merits. In the case of the presence of a non-Gaussian noise
with long tails, and hence with an increased number of noise
outliers, the square dependence of the LS criterion gets biased
towards values associated with the presence of outliers.

• The method of Least-Squares is equivalent to the maximum
likelihood estimation under the assumption of white Gaussian
noise. Under this assumption, the LS estimator achieves the
Cramer-Rao bound and it becomes a minimum variance
estimator. However, under other noise scenarios, one has to look
for alternative criteria.

Sergios Theodoridis University of Athens Machine Learning 41/89

Loss Functions For Robust Learning

• Learning in the presence of outliers: The least squares cost
function is not always the best criterion for optimization, in spite
its merits. In the case of the presence of a non-Gaussian noise
with long tails, and hence with an increased number of noise
outliers, the square dependence of the LS criterion gets biased
towards values associated with the presence of outliers.

• The method of Least-Squares is equivalent to the maximum
likelihood estimation under the assumption of white Gaussian
noise. Under this assumption, the LS estimator achieves the
Cramer-Rao bound and it becomes a minimum variance
estimator. However, under other noise scenarios, one has to look
for alternative criteria.

Sergios Theodoridis University of Athens Machine Learning 41/89

Loss Functions For Robust Learning

• The task of optimization in the presence of outliers was studied
by Huber, whose goal was to obtain a strategy for choosing a loss
function that matches best to the noise model. He proved that,
under the assumption that the noise has a symmetric pdf, the
optimal minimax strategy for regression is obtained via the
following loss function,

L
(
y, f(x)

)
= |y − f(x)|,

which gives rise to the least modulus method.

Sergios Theodoridis University of Athens Machine Learning 42/89

Loss Functions For Robust Learning

• Huber loss function: Huber also showed that if the noise
comprises two components, one corresponding to a Gaussian and
another to an arbitrary pdf (which remains symmetric), then the
best in the minimax sense loss function is given by,

L
(
y, f(x)

)
=

{
ε|y − f(x)| − ε2

2 , if |y − f(x)| > ε,
1
2 |y − f(x)|2, if |y − f(x)| ≤ ε,

for some parameter ε. This is known as the Huber loss function.

Sergios Theodoridis University of Athens Machine Learning 43/89

Loss Functions For Robust Learning

• Linear ε-insensitive loss function: This function is an
approximation to the Huber loss one and it is defined as,

L
(
y, f(x)

)
=

{
|y − f(x)| − ε, if |y − f(x| > ε,
0, if |y − f(x| ≤ ε, (6)

Note that for ε = 0, it coincides with the absolute value loss
function, and it is close to the Huber loss for small values of
ε < 1.

Sergios Theodoridis University of Athens Machine Learning 44/89

Loss Functions For Robust Learning

• Quadratic ε-insensitive loss function: This is defined by

L
(
y, f(x)

)
=

{
|y − f(x)|2 − ε, if |y − f(x| > ε,
0, if |y − f(x| ≤ ε,

which coincides with the squared error loss for ε = 0.

Sergios Theodoridis University of Athens Machine Learning 45/89

Loss Functions For Robust Learning

• The following figure shows all three previously defined loss
functions.

The Huber loss function (dotted-gray), the linear ε-insensitive (full-gray) and the quadratic ε-insensitive (red)
loss functions, for ε = 0.7.

Sergios Theodoridis University of Athens Machine Learning 46/89

Support Vector Regression

• Linear regression and the linear ε-insensitive loss function: For the
linear regression, the model is

yn = f(xn) + ηn = θTx+ θ0 + ηn,

and the task is to estimate (θ0,θ) by minimizing the regularized
cost

J(θ0,θ) =
1

2
||θ||2 + C

N∑
n=1

L
(
yn,θ

Txn + θ0
)
,

where the loss function is the linear ε-insensitive one. Note that
C multiplies the error misfit term; this is equivalent with the
regularizer being multiplied by 1/C.

• Introducing slack variables: Note that the the linear ε-insensitive
loss is not differentiable. Although we could optimize the
non-smooth convex function directly (employing subgradients),
we will follow another path. To this end, let us now introduce two
sets of auxiliary variables.

Sergios Theodoridis University of Athens Machine Learning 47/89

Support Vector Regression

• Linear regression and the linear ε-insensitive loss function: For the
linear regression, the model is

yn = f(xn) + ηn = θTx+ θ0 + ηn,

and the task is to estimate (θ0,θ) by minimizing the regularized
cost

J(θ0,θ) =
1

2
||θ||2 + C

N∑
n=1

L
(
yn,θ

Txn + θ0
)
,

where the loss function is the linear ε-insensitive one. Note that
C multiplies the error misfit term; this is equivalent with the
regularizer being multiplied by 1/C.

• Introducing slack variables: Note that the the linear ε-insensitive
loss is not differentiable. Although we could optimize the
non-smooth convex function directly (employing subgradients),
we will follow another path. To this end, let us now introduce two
sets of auxiliary variables.

Sergios Theodoridis University of Athens Machine Learning 47/89

Support Vector Regression

• We consider the following two cases:

If
yn − θTxn − θ0 ≥ ε,

define ξ̃n ≥ 0, such as

yn − θTxn − θ0 ≤ ε+ ξ̃n.

Note that ideally, we would like to select θ, θ0, so that ξ̂n = 0,
since this would make the contribution of the respective term in
the loss function equal to zero.

If
yn − θTxn − θ0 ≤ −ε,

define ξn ≥ 0, such as

θTxn + θ0 − yn ≤ ε+ ξn.

Once more, we would like to select our unknown set of parameters
so that ξn to be zero.

Sergios Theodoridis University of Athens Machine Learning 48/89

Support Vector Regression

• We consider the following two cases:

If
yn − θTxn − θ0 ≥ ε,

define ξ̃n ≥ 0, such as

yn − θTxn − θ0 ≤ ε+ ξ̃n.

Note that ideally, we would like to select θ, θ0, so that ξ̂n = 0,
since this would make the contribution of the respective term in
the loss function equal to zero.

If
yn − θTxn − θ0 ≤ −ε,

define ξn ≥ 0, such as

θTxn + θ0 − yn ≤ ε+ ξn.

Once more, we would like to select our unknown set of parameters
so that ξn to be zero.

Sergios Theodoridis University of Athens Machine Learning 48/89

Support Vector Regression

• The auxiliary variables are also known as slack variables. We will
now employ them to formulate our optimization task in a form
that leads to a closed form solution.

• A careful look reveals that minimizing the empirical cost around
the linear ε-insensitive loss function is equivalent to:

minimize J(θ,θ0, ξ, ξ̃) =
1

2
‖θ‖2 + C

(
N∑
n=1

ξn +

N∑
n=1

ξ̃n

)
,

subject to yn − θTxn − θ0 ≤ ε+ ξ̃n, n = 1, 2, . . . , N,

θTxn + θ0 − yn ≤ ε+ ξn, n = 1, 2, . . . , N,

ξ̃n ≥ 0, ξn ≥ 0, n = 1, 2, . . . , N.

Sergios Theodoridis University of Athens Machine Learning 49/89

Support Vector Regression

• The auxiliary variables are also known as slack variables. We will
now employ them to formulate our optimization task in a form
that leads to a closed form solution.

