
Neural Graph Processing
KIOS Summer School 2023

Prof. Cesare Alippi
Università della Svizzera italiana

Outline

• We are going to address three major topics

• Graph representation: why and how

• Processing operators

• Spatiotemporal graphs

2

Why graphs

In many applications graphs come naturally

6

Why graphs

In some cases are explicit. In others are latent

3

Data streams and graph streams

In others, we derive graphs from timeseries (signals)

4

Social networks Physics
Monti et al. "Fake news detection on social

media using geometric deep learning."
Shlomi, Jonathan, and Peter Battaglia.

"Graph neural networks in particle
physics."

Traffic prediction
"Traffic prediction with advanced Graph

Neural Networks"
https://deepmind.com/blog/article/traffic-
prediction-with-advanced-graph-neural-

networks

Recommender systems
Ying et al. "Graph convolutional neural networks

for web-scale recommender systems."

Reinforcement learning
Zambaldi et al. "Relational deep

reinforcement learning."

A plethora of applications

5

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

We might argue that having node features is enough provided that you have a strong
inference engine (say) able to extract functional interdependencies.

e.g., Pearson’s
correlation coefficient

3.1 0.2

3.4 0.8

2.1 0.5

1.1 0.9

1.5 0.7

X =

Do we really need to represent and process graphs in a different way?

7

That is true in principle in many cases and partly – whereas not – in others

Do we really need to represent and process graphs in a different way?

in principle not true

Indeed, this is related the information
richness of node features

8

Some philosophical issues

• Previous comments are related to the way we design features

• End-to-end learned (e.g., DL)

• Hand-engineered

• A school believes that we should place ourselves in-between by taking advantage of both

• Rich representations

• Inductive bias

9

Inductive bias

• An inductive bias is an artifact that allows a learning algorithm to prioritize one solution
over another, say efficiently driving learning towards particular regions of the search
space

• Prior information can be encoded in the architecture of the solution itself (e.g., we believe
that our model is linear).

• Inductive bias improves the search for solutions, in general without diminishing
performance.

10

Graphs and graph representations

11

Graphs and graphs…

• Directed graph: one-way edges, from a sender node to a receiver node;

• Undirected graph: bidirectional edges;

• Multi-graph: there can be more than one edge between vertices (including self-edges).

12

Graphs and graphs…

• Attributes: properties that can be encoded e.g., vector, tensor, set, another graph, a
model.

• Attributed graphs: edges and vertices have attributes associated with them.

• Global attribute: an attribute at the graph-level.

13

• In node-focused tasks features of nodes are our output, e.g., to reason about physical
systems

• In edge-focused task edges represent the output we are interested in, e.g., to make
decisions about interactions among entities

• In graph-focused tasks the entire network attributes constitute the output, e.g., to predict
the potential energy of a physical system, the properties of a molecule, or answers to
questions about a visual scene

Graph processing

14

0 0 1 1 0

0 0 1 0 1

1 1 0 1 1

1 0 1 0 1

0 1 1 1 0

0. 0. 0.8 1.3 0.

0. 0. 0.7 0. 1.6

0.8 0.7 0. 0.5 -1.2

1.3 0. 0.5 0. 2.4

0. 1.6 -1.2 2.4 0.

3.1 0.2

3.4 0.8

2.1 0.5

1.1 0.9

1.5 0.7

Adj X E

1

5

3

4

2• Adj: binary adjacency matrix
• X: node features
• E: edge features

How to represent a graph?

15

1

5

3

4

2

How to represent a graph?

0. 0. 0.8 1.3 0.

0. 0. 0.7 0. 1.6

0.8 0.7 0. 0.5 -1.2

1.3 0. 0.5 0. 2.4

0. 1.6 -1.2 2.4 0.

3.1 0.2

3.4 0.8

2.1 0.5

1.1 0.9

1.5 0.7

Adj in EX

• X: node features
• E: edge features

Yes, finally, we have matrices
(or tensors)

16

Processing blocks
“a smooth transition to graph processing operators and architectures”

CNN: Deep Convolutional Networks

• A CNN takes advantage of the space locality principle (inductive bias)

• Subsequent steps of convolutional and pooling layers.

• Each layer computes a higher abstract representation w.r.t. the previous one; the image
size shrinks at each step.

18

• Convolutional layers: evaluate affinities based on the principle of locality.

• Receptive field applied to the image with a stride.

• The kernel/filter K contains learnable parameters.

Convolution operator

19

• Many filters can be applied in parallel.

• As each one is learned, filters Ks are different; after convolution, each one provides a
different feature map.

Convolution layer

20

• Pooling layers reduce the image size based on some rules.

• Different pooling operators can be designed e.g., based on local properties.

Pooling operator

21

Graph processing: Graph Neural Networks

• “Mutatis mutandis” we can naively extend the CNN to a GNN
(Graph Neural Network)

• In images, functional proximity mostly coincides with physical
proximity

• In a graph functional proximity does not coincide with physical
proximity; yet the locality principle is there…

22

• The above convolution is at node level, but we might have information associated with
edges too

• “Message passing” as an extension of convolution in next lecture topic

GNN operators: Graph Convolution
• Graph convolution exploits the local neighborhood of each node to compute a node value

embedding

• Pooling aggregates nodes (shrinks the graph topology) to

• obtain a more abstract representation of the graph

• reduce the graph complexity (then, valuable to manage huge graphs)

Graph Pooling

24

• We get a deep network – GNN – by interleaving operators

• Indeed, you can enjoy “conceptual transfer” of neural processing to other
architectures…

GNN: Graph Neural Networks

25

• The encoder is composed of graph convolutional layers with the pooling one

• A dense decoder reconstructs the matrices describing the graph

• The latent space represents a natural embedding

Graph autoencoders

26

• Once we have a graph to vector mapping (embedding) we can apply our favorite
processing:

• Neural

• Traditional

Latent space representation

27

• Map graphs to vectors (embedding)

Use standard
processing methods.
(neural too)

1 2

The «vanilla» operational framework

28

Graphs and embedding spaces

Attributed graphs represent a very large family of graphs

Identified vertices Non-identified vertices

Generic attributes Variable topology and order

Which types of graphs are we interested in?

30

• Set of graphs
– V, E sets of vertices and edges (finite)
– A: set of attributes
– a: attribute function

• Graph distance

• On we can define a probability space

B.J. Jain, On the geometry of graph spaces, Discrete Applied Mathematics, December 2016.

The graph space (𝒢𝒢 𝒜𝒜 , d)

31

• Mind, both topology and attributes can change under the stationarity hypothesis

Enzymes

Characters

Stationarity and graphs

32

Sequence of edit operations that generates graph 𝑔𝑔𝑖𝑖 starting from graph 𝑔𝑔𝑗𝑗

Operations:

• node insertion/deletion

• edge insertion/deletion

• node modification

• edge modification

J. Jain, On the geometry of graph spaces, DAM, 2016.

Example of d ⋅,⋅ : the graph (edit) distance

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐) = 𝑘𝑘(𝑎𝑎,𝑎𝑎)

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐) = 𝑘𝑘(𝑎𝑎,𝑎𝑎) + 𝑘𝑘(𝑎𝑎𝑎,𝑎𝑎𝑎) − 2𝑘𝑘(𝑎𝑎, 𝑎𝑎𝑎)

33

• Distance-based methods:

• Dissimilarity representation

• Multi-dimensional scaling

• Neural approaches:

• Autoencoders – already seen
(latent space embedding)

• Adversarial learning
(inducing constraints on the latent space)

Embedding methods (some)

34

• Training phase:

• Identify a set of prototypes 𝑅𝑅

• Out-of-sample technique:

D. ZE. Pȩkalska and R. P. W. Duin, The Dissimilarity Representation for Pattern Recognition: Foundations and Applications. WS, 2005.

Dissimilarity representation

35

Multi-dimensional scaling

• Training phase:

• Identify a set of prototypes

• Out-of-sample technique:

• Use the dissimilarity representation by attempting

to preserve the distance from prototypes

D. ZE. Pȩkalska and R. P. W. Duin, The Dissimilarity Representation for Pattern Recognition: Foundations and Applications. WS, 2005. 36

Similar to MDS, but the optimization is on the manifold.

Training phase

• Select a set of prototypes

Out-of-sample technique

• Builds on the dissimilarity representation by attempting to preserve the distance from the
prototypes

Embedding on constant curvature manifolds

37

• Autoencoders provide a nice way to automatically build the embedding

• But we can neither grant that the distance nor that the concept of distribution is preserved
in the graph/embedding spaces

Graph autoencoders

Graph domain 𝒢𝒢 Embedding domain 𝒳𝒳

38

• Match the distribution of embedded information in the latent space with an arbitrary
(given) prior

• In this way we impose the concept of distance and a wished distribution in the embedded
space

Adversarial autoencoders

39

Processing Operators

Outline

Part 1. Neural Message Passing
• Towards graph convolutions
• Message passing

Part 2. Pooling on Graphs
• Select, Reduce, Connect
• Pooling methods
• Global pooling

1

Towards graph convolutions

Convolution on images

Consider the convolution operation in Convolutional Neural Networks (CNNs).

• The receptive field of a CNN
reflects the underlying grid
structure.

• The CNN has an inductive bias
on how to process the
individual
pixels/timesteps/nodes.

2

Convolutions on images

Consider the convolution operation in Convolutional Neural Networks (CNNs).

• The receptive field of a CNN
reflects the underlying grid
structure.

• The CNN exploits an inductive
bias on how to process the
individual
pixels/timesteps/nodes.

2

Going beyond grids

• Not everything can be effectively cast into a grid...

• ...but graphs are a nice representations for
irregular structures.

• Can we generalize the concept of convolution on
graphs?

3

Going beyond grids

• Not everything can be effectively cast into a
grid...

• ...graphs are a nice representations for irregular
structures.

• Can we generalize the concept of convolution on
graphs?

3

Going beyond grids

• Not everything can be effectively cast into a
grid...

• ...graphs are a nice representations for
irregular structures.

• Can we generalize the concept of convolution on
graphs?

3

Convolution on Euclidean spaces

The discrete convolution of CNNs:

(f ⋆ g)[n] =
M∑

m=−M
f[n−m]g[m]

operates on Euclidean spaces.

1 2 3 4 5 6 1 0 1 4 6 8 10* =

4

Convolution on non-Euclidean spaces

Moving to non-Euclidean spaces is
not that trivial.

