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What Is an Ensemble?

• In this talk, an ensemble indicates a collection of 
individual learning machines, also called 
individual/base learners or, simply, individuals.

• For example, we could have an ensemble of neural 
networks (NNs), decision trees, Bayesian classifiers, 
genetic programming classifiers, etc. 

• We could even have heterogeneous base learners in 
an ensemble.

• There are many related topics to ensembles, e.g., 
committee machines, multiple classifiers, mixture 
of experts, stacked generalisation, etc.
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Why Ensembles?

• For a large and complex problem, designing a 
monolithic system to solve it is often very difficult. 

• Divide-and-conquer is a common strategy in solving 
such problems.

• Ensemble approaches could be viewed as an 
automatic approach toward divide-and-conquer.
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monolithic system to solve it is often very difficult. 

• Divide-and-conquer is a common strategy in solving 
such problems.

• Ensemble approaches could be viewed as an 
automatic approach toward divide-and-conquer.

X. Yao and Y. Liu, “Making use of population information in evolutionary artificial neural networks,” IEEE 
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 28(3):417-425, June 1998.



Potential Benefits of Ensembles

• For regression problems, it has been shown that an 
ensemble performs no worse than any of its 
individual learners under some mild 
assumptions/conditions.

• For classification problems, there are ample empirical 
evidences to show ensemble’s advantages over single 
individuals.



Potential Benefits of Ensembles

• For regression problems, it has been shown that an 
ensemble performs no worse than any of its 
individual learners under some mild 
assumptions/conditions.

• For classification problems, there are ample empirical 
evidences to show ensemble’s advantages over single 
individuals.



Potential Benefits of Ensembles

• For regression problems, it has been shown that an 
ensemble performs no worse than any of its 
individual learners under some mild 
assumptions/conditions.

• For classification problems, there are ample empirical 
evidences to show ensemble’s advantages over single 
individuals.



What is it in an ensemble that makes it better?



Key to Ensembles: Diversity

• There have been many studies demonstrating that a 
diverse ensemble provide better generalisation.

• What do you mean by “diverse”? How do you define 
diversity? How do you generate diversity? …

– Still ongoing research as to how diversity can be best 
defined and used in practice.

• G. Brown, J. L. Wyatt, R. Harris and X. Yao, ``Diversity Creation Methods: A Survey and Categorisation,'' 
Information Fusion, 6(1):5-20, January 2005.

• E. K. Tang, P. N. Suganthan and X. Yao, ``An Analysis of Diversity Measures,'' Machine Learning, 65:247-271, 
2006.
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Negative Correlation Learning (NCL)

• NCL defines a simple error function for each 
individual as follows, where pi(n) is a diversity 
measure:

Y. Liu and X. Yao, ``Ensemble learning via negative correlation,‘’ Neural Networks, 12(10):1399-1404, 
December 1999.
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• Accuracy and diversity are two conflicting objectives.

Y. Liu and X. Yao, ``Ensemble learning via negative correlation,‘’ Neural Networks, 12(10):1399-
1404, December 1999.

Recall Negative Correlation Learning



Learning Is Inherently Multi-objective

• 1/Error = Accuracy + λ Diversity

• These are in essence two separate objectives.

• In general, we have 

Loss = Accuracy + λ1 Regularisation + λ2 Diversity + λ3 …
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• Multi-objective learning treats accuracy and 
diversity as two separate objectives in learning.

• Multi-objective optimisation algorithms, such as 
multi-objective evolutionary algorithms (MOEAs), 
can be used as learning algorithms.

• The result from such an MOEA is a non-dominated 
set of solutions (i.e., learners), which ideally form 
the ensemble we are interested in.
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Flexibility and Generality

• For example, we can include an additional 
regularisation term, as an additional objective, in 
learning.

– H. Chen and X. Yao, “Multiobjective Neural Network Ensembles based on Regularized 
Negative Correlation Learning,” IEEE Transactions on Knowledge and Data Engineering, 
22(12):1738-1751, December 2010. 

• Multi-objective learning can be used in online mode as 
well:

– Z. Gong, H. Chen, B. Yuan and X. Yao, "Multiobjective Learning in the Model Space for Time 
Series Classification," IEEE Transactions on Cybernetics, 49(3):918-932, March 2019.
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Class Imbalance Learning

• Class imbalance learning refers to learning from 
imbalanced data sets, in which some classes of 
examples (minority) are highly under-represented 
comparing to other classes (majority).

• Learning difficulty:

– poor generalization on the minority class.

– Learning objective: obtaining a classifier that will provide 
high accuracy for the minority class without severely 
jeopardizing the accuracy of the majority class.
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S. Wang and X. Yao, ``Multi-Class Imbalance Problems: Analysis and Potential Solutions,'' IEEE 
Transactions on Systems, Man and Cybernetics, Part B, 42(4):1119-1130, August 2012.



Multi-objective Class Imbalance Learning 

• We can treat single class performances as separate 
objectives. 

– S. Wang, L. Minku and X. Yao, “A multi-objective ensemble method for online class imbalance 
learning,” Proc. of the 2014 International Joint Conference on Neural Networks (IJCNN'14), 
pp.3311-3318, IEEE Press, July 2014.

• We can use multi-objective algorithms for data 
sampling in class imbalance learning.

– E. Fernandes, A. {de Carvalho} and X. Yao, ``Ensemble of Classifiers based on MultiObjective
Genetic Sampling for Imbalanced Data,'' IEEE Transactions on Knowledge and Data 
Engineering, 32(6):1104-1115, June 2020.

• We can of course use different evolutionary algorithms.
– U. Bhowan, M. Johnston, M. Zhang and X. Yao, ``Evolving Diverse Ensembles using Genetic 

Programming for Classification with Unbalanced Data,‘’ IEEE Transactions on Evolutionary 
Computation, 17(3):368-386, June 2013. 



Multi-objective Class Imbalance Learning 

• We can treat single class performances as separate 
objectives. 

– S. Wang, L. Minku and X. Yao, “A multi-objective ensemble method for online class imbalance 
learning,” Proc. of the 2014 International Joint Conference on Neural Networks (IJCNN'14), 
pp.3311-3318, IEEE Press, July 2014.

• We can use multi-objective algorithms for data sampling 
in class imbalance learning.

– E. Fernandes, A. {de Carvalho} and X. Yao, ``Ensemble of Classifiers based on MultiObjective
Genetic Sampling for Imbalanced Data,'' IEEE Transactions on Knowledge and Data 
Engineering, 32(6):1104-1115, June 2020.

• We can of course use different evolutionary algorithms.
– U. Bhowan, M. Johnston, M. Zhang and X. Yao, ``Evolving Diverse Ensembles using