• A careful look reveals that minimizing the empirical cost around
the linear ε-insensitive loss function is equivalent to:

minimize J(θ,θ0, ξ, ξ̃) =
1

2
‖θ‖2 + C

(
N∑
n=1

ξn +

N∑
n=1

ξ̃n

)
,

subject to yn − θTxn − θ0 ≤ ε+ ξ̃n, n = 1, 2, . . . , N,

θTxn + θ0 − yn ≤ ε+ ξn, n = 1, 2, . . . , N,

ξ̃n ≥ 0, ξn ≥ 0, n = 1, 2, . . . , N.

Sergios Theodoridis University of Athens Machine Learning 49/89

Support Vector Regression

• The solution and the support vectors: The solution of the
optimization task is obtained by introducing Lagrange multipliers
and forming the corresponding Lagrangian.

• Having obtained the Lagrange multipliers, the solution turns out
to be given in a simple and rather elegant form,

θ̂ =

N∑
n=1

(λ̃n − λn)xn,

where λ̃n, λn, n = 1, 2, . . . , N, are the Lagrange multipliers
associated with each one of the constraints.

• The Lagrange multipliers are nonzero only for those of the points,
xn, which correspond to error values either equal or larger than ε.
These are known as support vectors.

Sergios Theodoridis University of Athens Machine Learning 50/89

Support Vector Regression

• The solution and the support vectors: The solution of the
optimization task is obtained by introducing Lagrange multipliers
and forming the corresponding Lagrangian.

• Having obtained the Lagrange multipliers, the solution turns out
to be given in a simple and rather elegant form,

θ̂ =

N∑
n=1

(λ̃n − λn)xn,

where λ̃n, λn, n = 1, 2, . . . , N, are the Lagrange multipliers
associated with each one of the constraints.

• The Lagrange multipliers are nonzero only for those of the points,
xn, which correspond to error values either equal or larger than ε.
These are known as support vectors.

Sergios Theodoridis University of Athens Machine Learning 50/89

Support Vector Regression

• The solution and the support vectors: The solution of the
optimization task is obtained by introducing Lagrange multipliers
and forming the corresponding Lagrangian.

• Having obtained the Lagrange multipliers, the solution turns out
to be given in a simple and rather elegant form,

θ̂ =

N∑
n=1

(λ̃n − λn)xn,

where λ̃n, λn, n = 1, 2, . . . , N, are the Lagrange multipliers
associated with each one of the constraints.

• The Lagrange multipliers are nonzero only for those of the points,
xn, which correspond to error values either equal or larger than ε.
These are known as support vectors.

Sergios Theodoridis University of Athens Machine Learning 50/89

Support Vector Regression

• The bias term can be obtained by any one from the set of
equations

yn − θTxn − θ0 = ε,

θTxn + θ0 − yn = ε,

where n above runs over the points which are associated with
λ̃n > 0 (λn > 0) and ξ̃n = 0 (ξn = 0) (note that these points
form a subset of the support vectors). In practice, θ̂0 is obtained
as the average from all the previous equations.

Sergios Theodoridis University of Athens Machine Learning 51/89

Support Vector Regression

• Casting a nonlinear task in an RKHS: In this case of nonlinear
modeling, the path to follow is:

Assume an (implicit) mapping to the RKHS associated with a
kernel, κ(·,x), x ∈ Rl, via the feature map

x 7−→ φ(x) = κ(·,x),

Approximate the nonlinear function, g(x), in the regression task,
as a linear one in the respective RKHS, i.e.,

g(x) ≈ f(x) =
〈
θ, φ(x)

〉
+ θ0,

where θ is now treated as a function in the RKHS, H.

Sergios Theodoridis University of Athens Machine Learning 52/89

Support Vector Regression

• Casting a nonlinear task in an RKHS: In this case of nonlinear
modeling, the path to follow is:

Assume an (implicit) mapping to the RKHS associated with a
kernel, κ(·,x), x ∈ Rl, via the feature map

x 7−→ φ(x) = κ(·,x),

Approximate the nonlinear function, g(x), in the regression task,
as a linear one in the respective RKHS, i.e.,

g(x) ≈ f(x) =
〈
θ, φ(x)

〉
+ θ0,

where θ is now treated as a function in the RKHS, H.

Sergios Theodoridis University of Athens Machine Learning 52/89

Support Vector Regression

• Casting a nonlinear task in an RKHS: In this case of nonlinear
modeling, the path to follow is:

Assume an (implicit) mapping to the RKHS associated with a
kernel, κ(·,x), x ∈ Rl, via the feature map

x 7−→ φ(x) = κ(·,x),

Approximate the nonlinear function, g(x), in the regression task,
as a linear one in the respective RKHS, i.e.,

g(x) ≈ f(x) =
〈
θ, φ(x)

〉
+ θ0,

where θ is now treated as a function in the RKHS, H.

Sergios Theodoridis University of Athens Machine Learning 52/89

Support Vector Regression

• Since the task remains linear in H, all we said before carries on to
the new space and we obtain,

θ̂(·) =

N∑
n=1

(λ̃n − λn)κ(·,xn).

• The bias term θ̂0 is obtained as discussed before. Once θ̂, θ̂0
have been obtained, we are ready to perform prediction.

• Given a value x, we first perform the (implicit) mapping using the
feature map (x 7−→ κ(·,x)) and we get

ŷ(x) = f(x) =
〈
θ̂, κ(·,x)

〉
+ θ̂0, or

ŷ(x) =

Ns∑
n=1

(λ̃n − λn)κ(x,xn) + θ̂0. (7)

where Ns ≤ N , is the number of nonzero Lagrange multipliers.

Sergios Theodoridis University of Athens Machine Learning 53/89

Support Vector Regression

• Since the task remains linear in H, all we said before carries on to
the new space and we obtain,

θ̂(·) =

N∑
n=1

(λ̃n − λn)κ(·,xn).

• The bias term θ̂0 is obtained as discussed before. Once θ̂, θ̂0
have been obtained, we are ready to perform prediction.

• Given a value x, we first perform the (implicit) mapping using the
feature map (x 7−→ κ(·,x)) and we get

ŷ(x) = f(x) =
〈
θ̂, κ(·,x)

〉
+ θ̂0, or

ŷ(x) =

Ns∑
n=1

(λ̃n − λn)κ(x,xn) + θ̂0. (7)

where Ns ≤ N , is the number of nonzero Lagrange multipliers.

Sergios Theodoridis University of Athens Machine Learning 53/89

Support Vector Regression

• Since the task remains linear in H, all we said before carries on to
the new space and we obtain,

θ̂(·) =

N∑
n=1

(λ̃n − λn)κ(·,xn).

• The bias term θ̂0 is obtained as discussed before. Once θ̂, θ̂0
have been obtained, we are ready to perform prediction.

• Given a value x, we first perform the (implicit) mapping using the
feature map (x 7−→ κ(·,x)) and we get

ŷ(x) = f(x) =
〈
θ̂, κ(·,x)

〉
+ θ̂0, or

ŷ(x) =

Ns∑
n=1

(λ̃n − λn)κ(x,xn) + θ̂0. (7)

where Ns ≤ N , is the number of nonzero Lagrange multipliers.