Challenges:
• Variable number of neighbors
• Loss of orientation

5

Notation

• Graph G〈V , E〉: nodes in V connected by edges in E

• X ∈ RN×dx node-attribute matrix or graph signal
• xi ∈ Rdx , i-th node attribute vector

• A ∈ RN×N, (weighted) adjacency matrix
• aij ∈ R, edge weight for edge (i, j) ∈ E

• D = diag (A1N) ∈ RN×N, degree matrix

• eij ∈ Rde , edge attribute for edge (i, j) ∈ E

In the following, we focus on undirected graphs: A = A⊤

x1

x2 x3

x4

e12 e13

e14

0 2 4 6 8

0

2

4

6

8

6

Notation

• Graph G〈V , E〉: nodes in V connected by edges in E

• X ∈ RN×dx node-attribute matrix or graph signal
• xi ∈ Rdx , i-th node attribute vector

• A ∈ RN×N, (weighted) adjacency matrix
• aij ∈ R, edge weight for edge (i, j) ∈ E

• D = diag (A1N) ∈ RN×N, degree matrix

• eij ∈ Rde , edge attribute for edge (i, j) ∈ E

In the following, we focus on undirected graphs: A = A⊤

x1

x2 x3

x4

e12 e13

e14

0 2 4 6 8

0

2

4

6

8

6

Notation

• Graph G〈V , E〉: nodes in V connected by edges in E

• X ∈ RN×dx node-attribute matrix or graph signal
• xi ∈ Rdx , i-th node attribute vector

• A ∈ RN×N, (weighted) adjacency matrix
• aij ∈ R, edge weight for edge (i, j) ∈ E

• D = diag (A1N) ∈ RN×N, degree matrix

• eij ∈ Rde , edge attribute for edge (i, j) ∈ E

In the following, we focus on undirected graphs: A = A⊤

x1

x2 x3

x4

e12 e13

e14

0 2 4 6 8

0

2

4

6

8

6

Notation

• Graph G〈V , E〉: nodes in V connected by edges in E

• X ∈ RN×dx node-attribute matrix or graph signal
• xi ∈ Rdx , i-th node attribute vector

• A ∈ RN×N, (weighted) adjacency matrix
• aij ∈ R, edge weight for edge (i, j) ∈ E

• D = diag (A1N) ∈ RN×N, degree matrix

• eij ∈ Rde , edge attribute for edge (i, j) ∈ E

In the following, we focus on undirected graphs: A = A⊤

x1

x2 x3

x4

e12 e13

e14

0 2 4 6 8

0

2

4

6

8

6

Notation

• Graph G〈V , E〉: nodes in V connected by edges in E

• X ∈ RN×dx node-attribute matrix or graph signal
• xi ∈ Rdx , i-th node attribute vector

• A ∈ RN×N, (weighted) adjacency matrix
• aij ∈ R, edge weight for edge (i, j) ∈ E

• D = diag (A1N) ∈ RN×N, degree matrix

• eij ∈ Rde , edge attribute for edge (i, j) ∈ E

In the following, we focus on undirected graphs: A = A⊤

x1

x2 x3

x4

e12 e13

e14

0 2 4 6 8

0

2

4

6

8

6

Notation

• Graph G〈V , E〉: nodes in V connected by edges in E

• X ∈ RN×dx node-attribute matrix or graph signal
• xi ∈ Rdx , i-th node attribute vector

• A ∈ RN×N, (weighted) adjacency matrix
• aij ∈ R, edge weight for edge (i, j) ∈ E

• D = diag (A1N) ∈ RN×N, degree matrix

• eij ∈ Rde , edge attribute for edge (i, j) ∈ E

In the following, we focus on undirected graphs: A = A⊤

x1

x2 x3

x4

e12 e13

e14

0 2 4 6 8

0

2

4

6

8

6

Graph Shift Operator

Graph Shift Operator [1]
A matrix Ã ∈ RN×N is called a Graph Shift Operator (GSO)
if it satisfies:

ãij = 0 for (i, j) 6∈ E and i 6= j.

A GSO Ã can be viewed as some function of the adjacency
matrix A.

Examples of GSOs are:
• Laplacian: Ã = L = D− A
• Random-walk matrix: Ã = D−1A

x1

x2 x3

x4

ã12 ã13

ã14

[1] A. Sandryhaila et al., “Discrete signal processing on graphs,” 2013.

7

Graph Shift Operator

Graph Shift Operator [1]
A matrix Ã ∈ RN×N is called a Graph Shift Operator (GSO)
if it satisfies:

ãij = 0 for (i, j) 6∈ E and i 6= j.

A GSO Ã can be viewed as some function of the adjacency
matrix A.

Examples of GSOs are:
• Laplacian: Ã = L = D− A
• Random-walk matrix: Ã = D−1A

x1

x2 x3

x4

ã12 ã13

ã14

[1] A. Sandryhaila et al., “Discrete signal processing on graphs,” 2013.

7

Graph Shift Operator

Graph Shift Operator [1]
A matrix Ã ∈ RN×N is called a Graph Shift Operator (GSO)
if it satisfies:

ãij = 0 for (i, j) 6∈ E and i 6= j.

A GSO Ã can be viewed as some function of the adjacency
matrix A.

Examples of GSOs are:
• Laplacian: Ã = L = D− A
• Random-walk matrix: Ã = D−1A

x1

x2 x3

x4

ã12 ã13

ã14

[1] A. Sandryhaila et al., “Discrete signal processing on graphs,” 2013.

7

GSOs for local (learnable) filters

Applying Ã to node attributes X has a local action:

• the i-th node attributes are affected only by its neighbors N (i).

X′ = ÃX

x′i = (ÃX)i =
N∑
j=1

ãji · xj x′i =
∑
j∈N (i)

ãji · xj

Using parameter matrix Θ ∈ Rdx×dh we can apply the filter on a different space

H = ÃXΘ hi = (ÃXΘ)i =
N∑
j=1

ãji · xjΘ hi =
∑
j∈N (i)

ãji · xjΘ

NOTE: We have local filters with parameters Θ shared among all nodes. Looks familiar?

8

GSOs for local (learnable) filters

Applying Ã to node attributes X has a local action:

• the i-th node attributes are affected only by its neighbors N (i).

X′ = ÃX x′i = (ÃX)i =
N∑
j=1

ãji · xj

x′i =
∑
j∈N (i)

ãji · xj

Using parameter matrix Θ ∈ Rdx×dh we can apply the filter on a different space

H = ÃXΘ hi = (ÃXΘ)i =
N∑
j=1

ãji · xjΘ hi =
∑
j∈N (i)

ãji · xjΘ

NOTE: We have local filters with parameters Θ shared among all nodes. Looks familiar?

8

GSOs for local (learnable) filters

Applying Ã to node attributes X has a local action:

• the i-th node attributes are affected only by its neighbors N (i).

X′ = ÃX x′i = (ÃX)i =
N∑
j=1

ãji · xj x′i =
∑
j∈N (i)

ãji · xj

Using parameter matrix Θ ∈ Rdx×dh we can apply the filter on a different space

H = ÃXΘ hi = (ÃXΘ)i =
N∑
j=1

ãji · xjΘ hi =
∑
j∈N (i)

ãji · xjΘ

NOTE: We have local filters with parameters Θ shared among all nodes. Looks familiar?

8

GSOs for local (learnable) filters

Applying Ã to node attributes X has a local action:

• the i-th node attributes are affected only by its neighbors N (i).

X′ = ÃX x′i = (ÃX)i =
N∑
j=1

ãji · xj x′i =
∑
j∈N (i)

ãji · xj

Using parameter matrix Θ ∈ Rdx×dh we can apply the filter on a different space

H = ÃXΘ

hi = (ÃXΘ)i =
N∑
j=1

ãji · xjΘ hi =
∑
j∈N (i)

ãji · xjΘ

NOTE: We have local filters with parameters Θ shared among all nodes. Looks familiar?

8

GSOs for local (learnable) filters

Applying Ã to node attributes X has a local action:

• the i-th node attributes are affected only by its neighbors N (i).

X′ = ÃX x′i = (ÃX)i =
N∑
j=1

ãji · xj x′i =
∑
j∈N (i)

ãji · xj

Using parameter matrix Θ ∈ Rdx×dh we can apply the filter on a different space

H = ÃXΘ hi = (ÃXΘ)i =
N∑
j=1

ãji · xjΘ hi =
∑
j∈N (i)

ãji · xjΘ

NOTE: We have local filters with parameters Θ shared among all nodes. Looks familiar?

8

GSOs for local (learnable) filters

Applying Ã to node attributes X has a local action:

• the i-th node attributes are affected only by its neighbors N (i).

X′ = ÃX x′i = (ÃX)i =
N∑
j=1

ãji · xj x′i =
∑
j∈N (i)

ãji · xj

Using parameter matrix Θ ∈ Rdx×dh we can apply the filter on a different space

H = ÃXΘ hi = (ÃXΘ)i =
N∑
j=1

ãji · xjΘ hi =
∑
j∈N (i)

ãji · xjΘ

NOTE: We have local filters with parameters Θ shared among all nodes. Looks familiar?

8

Graph Convolution

Adding a nonlinear activation σ to the operation we
have just seen

H = ÃXΘ → H = σ
(
ÃXΘ

)
we obtain a nonlinear graph convolutional filter.

Since this operation is differentiable, we can learn Θ

with gradient-based optimization methods.

This enables us to build neural networks with
graph-like inputs, i.e., Graph Neural Networks (GNNs).

x1Θ

x2Θ x3Θ

x4Θ

ã12 ã13

ã14

9

Graph Convolution

Adding a nonlinear activation σ to the operation we
have just seen

H = ÃXΘ → H = σ
(
ÃXΘ

)
we obtain a nonlinear graph convolutional filter.

Since this operation is differentiable, we can learn Θ

with gradient-based optimization methods.

This enables us to build neural networks with
graph-like inputs, i.e., Graph Neural Networks (GNNs).

x1Θ

x2Θ x3Θ

x4Θ

ã12 ã13

ã14

9

Graph Convolution

Adding a nonlinear activation σ to the operation we
have just seen

H = ÃXΘ → H = σ
(
ÃXΘ

)
we obtain a nonlinear graph convolutional filter.

Since this operation is differentiable, we can learn Θ

with gradient-based optimization methods.

This enables us to build neural networks with
graph-like inputs, i.e., Graph Neural Networks (GNNs).

x1Θ

x2Θ x3Θ

x4Θ

ã12 ã13

ã14

9

Sequence of graph convolutions

What if we apply two graph convolutions in sequence?

H(1) = ÃXΘ(1)

H(2) = ÃH(1)Θ(2) = Ã2XΘ(1)Θ(2)

Let’s focus on the effect of Ã2X:

(Ã2X)i =
∑
j∈N (i)

ãji(ÃX)j =
∑
j∈N (i)

∑
k∈N (j)

ãji · ãkj · xk

The second convolution aggregates information from
the 2-hop neighbors, i.e., the neighbors’ neighbors.

K = 0

K = 1

K = 2

10

Sequence of graph convolutions

What if we apply two graph convolutions in sequence?

H(1) = ÃXΘ(1)

H(2) = ÃH(1)Θ(2) = Ã2XΘ(1)Θ(2)

Let’s focus on the effect of Ã2X:

(Ã2X)i =
∑
j∈N (i)

ãji(ÃX)j =
∑
j∈N (i)

∑
k∈N (j)

ãji · ãkj · xk

The second convolution aggregates information from
the 2-hop neighbors, i.e., the neighbors’ neighbors.