Sergios Theodoridis University of Athens Machine Learning 53/89

Support Vector Regression

• Observe that the last equation, i..e,

ŷ(x) =

Ns∑
n=1

(λ̃n − λn)κ(x,xn) + θ̂0. (8)

is an expansion in terms of nonlinear (kernel) functions.
Moreover, since only a fraction of the points is involved (Ns), the
use of the ε-insensitive loss function achieves a form of
sparsification on the general expansion that would involve all the
training points, as dictated by the representer theorem.

Sergios Theodoridis University of Athens Machine Learning 54/89

Support Vector Regression

• The figure below illustrates ŷ(x) for a choice of κ(·, ·). Observe
that the values of ε form a “tube’’ around the respective graph.
Points lying outside the tube correspond to values of the slack
variables larger than zero. Because from all the training points,
the solution depends only on the support vectors, the method is
known as support vector regression (SVR).

The tube around the nonlinear regression curve. Points outside the tube have either ξ̂ > 0 and ξ = 0 or ξ > 0
and ξ̂ = 0. The rest of the points have ξ̂ = ξ = 0. Points which are inside the tube correspond to zero

Lagrange multipliers.

Sergios Theodoridis University of Athens Machine Learning 55/89

Support Vector Regression: An Example

• Consider the same time series used for the nonlinear prediction task,
used in the kernel ridge regression example. This time, the SVR method
was used and optimized around the linear ε-insensitive loss function,
with ε = 0.003. The same Gaussian kernel, with σ = 0.004, was
employed, as in the kernel ridge regression case. Figure (a) below shows
the resulting prediction curve, ŷ(x), as a function of x given in (8). The
curve fits the data samples much better compared to the kernel ridge
regression (Figure (b)), exhibiting the enhanced robustness of the SVR
method, relative to the KKR, in the presence of outliers.

0 0.005 0.01 0.015 0.02 0.025
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

time in sec

a
m

p
lit

u
d
e

(a)

0 0.005 0.01 0.015 0.02 0.025
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

time in sec

a
m

p
lit

u
d
e

(b)

The improved performance compared to the kernel ridge regression used is readily observed, by simply observing
the two figures. The encircled points are the support vectors resulting from the optimization, using the

ε-insensitive loss function.

Sergios Theodoridis University of Athens Machine Learning 56/89

Maximum Margin Classifiers

• Margin between two classes: If the classes are linearly separable, there is
an infinity of hyperplanes that classify correctly all the points, Figure
(a). Each hyperplane is defined in terms of its direction and its position
in the respective space, Figure (b).

(a)

There is an infinite number of linear classifiers
which can classify correctly all the patterns, in a

linearly separable class task.

(b)

The direction of the hyperplane,

θTx + θ0 = 0, is determined by θ and its
position in space by θ0.

• The distance of a point x from a hyperplane, Figure (b), is given by,

z =
|θTx+ θ0|
‖θ‖

,

which is obviously zero if the point lies on the hyperplane.

Sergios Theodoridis University of Athens Machine Learning 57/89

Maximum Margin Classifiers

• Margin between two classes: If the classes are linearly separable, there is
an infinity of hyperplanes that classify correctly all the points, Figure
(a). Each hyperplane is defined in terms of its direction and its position
in the respective space, Figure (b).

(a)

There is an infinite number of linear classifiers
which can classify correctly all the patterns, in a

linearly separable class task.

(b)

The direction of the hyperplane,

θTx + θ0 = 0, is determined by θ and its
position in space by θ0.

• The distance of a point x from a hyperplane, Figure (b), is given by,

z =
|θTx+ θ0|
‖θ‖

,

which is obviously zero if the point lies on the hyperplane.

Sergios Theodoridis University of Athens Machine Learning 57/89

Maximum Margin Classifiers

• From the set of all classifiers that solve the task exactly and have
certain direction (i.e., they share a common θ), we select θ0 so
that to place the classifier in between the two classes, such that
its distance from the nearest points from each one of the two
classes to be same.

Sergios Theodoridis University of Athens Machine Learning 58/89

Maximum Margin Classifiers

• The previous statement is illustrated in the figure below that
shows the linear classifiers (hyperplanes) in two different
directions (full lines in gray and red). Both of them have been
placed so that to have the same distance from the nearest points
in both classes. Moreover note that, the distance z1 associated
with the “gray” classifier is smaller than the z2 associated with
the “red” one.

Sergios Theodoridis University of Athens Machine Learning 59/89

Maximum Margin Classifiers

• After an appropriate scaling, we can always make the distance of
the nearest points from the two classes to the hyperplane to be
equal to z = 1

‖θ‖ ; equivalently, the scaling guarantees that

f(x) = ±1 if x is a nearest to the hyperplane point and
depending on whether the point belongs to ω1 (+1) or ω2 (−1).

• The two hyperplanes, defined by f(x) = ±1, are shown in the
figure in the previous slide as dotted lines, for both the “gray”
and the “red” directions. The pair if these hyperplanes defines
the corresponding margin, for each direction, whose width is
equal to 2

||θ|| .

Sergios Theodoridis University of Athens Machine Learning 60/89

Maximum Margin Classifiers

• After an appropriate scaling, we can always make the distance of
the nearest points from the two classes to the hyperplane to be
equal to z = 1

‖θ‖ ; equivalently, the scaling guarantees that

f(x) = ±1 if x is a nearest to the hyperplane point and
depending on whether the point belongs to ω1 (+1) or ω2 (−1).

• The two hyperplanes, defined by f(x) = ±1, are shown in the
figure in the previous slide as dotted lines, for both the “gray”
and the “red” directions. The pair if these hyperplanes defines
the corresponding margin, for each direction, whose width is
equal to 2

||θ|| .

Sergios Theodoridis University of Athens Machine Learning 60/89

Maximum Margin Classifiers

• Thus, each classifier constructed as explained before and which
solves the task, satisfies the following two properties:

It has a margin of width equal to 2
‖θ‖

In addition,

θTxn + θ0 ≥ 1, xn ∈ ω1,

θTxn + θ0 ≤ −1, xn ∈ ω2.

• We are now ready to state the task that defines the maximum
margin classifier, for linearly separable classes.

Sergios Theodoridis University of Athens Machine Learning 61/89

Maximum Margin Classifiers

• Thus, each classifier constructed as explained before and which
solves the task, satisfies the following two properties:

It has a margin of width equal to 2
‖θ‖

In addition,

θTxn + θ0 ≥ 1, xn ∈ ω1,

θTxn + θ0 ≤ −1, xn ∈ ω2.

• We are now ready to state the task that defines the maximum
margin classifier, for linearly separable classes.

Sergios Theodoridis University of Athens Machine Learning 61/89

Maximum Margin Classifiers

• Maximum margin classifier: The corresponding optimization task
is cast as follows:

minimize w.r. to θ
1

2
‖θ‖2

subject to yn(θTxn + θ0) ≥ 1, n = 1, 2, . . . , N.

• In other words, from the infinity of linear classifiers, which can
solve the task and classify correctly all the training patterns, our
optimization task selects the one which has minimum norm.

• However, as we have just seen, minimizing the norm ‖θ‖ is
equivalent with maximizing the respective margin! This is done in
a way that guarantees that all the training points are classified
correctly, as dictated by the associated constraints.

• Thus, in this context, regularization that controls the norm of the
estimate, is dressed up with the geometric interpretation of the
margin.

Sergios Theodoridis University of Athens Machine Learning 62/89

Maximum Margin Classifiers

• Maximum margin classifier: The corresponding optimization task
is cast as follows:

minimize w.r. to θ
1

2
‖θ‖2

subject to yn(θTxn + θ0) ≥ 1, n = 1, 2, . . . , N.

• In other words, from the infinity of linear classifiers, which can
solve the task and classify correctly all the training patterns, our
optimization task selects the one which has minimum norm.

• However, as we have just seen, minimizing the norm ‖θ‖ is
equivalent with maximizing the respective margin! This is done in
a way that guarantees that all the training points are classified
correctly, as dictated by the associated constraints.

• Thus, in this context, regularization that controls the norm of the
estimate, is dressed up with the geometric interpretation of the
margin.

Sergios Theodoridis University of Athens Machine Learning 62/89

Maximum Margin Classifiers

• Maximum margin classifier: The corresponding optimization task
is cast as follows:

minimize w.r. to θ
1

2
‖θ‖2

subject to yn(θTxn + θ0) ≥ 1, n = 1, 2, . . . , N.

• In other words, from the infinity of linear classifiers, which can
solve the task and classify correctly all the training patterns, our
optimization task selects the one which has minimum norm.

• However, as we have just seen, minimizing the norm ‖θ‖ is
equivalent with maximizing the respective margin! This is done in
a way that guarantees that all the training points are classified
correctly, as dictated by the associated constraints.

• Thus, in this context, regularization that controls the norm of the
estimate, is dressed up with the geometric interpretation of the
margin.

Sergios Theodoridis University of Athens Machine Learning 62/89

Maximum Margin Classifiers

• Maximum margin classifier: The corresponding optimization task
is cast as follows:

minimize w.r. to θ
1

2
‖θ‖2

subject to yn(θTxn + θ0) ≥ 1, n = 1, 2, . . . , N.

• In other words, from the infinity of linear classifiers, which can
solve the task and classify correctly all the training patterns, our
optimization task selects the one which has minimum norm.

• However, as we have just seen, minimizing the norm ‖θ‖ is
equivalent with maximizing the respective margin! This is done in
a way that guarantees that all the training points are classified
correctly, as dictated by the associated constraints.

• Thus, in this context, regularization that controls the norm of the
estimate, is dressed up with the geometric interpretation of the
margin.

Sergios Theodoridis University of Athens Machine Learning 62/89

Maximum Margin Classifiers

• The previous task is a typical one of a convex cost under convex
inequality constraints and can be solved by mobilizing standard
methods via the introduction of Lagrange multipliers.

• Support vectors: The solution turns out to be in an elegant and
simple form and it is given as a linear combination of a subset of
the training samples, i.e.,

θ̂ =

Ns∑
n=1

λnynxn,

where, Ns are the nonzero Lagrange multipliers.

Sergios Theodoridis University of Athens Machine Learning 63/89

Maximum Margin Classifiers

• The previous task is a typical one of a convex cost under convex
inequality constraints and can be solved by mobilizing standard
methods via the introduction of Lagrange multipliers.

• Support vectors: The solution turns out to be in an elegant and
simple form and it is given as a linear combination of a subset of
the training samples, i.e.,

θ̂ =

Ns∑
n=1

λnynxn,

where, Ns are the nonzero Lagrange multipliers.

Sergios Theodoridis University of Athens Machine Learning 63/89

Maximum Margin Classifiers

• It turns out that, only the Lagrange multipliers associated with
the nearest points to the (hyperplane) classifier, i.e., those points
satisfying the constraints with equality (yn(θTxn + θ0) = 1), are
nonzero. These are known as the support vectors. The Lagrange
multipliers corresponding to the points outside the margin
(yn(θTxn + θ0) > 1) are zero.

• Because from all the training points, the solution depends only
on the support vectors, this type of classifiers are known as
support vector machines (SVM). In other words, for this case, the
solution depends only on the nearest to the classifier points.
Points that lie outside the margin have not a say in the formation
of the corresponding hyperplane.

Sergios Theodoridis University of Athens Machine Learning 64/89

Maximum Margin Classifiers

• It turns out that, only the Lagrange multipliers associated with
the nearest points to the (hyperplane) classifier, i.e., those points
satisfying the constraints with equality (yn(θTxn + θ0) = 1), are
nonzero. These are known as the support vectors. The Lagrange
multipliers corresponding to the points outside the margin
(yn(θTxn + θ0) > 1) are zero.

• Because from all the training points, the solution depends only
on the support vectors, this type of classifiers are known as
support vector machines (SVM). In other words, for this case, the
solution depends only on the nearest to the classifier points.
Points that lie outside the margin have not a say in the formation
of the corresponding hyperplane.

Sergios Theodoridis University of Athens Machine Learning 64/89

Maximum Margin Classifiers

• The nonlinear case in an RKHS: For the more general RKHS
case, the solution becomes,

θ̂(·) =

Ns∑
n=1

λnynκ(·,xn),

which leads to the following prediction rule.

• Given an unknown x, its class label is predicted according to the
sign of

ŷ(x) =

Ns∑
n=1

λnynκ(x,xn) + θ̂0.

Sergios Theodoridis University of Athens Machine Learning 65/89

Maximum Margin Classifiers

• The nonlinear case in an RKHS: For the more general RKHS
case, the solution becomes,

θ̂(·) =

Ns∑
n=1

λnynκ(·,xn),

which leads to the following prediction rule.

• Given an unknown x, its class label is predicted according to the
sign of

ŷ(x) =

Ns∑
n=1

λnynκ(x,xn) + θ̂0.

Sergios Theodoridis University of Athens Machine Learning 65/89

Maximum Margin Classifiers

• The bias, θ̂0, is obtained by selecting all constraints with λn 6= 0,
corresponding to (the counterpart of (yn(θTxn + θ0) = 1 for the
linear case)

yn

(
N∑
m=1

λmymκ(xm,xn) + θ̂0

)
− 1 = 0, n = 1, 2, . . . , Ns.

and θ̂0 is computed as the average of the values obtained from
each one of these constraints.

• The task has a unique solution; however, the corresponding
Lagrange multipliers may not be unique.

Sergios Theodoridis University of Athens Machine Learning 66/89

Maximum Margin Classifiers

• The bias, θ̂0, is obtained by selecting all constraints with λn 6= 0,
corresponding to (the counterpart of (yn(θTxn + θ0) = 1 for the
linear case)

yn

(
N∑
m=1

λmymκ(xm,xn) + θ̂0

)
− 1 = 0, n = 1, 2, . . . , Ns.

and θ̂0 is computed as the average of the values obtained from
each one of these constraints.

• The task has a unique solution; however, the corresponding
Lagrange multipliers may not be unique.