K = 0

K = 1

K = 2

10

Sequence of graph convolutions

What if we apply two graph convolutions in sequence?

H(1) = ÃXΘ(1)

H(2) = ÃH(1)Θ(2) = Ã2XΘ(1)Θ(2)

Let’s focus on the effect of Ã2X:

(Ã2X)i =
∑
j∈N (i)

ãji(ÃX)j =
∑
j∈N (i)

∑
k∈N (j)

ãji · ãkj · xk

The second convolution aggregates information from
the 2-hop neighbors, i.e., the neighbors’ neighbors.

K = 0

K = 1

K = 2

10

K-th-order filters

To aggregate information up to the K-th-order
neighborhood, we can either use

• polynomial filters

H(K) =
K∑

k=0

ÃkXΘ(k)

• a sequence of first-order-neighborhood filters

H(0) = X H(k) = ÃH(k−1)Θ(k)

...eventually with nonlinearities.

Θ(0)

Θ(1)

Θ(2)

11

K-th-order filters

To aggregate information up to the K-th-order
neighborhood, we can either use
• polynomial filters

H(K) =
K∑

k=0

ÃkXΘ(k)

• a sequence of first-order-neighborhood filters

H(0) = X H(k) = ÃH(k−1)Θ(k)

...eventually with nonlinearities.

Θ(0)

Θ(1)

Θ(2)

11

K-th-order filters

To aggregate information up to the K-th-order
neighborhood, we can either use
• polynomial filters

H(K) =
K∑

k=0

ÃkXΘ(k)

• a sequence of first-order-neighborhood filters

H(0) = X H(k) = ÃH(k−1)Θ(k)

...eventually with nonlinearities.

Θ(0)

Θ(1)

Θ(2)

11

K-th-order filters

To aggregate information up to the K-th-order
neighborhood, we can either use
• polynomial filters

H(K) =
K∑

k=0

ÃkXΘ(k)

• a sequence of first-order-neighborhood filters

H(0) = X H(k) = ÃH(k−1)Θ(k)

...eventually with nonlinearities.

Θ(0)

Θ(1)

Θ(2)

11

Graph convolutional layers

Examples of graph convolutional layers from the literature:

• GCN [2]: Ã = D−1/2(IN + A)D−1/2

• Diffusion Convolution [3]: Ã = D−1A

• GIN [4]: Ã = A+ (1+ ϵ) · IN

[2] T. N. Kipf et al., “Semi-supervised classification with graph convolutional networks,” 2016.
[3] Y. Li et al., “Diffusion convolutional recurrent neural network: Data-driven traffic forecasting,” 2017.
[4] K. Xu et al., “How powerful are graph neural networks?” 2019.

12

A more expressive framework

Graph convolutions based on GSOs are a powerful tool to learn graph filters:

• dependent only on the graph topology;

• localized in the root node’s neighborhood;
• shared among all nodes in the graph (i.e., applied equally everywhere).

What if we want to:

• take into account edge attributes?
• make the filter dependent also on the nodes’ features, not only on the topology?
• e.g., weigh the contribution of a neighbor based on the root node features?

13

A more expressive framework

Graph convolutions based on GSOs are a powerful tool to learn graph filters:

• dependent only on the graph topology;
• localized in the root node’s neighborhood;

• shared among all nodes in the graph (i.e., applied equally everywhere).

What if we want to:

• take into account edge attributes?
• make the filter dependent also on the nodes’ features, not only on the topology?
• e.g., weigh the contribution of a neighbor based on the root node features?

13

A more expressive framework

Graph convolutions based on GSOs are a powerful tool to learn graph filters:

• dependent only on the graph topology;
• localized in the root node’s neighborhood;
• shared among all nodes in the graph (i.e., applied equally everywhere).

What if we want to:

• take into account edge attributes?
• make the filter dependent also on the nodes’ features, not only on the topology?
• e.g., weigh the contribution of a neighbor based on the root node features?

13

A more expressive framework

Graph convolutions based on GSOs are a powerful tool to learn graph filters:

• dependent only on the graph topology;
• localized in the root node’s neighborhood;
• shared among all nodes in the graph (i.e., applied equally everywhere).

What if we want to:

• take into account edge attributes?

• make the filter dependent also on the nodes’ features, not only on the topology?
• e.g., weigh the contribution of a neighbor based on the root node features?

13

A more expressive framework

Graph convolutions based on GSOs are a powerful tool to learn graph filters:

• dependent only on the graph topology;
• localized in the root node’s neighborhood;
• shared among all nodes in the graph (i.e., applied equally everywhere).

What if we want to:

• take into account edge attributes?
• make the filter dependent also on the nodes’ features, not only on the topology?

• e.g., weigh the contribution of a neighbor based on the root node features?

13

A more expressive framework

Graph convolutions based on GSOs are a powerful tool to learn graph filters:

• dependent only on the graph topology;
• localized in the root node’s neighborhood;
• shared among all nodes in the graph (i.e., applied equally everywhere).

What if we want to:

• take into account edge attributes?
• make the filter dependent also on the nodes’ features, not only on the topology?
• e.g., weigh the contribution of a neighbor based on the root node features?

13

Message passing

Message-passing neural networks [5]

x1

x2 x3

x4

e21 e31

e41

Graph.

m1

m21 m31

m41

e21 e31

e41

Messages.

h1

m21 m31

m41

e21 e31

e41

Propagation.

[5] J. Gilmer et al., “Neural message passing for quantum chemistry,” 2017.

14

Message-passing neural networks [5]

x1

x2 x3

x4

e21 e31

e41

Graph.

m1

m21 m31

m41

e21 e31

e41

Messages.

h1

m21 m31

m41

e21 e31

e41

Propagation.

[5] J. Gilmer et al., “Neural message passing for quantum chemistry,” 2017.

14

Message-passing neural networks [5]

x1

x2 x3

x4

e21 e31

e41

Graph.

m1

m21 m31

m41

e21 e31

e41

Messages.

h1

m21 m31

m41

e21 e31

e41

Propagation.

[5] J. Gilmer et al., “Neural message passing for quantum chemistry,” 2017.

14

Message-passing neural networks

A general scheme for message-passing (MP) networks [5]:

hi = γ

(
xi,Aggr

j∈N (i)

{
ϕ
(
xi, xj, eji

)})

• ϕ message function, depends on xi, xj and possibly the
edge attribute eji;

• Aggr: permutation-invariant aggregation function (e.g.,
sum, mean, max);

• γ update function, to obtain new attributes from
aggregated messages and previous attributes.

Note: ϕ and γ are usually parametric (e.g., MLPs).

h1

m21 m31

m41

e21 e31

e41

[5] J. Gilmer et al., “Neural message passing for quantum chemistry,” 2017.

15

Message-passing neural networks

A general scheme for message-passing (MP) networks [5]:

hi = γ

(
xi,Aggr

j∈N (i)

{
ϕ
(
xi, xj, eji

)})

• ϕ message function, depends on xi, xj and possibly the
edge attribute eji;

• Aggr: permutation-invariant aggregation function (e.g.,
sum, mean, max);

• γ update function, to obtain new attributes from
aggregated messages and previous attributes.

Note: ϕ and γ are usually parametric (e.g., MLPs).

h1

m21 m31

m41

e21 e31

e41

[5] J. Gilmer et al., “Neural message passing for quantum chemistry,” 2017.

15

Message-passing neural networks

A general scheme for message-passing (MP) networks [5]:

hi = γ

(
xi,Aggr

j∈N (i)

{
ϕ
(
xi, xj, eji

)})

• ϕ message function, depends on xi, xj and possibly the
edge attribute eji;

• Aggr: permutation-invariant aggregation function (e.g.,
sum, mean, max);

• γ update function, to obtain new attributes from
aggregated messages and previous attributes.

Note: ϕ and γ are usually parametric (e.g., MLPs).

h1

m21 m31

m41

e21 e31

e41

[5] J. Gilmer et al., “Neural message passing for quantum chemistry,” 2017.

15

Message-passing neural networks

A general scheme for message-passing (MP) networks [5]:

hi = γ

(
xi,Aggr

j∈N (i)

{
ϕ
(
xi, xj, eji

)})

• ϕ message function, depends on xi, xj and possibly the
edge attribute eji;

• Aggr: permutation-invariant aggregation function (e.g.,
sum, mean, max);

• γ update function, to obtain new attributes from
aggregated messages and previous attributes.

Note: ϕ and γ are usually parametric (e.g., MLPs).

h1

m21 m31

m41

e21 e31

e41

[5] J. Gilmer et al., “Neural message passing for quantum chemistry,” 2017.

15

Message-passing neural networks

A general scheme for message-passing (MP) networks [5]:

hi = γ

(
xi,Aggr

j∈N (i)

{
ϕ
(
xi, xj, eji

)})

• ϕ message function, depends on xi, xj and possibly the
edge attribute eji;

• Aggr: permutation-invariant aggregation function (e.g.,
sum, mean, max);

• γ update function, to obtain new attributes from
aggregated messages and previous attributes.

Note: ϕ and γ are usually parametric (e.g., MLPs).

h1

m21 m31

m41

e21 e31

e41

[5] J. Gilmer et al., “Neural message passing for quantum chemistry,” 2017.

15

Isotropic vs. Anisotropic MP

The MP equation is the most general (and expressive) form of GNN, encompassing also
the convolutional graph filters discussed before.

E.g., H = σ
(
ÃXΘ

)
can be rewritten as:

hi = σ

 ∑
j∈N (i)

ajixjΘ


where:
• ϕ
(
xj
)
= ajixjΘ

• Aggr is the sum
• γ(·) = σ(·)

MP operations whose message function depends only on the sender node’s features are
called isotropic.

We call them anisotropic when also edge’s or receiver node’s features are exploited.

16

Isotropic vs. Anisotropic MP

The MP equation is the most general (and expressive) form of GNN, encompassing also
the convolutional graph filters discussed before.

E.g., H = σ
(
ÃXΘ

)
can be rewritten as:

hi = σ

 ∑
j∈N (i)

ajixjΘ


where:
• ϕ
(
xj
)
= ajixjΘ

• Aggr is the sum
• γ(·) = σ(·)

MP operations whose message function depends only on the sender node’s features are
called isotropic.

We call them anisotropic when also edge’s or receiver node’s features are exploited.

16

Isotropic vs. Anisotropic MP

The MP equation is the most general (and expressive) form of GNN, encompassing also
the convolutional graph filters discussed before.

E.g., H = σ
(
ÃXΘ

)
can be rewritten as:

hi = σ

 ∑
j∈N (i)

ajixjΘ


where:
• ϕ
(
xj
)
= ajixjΘ

• Aggr is the sum
• γ(·) = σ(·)

MP operations whose message function depends only on the sender node’s features are
called isotropic.

We call them anisotropic when also edge’s or receiver node’s features are exploited.

16

Isotropic vs. Anisotropic MP

The MP equation is the most general (and expressive) form of GNN, encompassing also
the convolutional graph filters discussed before.

E.g., H = σ
(
ÃXΘ

)
can be rewritten as:

hi = σ

 ∑
j∈N (i)

ajixjΘ


where:
• ϕ
(
xj
)
= ajixjΘ

• Aggr is the sum
• γ(·) = σ(·)

MP operations whose message function depends only on the sender node’s features are
called isotropic.

We call them anisotropic when also edge’s or receiver node’s features are exploited.

16

Graph attention network (GAT)

Graph attention networks [6] are an example of anisotropic MP.

1. Transform node features: x′i = xiΘ1, with Θ1 ∈ Rdx×dh .
2. Compute attention scores between neighbors:

2.1 Score: αji = σ
(
[x′i ∥ x′j]θ2

)
, with θ2 ∈ R2dh×1.

2.2 Normalize with Softmax: α̃ji =
exp (αji)∑

k∈N (i)
exp (αki)

3. Aggregate using attention coefficients as weights:

hi =
∑
j∈N (i)

α̃jix′j

x′1

x′2 x′3

x′4

α̃21 α̃31

α̃41

∥ indicates concatenation

[6] P. Velickovic et al., “Graph attention networks,” 2017.

17

Graph attention network (GAT)

Graph attention networks [6] are an example of anisotropic MP.

1. Transform node features: x′i = xiΘ1, with Θ1 ∈ Rdx×dh .

2. Compute attention scores between neighbors:

2.1 Score: αji = σ
(
[x′i ∥ x′j]θ2

)
, with θ2 ∈ R2dh×1.

2.2 Normalize with Softmax: α̃ji =
exp (αji)∑

k∈N (i)
exp (αki)

3. Aggregate using attention coefficients as weights:

hi =
∑
j∈N (i)

α̃jix′j

x′1

x′2 x′3

x′4

α̃21 α̃31

α̃41

∥ indicates concatenation

[6] P. Velickovic et al., “Graph attention networks,” 2017.

17

Graph attention network (GAT)

Graph attention networks [6] are an example of anisotropic MP.

1. Transform node features: x′i = xiΘ1, with Θ1 ∈ Rdx×dh .
2. Compute attention scores between neighbors:

2.1 Score: αji = σ
(
[x′i ∥ x′j]θ2

)
, with θ2 ∈ R2dh×1.

2.2 Normalize with Softmax: α̃ji =
exp (αji)∑

k∈N (i)
exp (αki)

3. Aggregate using attention coefficients as weights:

hi =
∑
j∈N (i)

α̃jix′j

x′1

x′2 x′3

x′4

α̃21 α̃31

α̃41

∥ indicates concatenation

[6] P. Velickovic et al., “Graph attention networks,” 2017.

17

Graph attention network (GAT)

Graph attention networks [6] are an example of anisotropic MP.

1. Transform node features: x′i = xiΘ1, with Θ1 ∈ Rdx×dh .
2. Compute attention scores between neighbors:

2.1 Score: αji = σ
(
[x′i ∥ x′j]θ2

)
, with θ2 ∈ R2dh×1.

2.2 Normalize with Softmax: α̃ji =
exp (αji)∑

k∈N (i)
exp (αki)

3. Aggregate using attention coefficients as weights:

hi =
∑
j∈N (i)

α̃jix′j

x′1

x′2 x′3

x′4

α̃21 α̃31

α̃41

∥ indicates concatenation

[6] P. Velickovic et al., “Graph attention networks,” 2017.

17

Graph attention network (GAT)

Graph attention networks [6] are an example of anisotropic MP.

1. Transform node features: x′i = xiΘ1, with Θ1 ∈ Rdx×dh .
2. Compute attention scores between neighbors:

2.1 Score: αji = σ
(
[x′i ∥ x′j]θ2

)
, with θ2 ∈ R2dh×1.

2.2 Normalize with Softmax: α̃ji =
exp (αji)∑

k∈N (i)
exp (αki)

3. Aggregate using attention coefficients as weights:

hi =
∑
j∈N (i)

α̃jix′j

x′1

x′2 x′3

x′4

α̃21 α̃31

α̃41

∥ indicates concatenation

[6] P. Velickovic et al., “Graph attention networks,” 2017.

17

Edge-conditioned convolution [7]

Key idea: incorporate edge attributes into the
messages.

Use a MLP ρ : Rde → Rdx×dh to generate weights:

Θji = ρ(eji)

Use the edge-dependent weights to compute
messages:

hi = xiΘi +
∑
j∈N (i)

xjΘji

m1

m21 m31

m41

e21 e31

e41

[7] M. Simonovsky et al., “Dynamic edge-conditioned filters in convolutional neural networks on graphs,” 2017.

18

Edge-conditioned convolution [7]

Key idea: incorporate edge attributes into the
messages.

Use a MLP ρ : Rde → Rdx×dh to generate weights:

Θji = ρ(eji)

Use the edge-dependent weights to compute
messages:

hi = xiΘi +
∑
j∈N (i)

xjΘji

m1

m21 m31

m41

e21 e31

e41

[7] M. Simonovsky et al., “Dynamic edge-conditioned filters in convolutional neural networks on graphs,” 2017.

18

Edge-conditioned convolution [7]

Key idea: incorporate edge attributes into the
messages.

Use a MLP ρ : Rde → Rdx×dh to generate weights:

Θji = ρ(eji)

Use the edge-dependent weights to compute
messages:

hi = xiΘi +
∑
j∈N (i)

xjΘji

m1

m21 m31

m41

e21 e31

e41

[7] M. Simonovsky et al., “Dynamic edge-conditioned filters in convolutional neural networks on graphs,” 2017.

18

The zoo of GNNs

GCNConv
Kipf & Welling

ChebConv
Defferrard et al.

GraphSageConv
Hamilton et al.

ARMAConv
Bianchi et al.

ECCConv
Simonovsky & Komodakis

GATConv
Velickovic et al.

GCSConv
Bianchi et al.

APPNPConv
Klicpera et al.

GINConv
Xu et al.

DiffusionConv
Li et al.

GatedGraphConv
Li et al.

AGNNConv
Thekumparampil et al.

TAGConv
Du et al.

CrystalConv
Xie & Grossman

EdgeConv
Wang et al.

MessagePassing
Gilmer et al.

19

A good recipe [8]

Architecture:
• Pre- and post-process node features using 2-layer MLPs;
• 4-6 message-passing steps.

Message passing at l-th layer:
• Message: ml

ji = PReLU
(
BatchNorm

(
hljΘl + bl

))
• Aggregation: sum, i.e., ml

i =
∑

j∈N (i)
ml
ji

• Update: hl+1i = hli || ml
i;

Quick test: is this MP operation anisotropic?

2-layer MLP

Message Passing

Message Passing

Message Passing

Message Passing

2-layer MLP

[8] J. You et al., “Design space for graph neural networks,” 2020.

20

A good recipe [8]

Architecture:
• Pre- and post-process node features using 2-layer MLPs;
• 4-6 message-passing steps.

Message passing at l-th layer:
• Message: ml

ji = PReLU
(
BatchNorm

(
hljΘl + bl

))
• Aggregation: sum, i.e., ml

i =
∑

j∈N (i)
ml
ji

• Update: hl+1i = hli || ml
i;

Quick test: is this MP operation anisotropic?

2-layer MLP

Message Passing

Message Passing

Message Passing

Message Passing

2-layer MLP

[8] J. You et al., “Design space for graph neural networks,” 2020.

20

A good recipe [8]

Architecture:
• Pre- and post-process node features using 2-layer MLPs;
• 4-6 message-passing steps.

Message passing at l-th layer:
• Message: ml

ji = PReLU
(
BatchNorm

(
hljΘl + bl

))
• Aggregation: sum, i.e., ml

i =
∑

j∈N (i)
ml
ji

• Update: hl+1i = hli || ml
i;

2-layer MLP

Message Passing

Message Passing

Message Passing

Message Passing

2-layer MLP

[8] J. You et al., “Design space for graph neural networks,” 2020.

20

How do we use this?

Node-level learning.
(e.g., social networks)

Graph-level learning.
(e.g., molecules)

21

A little warning

Graph convolutions act as low-pass filters, reducing the dissimilarity of neighbors’
features at every application.

l = 0 l = 1 l = 2

. . .

l = K

This phenomenon is reffered to as over-smoothing. Can you guess why it can be harmful?

22

A little warning

Graph convolutions act as low-pass filters, reducing the dissimilarity of neighbors’
features at every application.

l = 0 l = 1 l = 2

. . .

l = K
This phenomenon is reffered to as over-smoothing. Can you guess why it can be harmful?

22

Pooling on Graphs

Pooling in CNNs

23

Pooling in CNNs

23

Pooling in CNNs

23

Pooling in CNNs

23

Pooling in CNNs

23

Pooling in CNNs

23

Pooling in CNNs

23

Pooling in CNNs

23

Graph pooling by example

Strategy 1: aggregate same attributes (Candy Crush pooling).

24

Graph pooling by example

Strategy 2: aggregate cliques.

24

Graph pooling by example

Strategy 3: keep only some types/colors.

24

Three main questions [9]

1. How to identify groups of related nodes?
2. How to get new node attributes from the groups?
3. How to connect the new nodes?

[9] D. Grattarola et al., “Understanding pooling in graph neural networks,” 2022.

25

Step 1: Select

Selecting nodes

Example 1: partition.{ } { } { }

Example 2: cover (possible overlaps).{ } { } { }
Example 3: sparse.{ } { } { }

26

Selecting nodes

Example 1: partition.{ } { } { }
Example 2: cover (possible overlaps).{ } { } { }

Example 3: sparse.{ } { } { }

26

Selecting nodes

Example 1: partition.{ } { } { }
Example 2: cover (possible overlaps).{ } { } { }

Example 3: sparse.{ } { } { }

26

Selecting nodes

The selection stage computes K supernodes:

SEL : G 7→ S = {S1, . . . ,SK}.

Each supernode is a set of nodes (with
relative features) associated with a score:

Sk = {(xi, ski) | ski > 0}

{ } { } { }

S = ∈ RK×N

27

Spectral clustering [11]

The low-frequency eigenvectors of the
Laplacian naturally cluster the nodes.

5 10 15 20

u 1

Idea: run k-means clustering (or similar)
using the first few eigenvectors.

[10] J. Shi et al., “Normalized cuts and image segmentation,” 2000.
[11] U. Von Luxburg, “A tutorial on spectral clustering,” 2007.

28

Node decimation [13]

Alternative: use the highest-frequency
eigenvector to do something similar to a
regular subsampling.

5 10 15 20

u 1
9

[12] L. Palagi et al., “Computational approaches to max-cut,” 2012.
[13] F. M. Bianchi et al., Hierarchical Representation Learning in Graph Neural Networks with Node Decimation Pooling, 2019.

29

Some problems

Problems with spectral methods:
• Computing eigenvectors is expensive
(O(N3));

• They do not consider attributes.
But we get the general idea...