Sergios Theodoridis University of Athens Machine Learning 66/89

Support Vector Machines

• The nonseparable class case: We now turn our attention to the more
realistic case of overlapping classes. In this case, there is no (linear)
classifier that can classify correctly all the points, and some errors are
bound to occur. The following figure shows the respective geometry for
a linear classifier, f(x) = 0 and the corresponding margin that is
defined, as before, by the two hyperplanes, f(x) = ±1. For all the
points, define the respective slack variables, ξn, n = 1, 2, . . . , N . There
are three types of points:

,
,

Sergios Theodoridis University of Athens Machine Learning 67/89

Support Vector Machines

• The nonseparable class case: We now turn our attention to the more
realistic case of overlapping classes. In this case, there is no (linear)
classifier that can classify correctly all the points, and some errors are
bound to occur. The following figure shows the respective geometry for
a linear classifier, f(x) = 0 and the corresponding margin that is
defined, as before, by the two hyperplanes, f(x) = ±1. For all the
points, define the respective slack variables, ξn, n = 1, 2, . . . , N . There
are three types of points:

a) ynf(xn) ≥ 1, ξn = 0

a) Points that lie outside or on the borders of the margin and are classified correctly (ξn = 0),
,

Sergios Theodoridis University of Athens Machine Learning 67/89

Support Vector Machines

• The nonseparable class case: We now turn our attention to the more
realistic case of overlapping classes. In this case, there is no (linear)
classifier that can classify correctly all the points, and some errors are
bound to occur. The following figure shows the respective geometry for
a linear classifier, f(x) = 0 and the corresponding margin that is
defined, as before, by the two hyperplanes, f(x) = ±1. For all the
points, define the respective slack variables, ξn, n = 1, 2, . . . , N . There
are three types of points:

a) ynf(xn) ≥ 1, ξn = 0
b) ynf(xn) ≥ 1− ξn, 0 < ξn < 1

a) Points that lie outside or on the borders of the margin and are classified correctly (ξn = 0),
b) points inside the margin and classified correctly (0 < ξn < 1) denoted by circles,

Sergios Theodoridis University of Athens Machine Learning 67/89

Support Vector Machines

• The nonseparable class case: We now turn our attention to the more
realistic case of overlapping classes. In this case, there is no (linear)
classifier that can classify correctly all the points, and some errors are
bound to occur. The following figure shows the respective geometry for
a linear classifier, f(x) = 0 and the corresponding margin that is
defined, as before, by the two hyperplanes, f(x) = ±1. For all the
points, define the respective slack variables, ξn, n = 1, 2, . . . , N . There
are three types of points:

a) ynf(xn) ≥ 1, ξn = 0
b) ynf(xn) ≥ 1− ξn, 0 < ξn < 1
c) ynf(xn) ≤ 0, 1 ≤ ξn

a) Points that lie outside or on the borders of the margin and are classified correctly (ξn = 0),
b) points inside the margin and classified correctly (0 < ξn < 1) denoted by circles,

and c) misclassified points denoted by a square, (ξn ≥ 1).

Sergios Theodoridis University of Athens Machine Learning 67/89

Support Vector Machines

• Our desire would be to estimate a classifier, so that to maximize
the margin and at the same time to keep the number of
margin errors as small as possible.

• Margin errors include points that lie on the correct side of the
classifier but inside the margin. Mobilizing the indicator function,
I(·), (recall: I(ξ) = 1 (0), if ξ > 0 (ξ = 0)), this goal can be
expressed via the following optimization task:

minimize w.r. to θ, θ0, ξ J(θ, ξ) =
1

2
‖θ‖2 + C

N∑
n=1

I(ξn),

subject to yn(θTxn + θ0) ≥ 1− ξn,
ξn ≥ 0, n = 1, 2, . . . , N.

Sergios Theodoridis University of Athens Machine Learning 68/89

Support Vector Machines

• Our desire would be to estimate a classifier, so that to maximize
the margin and at the same time to keep the number of
margin errors as small as possible.

• Margin errors include points that lie on the correct side of the
classifier but inside the margin. Mobilizing the indicator function,
I(·), (recall: I(ξ) = 1 (0), if ξ > 0 (ξ = 0)), this goal can be
expressed via the following optimization task:

minimize w.r. to θ, θ0, ξ J(θ, ξ) =
1

2
‖θ‖2 + C

N∑
n=1

I(ξn),

subject to yn(θTxn + θ0) ≥ 1− ξn,
ξn ≥ 0, n = 1, 2, . . . , N.

Sergios Theodoridis University of Athens Machine Learning 68/89

Support Vector Machines

• However, in such a case the task becomes a combinatorial one.
So, we relax the task and use ξn in place of the indicator
function, leading to the following:

minimize w.r. to θ, θ0, ξ J(θ, ξ) =
1

2
‖θ‖2 + C

N∑
n=1

ξn,

subject to yn(θTxn + θ0) ≥ 1− ξn,
ξn ≥ 0, n = 1, 2, . . . , N.

Sergios Theodoridis University of Athens Machine Learning 69/89

Support Vector Machines

• Note that, optimization is achieved in a trade off rationale; the
user-defined parameter, C, controls the influence of each of the
two contributions to the minimization task.

• If C is large, the resulting margin (the distance between the two
hyperplanes defined by f(x) = ±1) will be small in order to
include a smaller number of margin errors. If C is small, the
opposite is true. As we will see from the simulation examples, the
choice of C is very crucial.

Sergios Theodoridis University of Athens Machine Learning 70/89

Support Vector Machines

• Note that, optimization is achieved in a trade off rationale; the
user-defined parameter, C, controls the influence of each of the
two contributions to the minimization task.

• If C is large, the resulting margin (the distance between the two
hyperplanes defined by f(x) = ±1) will be small in order to
include a smaller number of margin errors. If C is small, the
opposite is true. As we will see from the simulation examples, the
choice of C is very crucial.

Sergios Theodoridis University of Athens Machine Learning 70/89

Support Vector Machines

• The solution: Once more, the solution is given as a linear
combination of a subset of the training points,

θ̂(·) =

Ns∑
n=1

λnynκ(·,xn),

where λn, n = 1, 2, . . . , Ns are the nonzero Lagrange multipliers
associated with the support vectors. In this case, support vectors
are all points that lie either:

on the pair of the hyperplanes that define the margin, or
inside the margin or,
outside the margin but on the wrong side of the classifier.

• That is, correctly classified points which lie outside the margin
do not contribute to the solution, since the corresponding
Lagrange multipliers are zero.

Sergios Theodoridis University of Athens Machine Learning 71/89

Support Vector Machines

• The solution: Once more, the solution is given as a linear
combination of a subset of the training points,

θ̂(·) =

Ns∑
n=1

λnynκ(·,xn),

where λn, n = 1, 2, . . . , Ns are the nonzero Lagrange multipliers
associated with the support vectors. In this case, support vectors
are all points that lie either:

on the pair of the hyperplanes that define the margin, or
inside the margin or,
outside the margin but on the wrong side of the classifier.

• That is, correctly classified points which lie outside the margin
do not contribute to the solution, since the corresponding
Lagrange multipliers are zero.

Sergios Theodoridis University of Athens Machine Learning 71/89

Support Vector Machines

• The class prediction rule is the same as before; that is, it depends
on the sign of

ŷ(x) =

Ns∑
n=1

λnynκ(x,xn) + θ̂0

where θ̂0 is computed from the constraints corresponding to
λn 6= 0 and ξn = 0; these correspond to the points, which lie on
the hyperplanes that define the margin, and on the correct side of
the classifier. These classifiers also belong to the family of
support vector machines (SVM).

• It must be pointed out that the number of support vectors is
related to the generalization performance of the classifier. The
smaller the number of support vectors is, the better the
generalization is expected to be.