30

Step 2: Reduce

Reducing supernodes

The reduction stage aggregates the
supernodes in a permutation-invariant way:

RED : G,Sk 7→ x′k

Typical approach is to take a weighted sum
(weights given by the scores in the
supernodes):

X′ = SX (∈ RK×dx)

{ } { } { }

31

Step 3: Connect

Connecting supernodes

The connection function decides whether
two supernodes are connected (and, in case,
computes the associated attributes):

CON : G,Sk,Sl 7→ (a′kl, e′kl)

Typical approach is again to take a weighted
sum of edges between two supernodes:

A′ = SAS⊤ (∈ RK×K)

{ } { } { }

a′12 = 2 a′23 = 1

32

Select, Reduce, Connect [9]

Putting everything together:

S = {Sk}k=1:K = SEL(G);︸ ︷︷ ︸
Selection

X ′ = {RED(G,Sk)}k=1:K ;︸ ︷︷ ︸
Reduction

E ′ = {CON(G,Sk,Sl)}k,l=1:K ;︸ ︷︷ ︸
Connection

2

1

[9] D. Grattarola et al., “Understanding pooling in graph neural networks,” 2022.

33

Pooling methods

Pooling methods

A few ideas:

1. Graclus [14], approximately halves nodes:
1.1 select a (not merged) node i randomly;
1.2 merge i with (not merged) neighbor j such that argmax

j
aji

(
1

degi
+ 1

degj

)

2. Clique Pooling [15]: merge together cliques, i.e., fully-connected subgraphs.
3. LaPool [16]: select “leaders” that have highest local variation ‖LX‖ w.r.t. all their
neighbors. Create clusters by assigning nodes to nearest leader.

[14] I. S. Dhillon et al., “Weighted graph cuts without eigenvectors a multilevel approach,” 2007.
[15] E. Luzhnica et al., “Clique pooling for graph classification,” 2019.
[16] E. Noutahi et al., “Towards Interpretable Sparse Graph Representation Learning with Laplacian Pooling,” 2019.

34

Pooling methods

A few ideas:

1. Graclus [14], approximately halve nodes:
1.1 select a (not merged) node i randomly;
1.2 merge i with (not merged) neighbor j such that argmax

j
aji

(
1

degi
+ 1

degj

)
2. Clique Pooling [15]: merge together cliques, i.e., fully-connected subgraphs.

3. LaPool [16]: select “leaders” that have highest local variation ‖LX‖ w.r.t. all their
neighbors. Create clusters by assigning nodes to nearest leader.

[14] I. S. Dhillon et al., “Weighted graph cuts without eigenvectors a multilevel approach,” 2007.
[15] E. Luzhnica et al., “Clique pooling for graph classification,” 2019.
[16] E. Noutahi et al., “Towards Interpretable Sparse Graph Representation Learning with Laplacian Pooling,” 2019.

34

Pooling methods

A few ideas:

1. Graclus [14], approximately halve nodes:
1.1 select a (not merged) node i randomly;
1.2 merge i with (not merged) neighbor j such that argmax

j
aji

(
1

degi
+ 1

degj

)
2. Clique Pooling [15]: merge together cliques, i.e., fully-connected subgraphs.
3. LaPool [16]: select “leaders” that have highest local variation ‖LX‖ w.r.t. all their
neighbors. Create clusters by assigning nodes to nearest leader.

[14] I. S. Dhillon et al., “Weighted graph cuts without eigenvectors a multilevel approach,” 2007.
[15] E. Luzhnica et al., “Clique pooling for graph classification,” 2019.
[16] E. Noutahi et al., “Towards Interpretable Sparse Graph Representation Learning with Laplacian Pooling,” 2019.

34

Learning to pool

Key idea: learn to output S⊤ by giving node features X as input
to a neural network.
• DiffPool [17]: GNN for S⊤, regularize with “link prediction”
loss;

• MinCutPool [18]: MLP for S⊤, regularize with “minimum
cut” loss (same objective as spectral clustering);

• Deep Graph Mapper [19]: combine Mapper [20] and GCN
[2] to compute clusters.

ϕ(X) = S⊤ = ∈ RN×K

[17] R. Ying et al., “Hierarchical Graph Representation Learning withDifferentiable Pooling,” 2018.
[18] F. M. Bianchi et al., “Spectral Clustering with Graph Neural Networks for Graph Pooling,” 2020.
[19] C. Bodnar et al., “Deep Graph Mapper: Seeing Graphs through the Neural Lens,” 2020.

35

Learning to pool

Key idea: learn to output S⊤ by giving node features X as input
to a neural network.
• DiffPool [17]: GNN for S⊤, regularize with “link prediction”
loss;

• MinCutPool [18]: MLP for S⊤, regularize with “minimum
cut” loss (same objective as spectral clustering);

• Deep Graph Mapper [19]: combine Mapper [20] and GCN
[2] to compute clusters.

ϕ(X) = S⊤ = ∈ RN×K

[17] R. Ying et al., “Hierarchical Graph Representation Learning withDifferentiable Pooling,” 2018.
[18] F. M. Bianchi et al., “Spectral Clustering with Graph Neural Networks for Graph Pooling,” 2020.
[19] C. Bodnar et al., “Deep Graph Mapper: Seeing Graphs through the Neural Lens,” 2020.

35

Learning to pool

Key idea: learn to output S⊤ by giving node features X as input
to a neural network.
• DiffPool [17]: GNN for S⊤, regularize with “link prediction”
loss;

• MinCutPool [18]: MLP for S⊤, regularize with “minimum
cut” loss (same objective as spectral clustering);

• Deep Graph Mapper [19]: combine Mapper [20] and GCN
[2] to compute clusters.

ϕ(X) = S⊤ = ∈ RN×K

[17] R. Ying et al., “Hierarchical Graph Representation Learning withDifferentiable Pooling,” 2018.
[18] F. M. Bianchi et al., “Spectral Clustering with Graph Neural Networks for Graph Pooling,” 2020.
[19] C. Bodnar et al., “Deep Graph Mapper: Seeing Graphs through the Neural Lens,” 2020.

35

MinCut Pooling [18]

• Select: S⊤ = MLP(X)
• Reduce: X′ = SX
• Connect: A′ = SAS⊤

• MinCut loss: Lc = −
Tr(SAS⊤)
Tr(SDS⊤)

• Orthogonality loss:

Lo =
∥∥∥∥ SS⊤

‖SS⊤‖F
−

IK√
K

∥∥∥∥
F

�

� 
�

�
(�+1)

pool

�
(�)

MP MLP�
(�+1)

MP

MinCutPool

�pool

�
(�+1)

pool

� 
�

[18] F. M. Bianchi et al., “Spectral Clustering with Graph Neural Networks for Graph Pooling,” 2020.

36

Top-K methods

Problem: computing S with neural network
is likely to yield a very dense matrix.

Can we learn a sparse selection?

37

Top-K methods

X =

Features

ϕ(X) =

Scores Sorted

Top-K

38

Top-K methods

X =

Features

ϕ(X) =

Scores

Sorted

Top-K

38

Top-K methods

X =

Features

ϕ(X) =

Scores Sorted

Top-K

38

Top-K methods

X =

Features

ϕ(X) =

Scores Sorted

Top-K

38

Top-K methods

X =

Features

ϕ(X) =

Scores Sorted

Top-K

38

Top-K methods

Different ways of computing the selection indices :

• Select with a simple linear projection θ ∈ Rdx [21];
• Select with a GNN [22];
• Train the selection with a supervised objective (needs ground truth for which nodes
to keep) [23].

[21] H. Gao et al., “Graph U-Nets,” 2019.
[22] J. Lee et al., “Self-Attention Graph Pooling,” 2019.
[23] B. Knyazev et al., “Understanding attention in graph neural networks,” 2019.

39

Top-K methods

Reduce: X′ = Xi Connect: A′ = Ai,i

Problems:
• Top-k selection is non-differentiable.
Solved by gating (multiplying) the node attributes with
the scores.

• Graph is likely to be disconnected or simply cut off (like
in the image on the right).
Not really solvable...

Original

Top-K

40

Main properties of pooling operators

• Dense vs. Sparse: how many nodes are selected for the supernodes;

• Fixed vs. Adaptive: how many supernodes does the selection compute;
• Trainable vs. Non-trainable: learn to pool from data or not;

41

Main properties of pooling operators

• Dense vs. Sparse: how many nodes are selected for the supernodes;
• Fixed vs. Adaptive: how many supernodes does the selection compute;

• Trainable vs. Non-trainable: learn to pool from data or not;

41

Main properties of pooling operators

• Dense vs. Sparse: how many nodes are selected for the supernodes;
• Fixed vs. Adaptive: how many supernodes does the selection compute;
• Trainable vs. Non-trainable: learn to pool from data or not;

41

Global pooling

Global Pooling

In CNNs, after convolutions, we usually
flatten out the matrix representation to give
a vector as input to an MLP:

7
4
1

8
5
2

9
6
3

1 2 3 4 5 6 7 8 9

We may want to do the same operation on
graphs, e.g., for graph classification tasks.

This operation is called global pooling.

Global pooling must be invariant to
permutations of the nodes:

42

Global Pooling

In CNNs, after convolutions, we usually
flatten out the matrix representation to give
a vector as input to an MLP:

7
4
1

8
5
2

9
6
3

1 2 3 4 5 6 7 8 9

We may want to do the same operation on
graphs, e.g., for graph classification tasks.

This operation is called global pooling.

Global pooling must be invariant to
permutations of the nodes:

42

Global Pooling

In CNNs, after convolutions, we usually
flatten out the matrix representation to give
a vector as input to an MLP:

7
4
1

8
5
2

9
6
3

1 2 3 4 5 6 7 8 9

We may want to do the same operation on
graphs, e.g., for graph classification tasks.

This operation is called global pooling.

Global pooling must be invariant to
permutations of the nodes:

42

Global Pooling

Once again, there are many ways to do this:

• Sum, average, product, max;

• Weighted sum with attention [24];
• Sum and then apply a neural network [25];

[24] Y. Li et al., “Gated graph sequence neural networks,” 2015.
[25] N. Navarin et al., “Universal readout for graph convolutional neural networks,” 2019.

43

Global Pooling

Once again, there are many ways to do this:

• Sum, average, product, max;
• Weighted sum with attention [24];

• Sum and then apply a neural network [25];

[24] Y. Li et al., “Gated graph sequence neural networks,” 2015.
[25] N. Navarin et al., “Universal readout for graph convolutional neural networks,” 2019.

43

Global Pooling

Once again, there are many ways to do this:

• Sum, average, product, max;
• Weighted sum with attention [24];
• Sum and then apply a neural network [25];

[24] Y. Li et al., “Gated graph sequence neural networks,” 2015.
[25] N. Navarin et al., “Universal readout for graph convolutional neural networks,” 2019.

43

Coding GNNs

GNNs libraries

Spektral is a Python library based on Keras
providing a simple but flexible framework
for creating graph neural networks (GNNs).