Sergios Theodoridis University of Athens Machine Learning 72/89

Support Vector Machines

• The class prediction rule is the same as before; that is, it depends
on the sign of

ŷ(x) =

Ns∑
n=1

λnynκ(x,xn) + θ̂0

where θ̂0 is computed from the constraints corresponding to
λn 6= 0 and ξn = 0; these correspond to the points, which lie on
the hyperplanes that define the margin, and on the correct side of
the classifier. These classifiers also belong to the family of
support vector machines (SVM).

• It must be pointed out that the number of support vectors is
related to the generalization performance of the classifier. The
smaller the number of support vectors is, the better the
generalization is expected to be.

Sergios Theodoridis University of Athens Machine Learning 72/89

Support Vector Machines

• The margin interpretation of the regularizing term has been raised
in the context of statistical learning theory in the pioneering work
of Vapnik-Chernovenkis; the latter establishes elegant
performance bounds on the generalization performance of such
classifiers.

• These bounds are dimension-free; this is the reason of the good
performance of the SVMs, in spite of the fact that the design can
take place in infinite dimensional spaces, while the size of the
training set remains finite.

Sergios Theodoridis University of Athens Machine Learning 73/89

Support Vector Machines

• The margin interpretation of the regularizing term has been raised
in the context of statistical learning theory in the pioneering work
of Vapnik-Chernovenkis; the latter establishes elegant
performance bounds on the generalization performance of such
classifiers.

• These bounds are dimension-free; this is the reason of the good
performance of the SVMs, in spite of the fact that the design can
take place in infinite dimensional spaces, while the size of the
training set remains finite.

Sergios Theodoridis University of Athens Machine Learning 73/89

The Hinge Loss Function and SVMs

• The hinge loss function: The design of SVMs can also be seen
from an alternative point of view, without it being necessary to
mobilize the concept of margin.

• Recall that the goal of designing any classifier is to estimate a
function, classifier, f , so that to predict the labels for each one of
the classes. Then, the classifier is estimated according to the
empirical cost, based on a loss function L(·, ·), i.e.,

J(f) =

N∑
n=1

L
(
yn, f(xn)

)
, yn =

{
+1, if xn ∈ ω1,
−1, if xn ∈ ω2,

for the two-class case.

Sergios Theodoridis University of Athens Machine Learning 74/89

The Hinge Loss Function and SVMs

• The hinge loss function: The design of SVMs can also be seen
from an alternative point of view, without it being necessary to
mobilize the concept of margin.

• Recall that the goal of designing any classifier is to estimate a
function, classifier, f , so that to predict the labels for each one of
the classes. Then, the classifier is estimated according to the
empirical cost, based on a loss function L(·, ·), i.e.,

J(f) =

N∑
n=1

L
(
yn, f(xn)

)
, yn =

{
+1, if xn ∈ ω1,
−1, if xn ∈ ω2,

for the two-class case.

Sergios Theodoridis University of Athens Machine Learning 74/89

The Hinge Loss Function and SVMs

• For a binary classification task, the first loss function that comes
into the mind is,

L
(
y, f(x)

)
=

{
1, if yf(x) ≤ 0,
0, otherwise,

which is also known as the (0, 1)-loss function. However, this is a
discontinuous function and its optimization is a hard task. To
this end, a number of alternative loss functions has been adopted
in an effort to approximate the (0, 1)-loss function.

• Recall that the LS loss can also be employed but, this is not well
suited for classification tasks and bears little resemblance with the
(0, 1)-loss function.

Sergios Theodoridis University of Athens Machine Learning 75/89

The Hinge Loss Function and SVMs

• For a binary classification task, the first loss function that comes
into the mind is,

L
(
y, f(x)

)
=

{
1, if yf(x) ≤ 0,
0, otherwise,

which is also known as the (0, 1)-loss function. However, this is a
discontinuous function and its optimization is a hard task. To
this end, a number of alternative loss functions has been adopted
in an effort to approximate the (0, 1)-loss function.

• Recall that the LS loss can also be employed but, this is not well
suited for classification tasks and bears little resemblance with the
(0, 1)-loss function.

Sergios Theodoridis University of Athens Machine Learning 75/89

The Hinge Loss Function and SVMs

• In the SVM context, we turn our attention to the hinge loss
function defined as,

Lρ
(
y, f(x)

)
= max

{
0, ρ− yf(x)

}
.

• In other words, if the sign of the product between the true label,
y, and the predicted by the discriminant function value, f(x), is
positive and larger than a threshold/margin (user-defined) value
ρ ≥ 0, the loss is zero. If not, the loss exhibits a linear increase.

• We say that a margin error is committed if yf(x) cannot achieve
a value at least ρ.

Sergios Theodoridis University of Athens Machine Learning 76/89

The Hinge Loss Function and SVMs

• In the SVM context, we turn our attention to the hinge loss
function defined as,

Lρ
(
y, f(x)

)
= max

{
0, ρ− yf(x)

}
.

• In other words, if the sign of the product between the true label,
y, and the predicted by the discriminant function value, f(x), is
positive and larger than a threshold/margin (user-defined) value
ρ ≥ 0, the loss is zero. If not, the loss exhibits a linear increase.

• We say that a margin error is committed if yf(x) cannot achieve
a value at least ρ.

Sergios Theodoridis University of Athens Machine Learning 76/89

The Hinge Loss Function and SVMs

• In the SVM context, we turn our attention to the hinge loss
function defined as,

Lρ
(
y, f(x)

)
= max

{
0, ρ− yf(x)

}
.

• In other words, if the sign of the product between the true label,
y, and the predicted by the discriminant function value, f(x), is
positive and larger than a threshold/margin (user-defined) value
ρ ≥ 0, the loss is zero. If not, the loss exhibits a linear increase.

• We say that a margin error is committed if yf(x) cannot achieve
a value at least ρ.

Sergios Theodoridis University of Athens Machine Learning 76/89

The Hinge Loss Function and SVMs

• The hinge loss function is shown in the figure below, together
with (0, 1) and squared error loss functions.

The (0, 1)-loss (dotted red), the hinge loss (red) and the squared error (dotted black) functions tuned to pass
through the (0, 1) point for comparison. For the hinge loss, ρ = 1.

Sergios Theodoridis University of Athens Machine Learning 77/89

The Hinge Loss Function and SVMs

• Let us now see how we can view the SVM design via the hinge
loss function. We will constrain ourselves to linear discriminant
functions in the input space, Rl. The extension to the more
general RKHS space can be carried out, at the final stage, by
mobilizing the kernel trick.

• Thus, our classifier has the form,

f(x) = θ0 + θTx.

Sergios Theodoridis University of Athens Machine Learning 78/89

The Hinge Loss Function and SVMs

• Let us now see how we can view the SVM design via the hinge
loss function. We will constrain ourselves to linear discriminant
functions in the input space, Rl. The extension to the more
general RKHS space can be carried out, at the final stage, by
mobilizing the kernel trick.

• Thus, our classifier has the form,

f(x) = θ0 + θTx.

Sergios Theodoridis University of Athens Machine Learning 78/89

The Hinge Loss Function and SVMs

• The goal of designing a linear classifier now becomes equivalent
with minimizing the cost,

J(θ, θ0) =
1

2
‖θ‖2 + C

N∑
n=1

Lρ
(
yn
(
θTxn + θ0

))
.

• However, employing slack variables, and following a similar
reasoning as before, minimizing the previous cost becomes
equivalent to

minimize w.r. to θ, θ0, ξ J(θ, ξ) =
1

2
‖θ‖2 + C

N∑
n=1

ξn,

subject to yn(θTxn + θ0) ≥ ρ− ξn,
ξn ≥ 0, n = 1, 2, . . . , N.