GitHub: danielegrattarola/spektral
Website: graphneural.network

PyG (PyTorch Geometric) is a library
built upon PyTorch to easily write and
train Graph Neural Networks (GNNs).

GitHub: pyg-team/pytorch_geometric
Website: pyg.org

44

https://github.com/danielegrattarola/spektral
https://graphneural.network
https://github.com/pyg-team/pytorch_geometric
https://pyg.org

Demo

In this demo, we will use PyG to address the node classification task with GNNs.

Introduction to Graph Neural Networks
Open in ColabOpen in Colab

45

https://colab.research.google.com/drive/1wY3XKHc36yO18-FcCHkGx-gfJXEs2m0U?usp=sharing
https://colab.research.google.com/drive/1wY3XKHc36yO18-FcCHkGx-gfJXEs2m0U?usp=sharing

References i

[1] A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs,” IEEE
transactions on signal processing, vol. 61, no. 7, pp. 1644–1656, 2013.

[2] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” in International Conference on Learning Representations (ICLR), 2016.

[3] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting,” arXiv preprint arXiv:1707.01926, 2017.

[4] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?”
In International Conference on Learning Representations (ICLR), 2019.

[5] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message
passing for quantum chemistry,” arXiv preprint arXiv:1704.01212, 2017.

46

References ii

[6] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[7] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters in
convolutional neural networks on graphs,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

[8] J. You, R. Ying, and J. Leskovec, “Design space for graph neural networks,” arXiv
preprint arXiv:2011.08843, 2020.

[9] D. Grattarola, D. Zambon, F. M. Bianchi, and C. Alippi, “Understanding pooling in
graph neural networks,” IEEE Transactions on Neural Networks and Learning
Systems, 2022.

[10] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions on
pattern analysis and machine intelligence, vol. 22, no. 8, pp. 888–905, 2000.

47

References iv

[15] E. Luzhnica, B. Day, and P. Lio, “Clique pooling for graph classification,” International
Conference of Learning Representations (ICLR) – Representation Learning on Graphs
and Manifolds workshop, 2019.

[16] E. Noutahi, D. Beani, J. Horwood, and P. Tossou, “Towards interpretable sparse graph
representation learning with laplacian pooling,” arXiv preprint arXiv:1905.11577, 2019.

[17] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec, “Hierarchical graph
representation learning withdifferentiable pooling,” arXiv preprint arXiv:1806.08804,
2018.

[18] F. M. Bianchi, D. Grattarola, and C. Alippi, “Spectral clustering with graph neural
networks for graph pooling,” in Proceedings of the 37th international conference on
Machine learning, ACM, 2020.

49

References v

[19] C. Bodnar, C. Cangea, and P. Liò, “Deep graph mapper: Seeing graphs through the
neural lens,” arXiv preprint arXiv:2002.03864, 2020.

[20] G. Singh, F. Mémoli, and G. E. Carlsson, “Topological methods for the analysis of high
dimensional data sets and 3d object recognition.,” in SPBG, 2007, pp. 91–100.

[21] H. Gao and S. Ji, “Graph u-nets,” CoRR, vol. abs/1905.05178, 2019. arXiv: 1905.05178.
[Online]. Available: http://arxiv.org/abs/1905.05178.

[22] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” CoRR, vol. abs/1904.08082,
2019. arXiv: 1904.08082. [Online]. Available:
http://arxiv.org/abs/1904.08082.

[23] B. Knyazev, G. W. Taylor, and M. R. Amer, “Understanding attention in graph neural
networks,” CoRR, vol. abs/1905.02850, 2019. arXiv: 1905.02850. [Online]. Available:
http://arxiv.org/abs/1905.02850.

50

https://arxiv.org/abs/1905.05178
http://arxiv.org/abs/1905.05178
https://arxiv.org/abs/1904.08082
http://arxiv.org/abs/1904.08082
https://arxiv.org/abs/1905.02850
http://arxiv.org/abs/1905.02850

References vi

[24] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence neural
networks,” arXiv preprint arXiv:1511.05493, 2015.

[25] N. Navarin, D. Van Tran, and A. Sperduti, “Universal readout for graph convolutional
neural networks,” in 2019 International Joint Conference on Neural Networks (IJCNN),
IEEE, 2019, pp. 1–7.

[26] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally
connected networks on graphs,” arXiv preprint arXiv:1312.6203, 2013.

[27] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on
graphs with fast localized spectral filtering,” in Advances in Neural Information
Processing Systems, 2016, pp. 3844–3852.

51

Spatiotemporal Graph Neural
Networks

What we are going to see in this lecture

1. Graphs and time dimension

– Examples

– Taxonomy of temporal graph signals

2. Spatiotemporal graph signals

– Sensor networks

– Spatiotemporal forecasting

3. Spatiotemporal GNNs

– Spatiotemporal message passing

– Design paradigms

4. Challenges

– Missing data imputation

– Virtual sensing

– Latent graph inference

5. Coding Spatiotemporal GNNs

– tsl: a PyTorch library for

spatiotemporal data processing

1

Graphs and the time dimension

Graphs and time

We saw how attributed graphs are effective in modeling relational information and in

accounting for the structure of many physical systems.

However:

• Interactions might happen over time.

• (Cyber-)physical systems are often made of sensor networks that acquire spatiotemporal

data streams.

2

Examples

• Interaction networks

– Social networks

– Recommender systems

• Sensor networks

– Traffic networks

– Smart grids

3

How to model such systems?

Taxonomy of temporal graph signals

There are several settings in which time comes into play when considering graph data.

Graph streams

Temporal networks Spatiotemporal graph signals

Image credits: Daniele Zambon.

5

Graph streams

We start from the most general setting.

• Graphs are sampled from a stochastic process Gt ∼ P.

• Nodes are not identified. → No correspondence between nodes at different time steps.

• Arbitrary changes in topology.

• Difficult to track changes, defining statistics is not trivial.

[1] D. Zambon, “Anomaly and Change Detection in Sequences of Graphs”, 2022.

6

Temporal networks

We can look at interactions that happen over time as sequences of relational events.

• Temporal networks are used to model systems where relationships and node attributes

evolve over time.

• Event-based paradigm: target data are sequences of interactions among nodes.

• Powerful paradigm to model social/interaction networks and build recommender systems.

[2] S. M. Kazemi et al., “Representation learning for dynamic graphs: A survey”, 2020.

7

Spatiotemporal graph signals

Spatiotemporal graphs capture the setting typical of sensor networks.

• An approach to model multivariate time series

coming from multiple sources.

• Each node (sensor) is associated with a time series

(possibly with multiple channels).

• Edges describe functional dependencies among

sensors.

– E.g.: causality, physical constraints, etc.

• The underlying graph, i.e., the sensors and their

relations, can change over time.

We will focus on this setting

8

Spatiotemporal graph signals

Sensor networks

We refer to Sensor Networks as systems where

• A set of nodes (sensors) collects observations with regular frequency.

• Each node is identified (allowing us to talk about time series).

• Nodes constitute what we refer to as the spatial dimension.

• Sensors are related according to some measure of similarity.

Examples: traffic networks, air quality monitoring systems, smart grids, etc.

We model a set of time series coming from a sensor network as a sequence of graph signals.

[3] A. Cini et al., “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, 2023.

9

Graph signal

We consider a graph signal at time step t as a tuple Gt = ⟨At ,Xt ,Ut ,Et⟩ where

• At ∈ RNt×Nt is a weighted adjacency matrix, with Nt being the number of nodes;

• Xt ∈ RNt×dx is the node-attribute matrix;

– x i
t (the i-th row of Xt) is the dx -dimensional attribute vector associated with the i-th node;

• Ut ∈ RNt×du are exogenous variables (e.g., weather forecasts, datetime information);

• Et ∈ REt×de is an edge-attribute matrix, with Et being the number of edges;

We use the notation Xt:t+T to indicate the sequence of matrices {Xt , . . . ,Xt+T}.

[3] A. Cini et al., “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, 2023.

10

Spatiotemporal graph signal

We call spatiotemporal graph signal the sequence of graph signals Gt:t+T = {Gt , . . . ,Gt+T}
modeling a multivariate time series Xt:t+T with covariates Ut:t+T and additional relational

information At:t+T and Et:t+T .

We focus on settings where the graph topology is constant over time, i.e., At = A and Nt = N.

t

S
en
so
rs

Xt:t+T A Gt:t+T

11

The role of A

Let us stop and think about the meaning of A.

• In spatiotemporal graphs, we can interpret the adjacency matrix as representing mutual

constraints on the time evolution of connected time series.

• We might consider edges as functional dependencies among observed values at different

time steps.

From this perspective, one could also look at spatiotemporal graph processing as a

regularization of standard neural time series processing methods.

Processing these data with a fully-connected net would require much more parameters.

– Think of convolutional neural networks processing subsequent frames in a video.

→ Making use of spatial inductive biases is critical!

12

Spatiotemporal forecasting

Viewing spatiotemporal graphs as time series with relational information enables their adoption

in sequence-processing tasks (e.g., forecasting and imputation).

Node-level spatiotemporal forecasting

Given a window W of past observations, the node-level spatiotemporal forecasting

problem consists in predicting the next H observations at each sensor:

x i
t:t+H ∼ p(x i

t:t+H |Gt−W :t) ∀i = 1, . . . ,Nt

For simplicity, we consider only point forecasts, e.g., we estimate x̂ i
t:t+H s.t.

x̂ i
t:t+H ≈ E

[
p(x i

t:t+H |Gt−W :t)
]

13

Assumptions

Since we are dealing with time series we have to make some assumptions on the underlying

data-generating process.

• We assume that the underlying process is stationary.

→ Model parameters are time independent.

• We also assume the graph to be homogeneous.

→ All sensors are of the same type.

– This hypothesis can be easily relaxed.

• We assume to have a known graph.

– We will see how to obtain a graph when it is not given in the second part.

14

Spatiotemporal

Graph Neural Networks

Learning from Time and Space

We consider families of parametric models fθ for node-level forecasting:

x̂ i
t:t+H = fθ(Gt−W :t).

More precisely, we focus on those families where fθ is a neural network.

We now know how to use neural networks for processing:

• the temporal dimension, with RNNs, TCNs, and Transformers;

• the spatial dimension, with CNNs and GNNs.

What about processing the temporal and spatial dimensions jointly?

15

Spatiotemporal Graph Neural Networks

We call Spatiotemporal Graph Neural Network (STGNN) a neural network exploiting both

temporal and spatial relations of the input spatiotemporal graph signals.

Xt−W :t : A: STGNN X̂t:t+H

t

We consider families of models that exploit message passing to process the spatial dimension,

by leveraging on some graph shift operator Ã = f (A).

16

Spatiotemporal message passing

A general scheme for spatiotemporal message-passing networks:

z i
t−W :t = γ

(
x i
t−W :t , Aggr

j∈N (i)

{
ϕ
(
x i
t−W :t , x

j
t−W :t , e

ij
t−W :t

)})

We already saw this:

• ϕ is the message function.

• Aggr is the aggregation function.

• γ is the update function.

The difference here is that instead of vectors we have sequences associated with node features.

→ We must use operators that work on sequences!

[3] A. Cini et al., “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, 2023.

17

Design paradigms for STGNNs

There exist different design paradigms on how to integrate temporal and spatial processing in a

single architecture:

• Time-then-Space

Embed each time series in a vector, which is then propagated over the graph.

• Space-then-Time

Propagate nodes features at first and then process the resulting time series.

• Time-and-Space

Temporal and spatial processing are integrated inside the same architecture’s module.

• Product graph

The sequence of graphs is transformed into a single graph, then processed with a GNN.

18

Time-then-Space

A straightforward approach to process spatiotemporal graphs is simply to:

1. Embed each node-level time series in a vector.

2. Use (a stack of) any of the graph convolutional layers we have seen so far.

Xt−W :t

SeqEncoder
SeqEncoder
SeqEncoder
SeqEncoder

(X ′
t ,A)

GNN
GNN
GNN
GNN

X̂t:t+H

19

Space-then-Time

Or conversely, we can switch the two processing steps:

1. Propagate nodes features using (a stack of) any graph convolutional layers.

2. Process updated node-level time series with any sequence-processing architecture.

Gt−W :t

GNN
GNN
GNN
GNN

X ′
t−W :t

SeqEncoder
SeqEncoder
SeqEncoder
SeqEncoder

X̂t:t+H

20

Pros & Cons

Pros: + Very simple paradigm, easy and efficient to implement.

+ We can reuse operators we already know.

Cons: – Do not exploit space-time dependencies (if needed).

– Time-then-Space models struggle to handle changes in topology within the

input window.

21

Time-and-Space

The idea is to use graph convolutional layers to implement (part of) neural operators for

sequential data...

...or, conversely, implement message-passing networks by using temporal operators.

We look at 2 different strategies:

• Interleaved spatial and temporal convolutional filters.

• Graph-based recurrent neural networks.

22

Spatiotemporal Graph Convolutional Networks (i)

We can build deep spatiotemporal convolutional neural networks by alternating spatial and

temporal convolutional filters.

The main idea:

• Compute intermediate representations by using a node-wise temporal convolutional layer:

x ′i
t−W :t = ξ

(
Θ1 ⋆τ x i

t−w :t

)
where ⋆τ indicates the temporal convolution operator and ξ is an activation function.

• Then, compute the updated representation by using a time-wise graph convolution:

Zt = σ
(
ÃtX ′

tΘ2

)

[4] B. Yu et al., “Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting”,

2018.

23

Spatiotemporal Graph Convolutional Networks (ii)

Putting it all together (with a slight abuse of notation) we get

Zt−W :t = σ
(
Ãtξ

(
Θ1 ⋆τ Xt−W :t

)
Θ2

)
Stacking a sequence of layers, we increase both temporal and spatial receptive fields.

Clearly one can combine any flavor of graph and temporal convolutions to incorporate

exogenous variables, edge attributes, and so on.

It is also possible to substitute convolutional filters with self-attention [5].

[5] C. Zheng et al., “Gman: A graph multi-attention network for traffic prediction”, 2020.

24

Example: Temporal Graph Convolution

Using the spatiotemporal message-passing framework, we can write a temporal graph

convolution as

z i
t−W :t = σ

(
Θ1 ⋆τ

[
x i
t−W :t

∣∣∣∣∣
∣∣∣∣∣ Aggrj∈N (i)

(
Θ2 ⋆τ

[
x i
t−W :t ||x j

t−W :t ||e
ij
t−W :t

])])
,

or, more simply,

z i
t−W :t = TCN1

(
x i
t−W :t , Aggr

j∈N (i)

TCN2

(
x i
t−W :t , x

j
t−W :t , e

ij
t−W :t

))
.

25

Other examples

Figure 1: STGCN [4] Figure 2: Graph Wavenet [6]

[4] B. Yu et al., “Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting”,

2018.
[6] Z. Wu et al., “Graph wavenet for deep spatial-temporal graph modeling”, 2019.

26

Graph Convolutional Recurrent Neural Networks (i)

Let us now consider a standard GRU [7] cell.

r it = σ
(
Θr

[
x i
t ||hi

t−1

]
+ br

)
(1)

u i
t = σ

(
Θu

[
x i
t ||hi

t−1

]
+ bu

)
(2)

c i
t = tanh

(
Θc

[
x i
t ||r it ⊙ hi

t−1

]
+ bc

)
(3)

hi
t =

(
1− u i

t

)
⊙ c i

t + u i
t ⊙ hi

t−1 (4)

Note that here time series would be processed independently for each node (or alternatively

as a single multivariate TS).

Any idea on how to integrate graph convolutions?

[7] J. Chung et al., “Empirical evaluation of gated recurrent neural networks on sequence modeling”, 2014.

27

Graph Convolutional Recurrent Neural Networks (ii)

We simply implement the gates by using graph convolutions:

Rt = σ
(
Ãt [Xt ||Ht−1]Θr + br

)
(5)

Ut = σ
(
Ãt [Xt ||Ht−1]Θu + bu

)
(6)

Ct = tanh
(
Ãt [Xt ||Rt ⊙ Ht−1]Θc + bc

)
(7)

Ht = (1− Ut)⊙ Ct + Ut ⊙ Ht−1 (8)

Introduced in [8] and later popularized in the traffic forecasting context [9].

[8] Y. Seo et al., “Structured sequence modeling with graph convolutional recurrent networks”, 2018.
[9] Y. Li et al., “Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting”, 2018.

28

Graph Convolutional Recurrent Neural Networks (iii)

Or, if you prefer a different – more general – notation:

Rt = σ (GNNr (Gt ,Ht−1)) (9)

Ut = σ (GNNu (Gt ,Ht−1)) (10)

Ct = tanh (GNNc (Gt ,Rt ⊙ Ht−1)) (11)

Ht = (1− Ut)⊙ Ct + Ut ⊙ Ht−1 (12)

Again, the gates can be implemented by using any GNN, a popular choice in the literature is

diffusion convolution [9], where Ãt = D−1At (random-walk matrix). For directed graphs:

Zt =
K∑

k=0

(
D−1

t,outAt

)k XtΘ
k
1 +

(
D−1

t,inA
⊤
t

)k
XtΘ

k
2 (13)

[9] Y. Li et al., “Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting”, 2018.

29

Product graph

Another possibility is to consider the sequence of spatiotemporal graph signals Gt−W :t as a

single graph signal St over a new spatiotemporal graph.

This graph, called product graph, is a combination of the temporal and spatial graphs.

· · ·
t −W t − 2 t − 1

Temporal graph: Spatial graph:

We can process the resulting product graph St with a graph neural network.

How can we build such a graph?

30

Product graph: combining rules

• Cartesian product graph

Spatial graphs are kept and each node is connected to itself in the previous time instant.

• Kronecker product graph

Each node is connected only to its neighbors in the previous time instant.

31

Product graph models

Of course, spatial and temporal edges can (and should) be treated differently in the

processing.

A possibility is to represent the product graph as a heterogeneous graph, assigning a different

class to spatial and temporal edges.

Some approaches in the literature process spatiotemporal data in this fashion, e.g. [10]:

ST-GCNs

Pose
Estimation

...

Input Video

Action
Classification

Class Score

Running

[10] S. Yan et al., “Spatial temporal graph convolutional networks for skeleton-based action recognition”, 2018.

32

Challenges

What if ...?

STGNNs are a powerful tool to process a set of time series with graph-side information.

However, we are implicitly assuming that:

• input data are tabular, i.e., we have a (valid) value for each node and time step;

• the underlying graph is given.

What if one of these assumptions does not hold?

33

The problem of missing data

So far, we assumed to deal with complete sequences, i.e., to have valid observations

associated with each node (sensor) and time step.

However, in real-world sensor networks this is often not the case.

Collected time series are affected by missing data due to faults of different nature (e.g.,

readout failures or communication flaws).

If we wish to use any of the methods presented before, we need a way to impute, i.e.,

reconstruct, missing observations.

34

Multivariate time series imputation

The problem of filling missing values in a (multivariate) sequence of data is often referred to as

multivariate time series imputation (MTSI).

MTSI

time

channels channels

time

Let Xt:t+T = {Xt , . . . ,Xt+T} be a multivariate time series with missing values. We group all

valid observations into set Xt:t+T = {x i
t | x i

t ∈ Xt:t+T , x i
t is valid}. Then, we want to estimate

the missing observations, i.e.,

x i
t ∼ p(x i

t | Xt:t+T) ∀i , t such that x i
t ̸∈ Xt:t+T

35

MTSI methods

In principle, any forecasting method can be used for imputation, but we would not expolit

future observations we have.

The common deep learning approach consists in using autoregressive models for sequential

data (e.g., RNNs, TCNs).

Drawbacks:

• relational information (often strong in sensor networks) not taken into account;

• hard to capture nonlinear space-time dependencies.

36

Spatiotemporal graph imputation

Representing the input multivariate time series as a spatiotemporal graph signal, we can treat

the MTSI problem as a spatiotemporal graph imputation (STGI) problem.

STGI

We embed relational constraints – besides temporal ones – explicitly into the data processing:

x i
t ∼ p(x i

t | Xt:t+T)

MTSI

7→ x i
t ∼ p(x i

t | Xt:t+T ,At:t+T)

STGI

37

Spatiotemporal imputation methods

There are several methods that consider spatial information during processing (e.g., [11]).

However:

– Most of them account only for linear dependencies...

– ...or require prior physical knowledge on the processes involved.

– Often flexibility is limited.

Graph-based methods – in particular, Graph Deep Learning – are appealing in this context:

+ High flexibility, given by working with graphs.

– Designing models that exploit all the available – useful – information is not trivial.

[11] X. Yi et al., “ST-MVL: Filling Missing Values in Geo-sensory Time Series Data”, 2016.

38

Graph Recurrent Imputation Network (GRIN)

GRIN is a graph-based, bidirectional, recurrent neural network which aims to reconstruct the

input sequence by leveraging on both the temporal and spatial dimensions, jointly.