Sergios Theodoridis University of Athens Machine Learning 79/89

The Hinge Loss Function and SVMs

• The goal of designing a linear classifier now becomes equivalent
with minimizing the cost,

J(θ, θ0) =
1

2
‖θ‖2 + C

N∑
n=1

Lρ
(
yn
(
θTxn + θ0

))
.

• However, employing slack variables, and following a similar
reasoning as before, minimizing the previous cost becomes
equivalent to

minimize w.r. to θ, θ0, ξ J(θ, ξ) =
1

2
‖θ‖2 + C

N∑
n=1

ξn,

subject to yn(θTxn + θ0) ≥ ρ− ξn,
ξn ≥ 0, n = 1, 2, . . . , N.

Sergios Theodoridis University of Athens Machine Learning 79/89

The Hinge Loss Function and SVMs

• Indeed, assuming ρ = 1 without harming generality, a margin error
is committed if yn(θTxn + θ0) ≤ 1, corresponding to ξn > 0. On
the other hand, if ξn = 0, then yn(θTxn + θ0) ≥ 1. The latter
corresponds to the region where the hinge loss becomes zero.

• The goal of the second optimization task is to drive as many of
the ξn’s to zero as possible; however, this is equivalent with
estimating the parameters so that the hinge loss-based task has
as many points scoring zero as possible.

Sergios Theodoridis University of Athens Machine Learning 80/89

The Hinge Loss Function and SVMs

• Indeed, assuming ρ = 1 without harming generality, a margin error
is committed if yn(θTxn + θ0) ≤ 1, corresponding to ξn > 0. On
the other hand, if ξn = 0, then yn(θTxn + θ0) ≥ 1. The latter
corresponds to the region where the hinge loss becomes zero.

• The goal of the second optimization task is to drive as many of
the ξn’s to zero as possible; however, this is equivalent with
estimating the parameters so that the hinge loss-based task has
as many points scoring zero as possible.

Sergios Theodoridis University of Athens Machine Learning 80/89

The Hinge Loss Function and SVMs

• The hinge loss interpretation paves the way for using alternative
algorithms for convex optimization. The use of the slack variables
and the respective solution, as discussed before, leads to solving
the task in the so called dual formulation, which provides the
solution in terms of inner products; this allows the extension to
RKH spaces via the use of the kernel trick.

• However, for nonlinear tasks, this can also be made possible, if
one uses the hinge loss formulation and takes advantage of the
representer theorem, to replace f in terms of N parameters.

Sergios Theodoridis University of Athens Machine Learning 81/89

The Hinge Loss Function and SVMs

• The hinge loss interpretation paves the way for using alternative
algorithms for convex optimization. The use of the slack variables
and the respective solution, as discussed before, leads to solving
the task in the so called dual formulation, which provides the
solution in terms of inner products; this allows the extension to
RKH spaces via the use of the kernel trick.

• However, for nonlinear tasks, this can also be made possible, if
one uses the hinge loss formulation and takes advantage of the
representer theorem, to replace f in terms of N parameters.

Sergios Theodoridis University of Athens Machine Learning 81/89

An SVM-based Classification Example

• In this example, the performance of the SVM is tested in the context of
a two-class two-dimensional classification task. The data set comprises
N = 150 points uniformly distributed in the region [−5, 5]× [−5, 5].
For each point, xn = [xn,1, xn,2]T , n = 1, 2, . . . , N , we compute

yn = 0.5x3n,1 + 0.5x2n,1 + 0.5xn,1 + 1 + η,

where η stands for zero-mean Gaussian noise of variance σ2
η = 4. The

point is assigned to either of the two classes, depending on which side
of the graph of the function

f(x) = 0.5x3 + 0.5x2 + 0.5x+ 1,

in the two-dimensional space, yn lies. That is, if yn > f(xn1) the point
is assigned to class ω1 otherwise is assigned to class ω2.

• The Gaussian kernel was used with σ = 10, since this resulted in the
best performance. In the next slide, Figure (a) shows the obtained
classifier for C = 20 and Figure (b) for C = 1. Observe how the
obtained classifier, and hence the performance, depends heavily on the
choice of C. In the former case, the number of the support vectors was
equal to 64 and for the latter equal to 84.

Sergios Theodoridis University of Athens Machine Learning 82/89

An SVM-based Classification Example

• In this example, the performance of the SVM is tested in the context of
a two-class two-dimensional classification task. The data set comprises
N = 150 points uniformly distributed in the region [−5, 5]× [−5, 5].
For each point, xn = [xn,1, xn,2]T , n = 1, 2, . . . , N , we compute

yn = 0.5x3n,1 + 0.5x2n,1 + 0.5xn,1 + 1 + η,

where η stands for zero-mean Gaussian noise of variance σ2
η = 4. The

point is assigned to either of the two classes, depending on which side
of the graph of the function

f(x) = 0.5x3 + 0.5x2 + 0.5x+ 1,

in the two-dimensional space, yn lies. That is, if yn > f(xn1) the point
is assigned to class ω1 otherwise is assigned to class ω2.

• The Gaussian kernel was used with σ = 10, since this resulted in the
best performance. In the next slide, Figure (a) shows the obtained
classifier for C = 20 and Figure (b) for C = 1. Observe how the
obtained classifier, and hence the performance, depends heavily on the
choice of C. In the former case, the number of the support vectors was
equal to 64 and for the latter equal to 84.

Sergios Theodoridis University of Athens Machine Learning 82/89

An SVM-based Classification Example

−5 0 5

−5

−2

0

2

5

−5 0 5

−5

−2

0

2

5

a) The training data points for the two classes (red and gray respectively). The full line is the graph of the obtained SVM
classifier and the dotted lines indicate the margin, for C = 20. b) The result for C = 1. For both cases, the Gaussian

kernel with σ = 20 was used.

Sergios Theodoridis University of Athens Machine Learning 83/89

Performance of SVMs

• A notable characteristic of the support vector machines is that
the complexity is independent of the dimensionality of the
respective RKHS. The need of having a large number of
parameters is bypassed and this has an influence on the
generalization performance; SVMs exhibit very good
generalization performance in practice. Theoretically, such a
claim is substantiated by their maximum margin interpretation, in
the framework of the elegant structural risk minimization theory,
developed by Vapnik and Chernovenkis.

• Various studies concerning the comparative study of the
performance of SVMs against other popular classifiers
demonstrate that the SVMs rank at the very top among the most
popular of the classifiers. However, there are cases for which
other methods score better performance.

Sergios Theodoridis University of Athens Machine Learning 84/89

Performance of SVMs

• A notable characteristic of the support vector machines is that
the complexity is independent of the dimensionality of the
respective RKHS. The need of having a large number of
parameters is bypassed and this has an influence on the
generalization performance; SVMs exhibit very good
generalization performance in practice. Theoretically, such a
claim is substantiated by their maximum margin interpretation, in
the framework of the elegant structural risk minimization theory,
developed by Vapnik and Chernovenkis.

• Various studies concerning the comparative study of the
performance of SVMs against other popular classifiers
demonstrate that the SVMs rank at the very top among the most
popular of the classifiers. However, there are cases for which
other methods score better performance.