M
LP

1st STAGE
IMPUTATION

Time

SPATIAL DECODINGSPATIO-TEMP. ENCODING

2nd STAGE
IMPUTATION

1st STAGE
IMPUTATION

Time

SPATIAL DECODINGSPATIO-TEMP. ENCODING

2nd STAGE
IMPUTATION

1st stage imputationImputed valueMissing valueValid value 2nd stage imputation

[12] A. Cini et al., “Filling the G ap s: Multivariate Time Series Imputation by Graph Neural Networks”, 2022.
39

Graph Recurrent Imputation Network (GRIN)

1 Feed a recurrent GNN with Ĝ(2)
t+τ−1 and obtain representation Ht+τ−1.

2 Impute missing features as one-step-ahead predictions from Ht+τ−1. 7→ Ĝ(1)
t+τ

M
LP

1st STAGE
IMPUTATION

Time

SPATIAL DECODINGSPATIO-TEMP. ENCODING

2nd STAGE
IMPUTATION

1st STAGE
IMPUTATION

Time

SPATIAL DECODINGSPATIO-TEMP. ENCODING

2nd STAGE
IMPUTATION

1st stage imputationImputed valueMissing valueValid value 2nd stage imputation

40

Graph Recurrent Imputation Network (GRIN)

3 Exploit relationships between nodes at time t + τ through a GNN and obtain St+τ .

4 Refine imputations using St+τ . 7→ Ĝ(2)
t+τ

M
LP

1st STAGE
IMPUTATION

Time

SPATIAL DECODINGSPATIO-TEMP. ENCODING

2nd STAGE
IMPUTATION

1st STAGE
IMPUTATION

Time

SPATIAL DECODINGSPATIO-TEMP. ENCODING

2nd STAGE
IMPUTATION

1st stage imputationImputed valueMissing valueValid value 2nd stage imputation

41

Graph Recurrent Imputation Network (GRIN)

The 2nd stage imputation Ĝ(2)
t+τ is then fed back to the recurrent GNN to update the state,

obtaining representation Ht+τ .

M
LP

1st STAGE
IMPUTATION

Time

SPATIAL DECODINGSPATIO-TEMP. ENCODING

2nd STAGE
IMPUTATION

1st STAGE
IMPUTATION

Time

SPATIAL DECODINGSPATIO-TEMP. ENCODING

2nd STAGE
IMPUTATION

1st stage imputationImputed valueMissing valueValid value 2nd stage imputation

42

Graph Recurrent Imputation Network (GRIN)

Obtain final imputations by combining (with an MLP) the representations extracted by

processing the sequence in both forward and backward directions.

M
LP

1st STAGE
IMPUTATION

Time

SPATIAL DECODINGSPATIO-TEMP. ENCODING

2nd STAGE
IMPUTATION

1st STAGE
IMPUTATION

Time

SPATIAL DECODINGSPATIO-TEMP. ENCODING

2nd STAGE
IMPUTATION

1st stage imputationImputed valueMissing valueValid value 2nd stage imputation

43

Beyond imputation

Graph-based imputation methods estimates missing values at an existing node by using

available information at neighboring nodes.

Thus, we are interested in estimating missing values in sequences for which we have some

observations (at least).

Question

Can we use the same approach to infer observations of virtual sensors, i.e., fictitious nodes not

associated with an existing sensor?

This problem is also referred to as kriging.

44

Virtual sensing

Idea

Simulate the presence of a sensor by adding a node with no data, then let the model infer the

corresponding time series.

Clearly, several assumptions are needed

• high-degree of homogeneity of sensors,

• capability to reconstruct from

observations at neighboring sensors,

• and many more.

100

200

PM
2.

5
(µ

g/
m

3)

Truth GRIN

Jun−19 12 : 00 Jun−20 12 : 00
2014−Jun−20

50

100

150

PM
2.

5
(µ

g/
m

3)

no
.1

01
4

no
.1

03
1

45

How to obtain A

At the beginning, we made the assumption that the underlying graph A is given.

However, in most cases we do not know it or it is not optimal for spatial processing.

In these cases, we want to obtain a new graph somehow, e.g., by using the data we have.

t

S
en
so
rs

Graph extraction

A

46

Time-series similarity measures

A simple approach consists in computing pairwise similarity scores for each node pairs.

In principle, any time-series similarity measure can be used, e.g.:

• Pearson’s correlation

rji =

∑T
k=0

(
x j
t+k − x j

) (
x i
t+k − x i

)√∑T
k=0

(
x j
t+k − x j

)2∑T
k=0

(
x i
t+k − x i

)2
• Granger causality

Test the hypothesis that adding node j as regressor into model x̂ i
t:t+H = f (x i

t−W :t), i.e.,

x̂ i
t:t+H = g(x i

t−W :t , x
j
t−W :t), increases forecasting accuracy.

47

Latent graph inference

More advanced methods propose instead to learn the graph used to propagate information

end-to-end with the model’s parameters.

This problem is referred to as graph learning or latent graph inference.

We consider two different approaches:

• learning an adjacency matrix Âθ ∈ RN×N ;

• learning the probability distribution pθ generating Â.

An orthogonal classification can be made on whether the obtained Â is dense or sparse.

48

Factorization methods

Several approaches propose to factorize the target adjacency matrix Â into two matrices:

• the sender nodes embeddings S ∈ RN×da ;

• the receiver nodes embeddings R ∈ RN×da .

These matrices can be learned as free parameters or be the outcome of a complex model.

The graph is then obtained as

Â = σ
(
RS⊤) .

Drawbacks:

A score is computed for every pair of nodes (O(N2)), leading also to very dense graphs!

[6] Z. Wu et al., “Graph wavenet for deep spatial-temporal graph modeling”, 2019.

49

Probabilistic methods

In this context, probabilistic methods aim at learning a parametric distribution pθ such that

argminEÂ∼pθ

[
Loss

(
X̂t:t+H ,Xt:t+H

)]
.

We can use the method we’ve just seen to model the distribution parameters instead, i.e.,

Â ∼ pθ = Bernoulli
(
σ
(
RS⊤)) .

This enables sparsification of otherwise dense learned adjacency matrices.

Drawbacks:

Estimating the gradient w.r.t the distributional parameters is challenging.

50

Gradient estimation

A possible solution is to reparametrize Â ∼ pθ as Â = g (ε, θ), decoupling parameters θ from

the random component ε.

While being effective and easy to implement, reparametrization tricks of this kind usually

lead to O(N2) complexity during back-propagation, even for sparse Â.

Leveraging on score-function (SF) gradient estimators, instead, allows us to maintain the

advantages of sparse sampled graphs while leading to accuracy improvements [13].

[13] A. Cini et al., “Sparse Graph Learning for Spatiotemporal Time Series”, 2022.
[14] T. Kipf et al., “Neural relational inference for interacting systems”, 2018.

51

Coding Spatiotemporal GNNs

tsl: PyTorch Spatiotemporal Library

tsl (Torch Spatiotemporal) is a python library built upon PyTorch and

PyG to accelerate research on neural spatiotemporal data processing

methods, with a focus on Graph Neural Networks.

Spatiotemporal Graph Neural Networks with tsl

Open in ColabOpen in Colab

52

https://torch-spatiotemporal.readthedocs.io/
https://pytorch.org/
https://pytorch-geometric.readthedocs.io/en/latest/
https://colab.research.google.com/drive/1J8xOUzjtBmFuxbNTKsRPdLWkvQWgeMEO?usp=sharing
https://colab.research.google.com/drive/1J8xOUzjtBmFuxbNTKsRPdLWkvQWgeMEO?usp=sharing

Summary

In this lecture, we saw several methods to deal with inference problems on sets of time series

by exploiting relational inductive biases.

Some takeaway points:

• In processing spatiotemporal data you have to deal with several subtleties to build a good

model.

• Graph deep learning models are very flexible and can be extended to work in several

different setting.

– Even if it is not always trivial.

• When spatial dependencies exist use them, they will help a lot!

53

Questions?

53

References i

[1] D. Zambon, “Anomaly and change detection in sequences of graphs,” Ph.D. dissertation,

Università della Svizzera italiana, 2022.

[2] S. M. Kazemi, R. Goel, K. Jain, et al., “Representation learning for dynamic graphs: A

survey,” The Journal of Machine Learning Research, vol. 21, no. 1, pp. 2648–2720, 2020.

[3] A. Cini, I. Marisca, D. Zambon, and C. Alippi, “Taming local effects in graph-based

spatiotemporal forecasting,” arXiv preprint arXiv:2302.04071, 2023.

[4] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional networks: A deep

learning framework for traffic forecasting,” in Proceedings of the 27th International Joint

Conference on Artificial Intelligence, 2018, pp. 3634–3640.

[5] C. Zheng, X. Fan, C. Wang, and J. Qi, “Gman: A graph multi-attention network for

traffic prediction,” in Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 34, 2020, pp. 1234–1241.

References ii

[6] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for deep

spatial-temporal graph modeling,” in Proceedings of the 28th International Joint

Conference on Artificial Intelligence, 2019, pp. 1907–1913.

[7] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent

neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014.

[8] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured sequence

modeling with graph convolutional recurrent networks,” in International Conference on

Neural Information Processing, Springer, 2018, pp. 362–373.

[9] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural network:

Data-driven traffic forecasting,” in International Conference on Learning Representations,

2018.

References iii

[10] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional networks for

skeleton-based action recognition,” in Thirty-second AAAI conference on artificial

intelligence, 2018.

[11] X. Yi, Y. Zheng, J. Zhang, and T. Li, “St-mvl: Filling missing values in geo-sensory time

series data,” in Proceedings of the 25th International Joint Conference on Artificial

Intelligence, 2016.

[12] A. Cini, I. Marisca, and C. Alippi, “Filling the g ap s: Multivariate time series imputation

by graph neural networks,” in International Conference on Learning Representations,

2022. [Online]. Available: https://openreview.net/forum?id=kOu3-S3wJ7.

[13] A. Cini, D. Zambon, and C. Alippi, “Sparse graph learning for spatiotemporal time

series,” arXiv preprint arXiv:2205.13492, 2022.

https://openreview.net/forum?id=kOu3-S3wJ7

References iv

[14] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel, “Neural relational inference

for interacting systems,” in International conference on machine learning, PMLR, 2018,

pp. 2688–2697.

	Neural Graph Processing
	Outline
	Why graphs
	Data streams and graph streams
	A plethora of applications
	Why graphs
	Do we really need to represent and process graphs in a different way?
	Do we really need to represent and process graphs in a different way?
	Some philosophical issues
	Inductive bias
	Graphs and graph representations
	Graphs and graphs…
	Graphs and graphs…
	Graph processing
	How to represent a graph?
	How to represent a graph?
	Processing blocks
	CNN: Deep Convolutional Networks
	Convolution operator
	Convolution layer
	Pooling operator
	Graph processing: Graph Neural Networks
	GNN operators: Graph Convolution
	Graph Pooling
	GNN: Graph Neural Networks
	Graph autoencoders
	Latent space representation
	The «vanilla» operational framework
	Graphs and embedding spaces
	Which types of graphs are we interested in?
	The graph space (𝒢 𝒜 ,d)
	Stationarity and graphs
	Example of d ⋅,⋅ : the graph (edit) distance
	Embedding methods (some)
	Dissimilarity representation
	Multi-dimensional scaling
	Embedding on constant curvature manifolds
	Graph autoencoders
	Adversarial autoencoders
	Towards graph convolutions
	Message passing
	Pooling on Graphs
	Step 1: Select
	Step 2: Reduce
	Step 3: Connect
	Pooling methods
	Global pooling
	Coding GNNs
	Appendix
	Graph convolution
	Spectral GCNs

	Graphs and time dimension
	Spatiotemporal graph signals
	Spatiotemporal Graph Neural Networks
	Challenges
	Coding Spatiotemporal GNNs
	Appendix