Sergios Theodoridis University of Athens Machine Learning 84/89

Choice of Hyperparameters

• One of the main issues associated with SVM/SVRs is the choice
of the parameter, C, which controls the relative influence of the
loss and the regularizing parameter in the cost function.

• Although some efforts have been done in developing theoretical
tools for the respective optimization, the path that has survived
in practice is that of cross-valuation techniques against a test
data set. Different values of C are used to train the model, and
the value, which results in the best performance over the test set,
is selected.

Sergios Theodoridis University of Athens Machine Learning 85/89

Choice of Hyperparameters

• One of the main issues associated with SVM/SVRs is the choice
of the parameter, C, which controls the relative influence of the
loss and the regularizing parameter in the cost function.

• Although some efforts have been done in developing theoretical
tools for the respective optimization, the path that has survived
in practice is that of cross-valuation techniques against a test
data set. Different values of C are used to train the model, and
the value, which results in the best performance over the test set,
is selected.

Sergios Theodoridis University of Athens Machine Learning 85/89

Choice of Hyperparameters

• The other main issue is the choice of the kernel function.
Different kernels lead to different performance. Once more, the
recipe is to use different kernels and different values for the
involved parameters, within a kernel family, and keep the one that
results in the best performance. For example, in the case of a
Gaussian kernel, different values for the parameter σ are used.

• A line of research is to design kernels, which match the data at
hand, based either on some prior knowledge or via some
optimization path. However, in general, this methodology leads
to non-convex optimization tasks.

Sergios Theodoridis University of Athens Machine Learning 86/89

Choice of Hyperparameters

• The other main issue is the choice of the kernel function.
Different kernels lead to different performance. Once more, the
recipe is to use different kernels and different values for the
involved parameters, within a kernel family, and keep the one that
results in the best performance. For example, in the case of a
Gaussian kernel, different values for the parameter σ are used.

• A line of research is to design kernels, which match the data at
hand, based either on some prior knowledge or via some
optimization path. However, in general, this methodology leads
to non-convex optimization tasks.

Sergios Theodoridis University of Athens Machine Learning 86/89

Computational Considerations

• Solving a quadratic programming task, in general, requires
O(N3) operations and O(N2) memory operations. To cope with
such demands, a number of decomposition techniques have been
devised, which “break” the task into a sequence of smaller ones.
The sequential minimal optimization (SMO) algorithm breaks the
task into a sequence of problems comprising two points, which
can be solved analytically. Efficient implementation of such
schemes lead to an empirical training time that scales between
O(N) and O(N2.3).

• The activity on the computational front in the context of
SVM/SVRs has been very intensive. A more detailed description
is provided in the book, where some major directions are
provided. The LibSVM is one among the most popular publicly
available packages.

Sergios Theodoridis University of Athens Machine Learning 87/89

Computational Considerations

• Solving a quadratic programming task, in general, requires
O(N3) operations and O(N2) memory operations. To cope with
such demands, a number of decomposition techniques have been
devised, which “break” the task into a sequence of smaller ones.
The sequential minimal optimization (SMO) algorithm breaks the
task into a sequence of problems comprising two points, which
can be solved analytically. Efficient implementation of such
schemes lead to an empirical training time that scales between
O(N) and O(N2.3).

• The activity on the computational front in the context of
SVM/SVRs has been very intensive. A more detailed description
is provided in the book, where some major directions are
provided. The LibSVM is one among the most popular publicly
available packages.

Sergios Theodoridis University of Athens Machine Learning 87/89

Multiclass Generalizations

• The SVM classification task has been introduced in the context of a
two-class classification task. The more general M -class case can be
treated in various ways:

One-against-All: One solves M two-class problems. Each time,
one of the classes is classified against all the others using a
different SVM each time. Thus, M classifiers are estimated, i.e.,

fm(x) = 0, m = 1, 2, . . . ,M,

which are trained so that fm(x) > 0 for x ∈ ωm and fm(x) < 0 if
x otherwise. Classification is achieved via the rule,

assign x in ωk : if k = arg max
m

fm(x).

According to this method, there may be regions in space where
more that one of the discriminant functions score a positive value,
Moreover, another disadvantage of this approach is the so called
class imbalanced problem; this is caused by the fact that the
number of training points in one of the classes (which comprises
the data from M − 1 classes) can be much larger than the points
in the other; this can introduce inaccuracies during the
optimization process.

Sergios Theodoridis University of Athens Machine Learning 88/89

Multiclass Generalizations

• The SVM classification task has been introduced in the context of a
two-class classification task. The more general M -class case can be
treated in various ways:

One-against-All: One solves M two-class problems. Each time,
one of the classes is classified against all the others using a
different SVM each time. Thus, M classifiers are estimated, i.e.,

fm(x) = 0, m = 1, 2, . . . ,M,

which are trained so that fm(x) > 0 for x ∈ ωm and fm(x) < 0 if
x otherwise. Classification is achieved via the rule,

assign x in ωk : if k = arg max
m

fm(x).

According to this method, there may be regions in space where
more that one of the discriminant functions score a positive value,
Moreover, another disadvantage of this approach is the so called
class imbalanced problem; this is caused by the fact that the
number of training points in one of the classes (which comprises
the data from M − 1 classes) can be much larger than the points
in the other; this can introduce inaccuracies during the
optimization process.

Sergios Theodoridis University of Athens Machine Learning 88/89

Multiclass Generalizations

• Other alternatives are:

One-against-One. According to this method, one solves M(M−1)
2

binary classification tasks, by considering all classes in pairs. The
final decision is taken on the basis of the majority rule.

The SVM rationale can be extended in estimating simultaneously
M hyperplanes. However, this technique ends up with a large
number of parameters, equal to N(M − 1), which have to be
estimated via a single minimization task; this turns out to be
rather prohibitive for most practical problems.

The multiclass task is treated in the context of error correcting
codes. Each class is associated with a binary code word. If the
code words are properly chosen, an error resilience is “embedded”
into the process.

Sergios Theodoridis University of Athens Machine Learning 89/89

Multiclass Generalizations

• Other alternatives are:

One-against-One. According to this method, one solves M(M−1)
2

binary classification tasks, by considering all classes in pairs. The
final decision is taken on the basis of the majority rule.

The SVM rationale can be extended in estimating simultaneously
M hyperplanes. However, this technique ends up with a large
number of parameters, equal to N(M − 1), which have to be
estimated via a single minimization task; this turns out to be
rather prohibitive for most practical problems.

The multiclass task is treated in the context of error correcting
codes. Each class is associated with a binary code word. If the
code words are properly chosen, an error resilience is “embedded”
into the process.

Sergios Theodoridis University of Athens Machine Learning 89/89

Multiclass Generalizations

• Other alternatives are:

One-against-One. According to this method, one solves M(M−1)
2

binary classification tasks, by considering all classes in pairs. The
final decision is taken on the basis of the majority rule.

The SVM rationale can be extended in estimating simultaneously
M hyperplanes. However, this technique ends up with a large
number of parameters, equal to N(M − 1), which have to be
estimated via a single minimization task; this turns out to be
rather prohibitive for most practical problems.

The multiclass task is treated in the context of error correcting
codes. Each class is associated with a binary code word. If the
code words are properly chosen, an error resilience is “embedded”
into the process.

Sergios Theodoridis University of Athens Machine Learning 89/89

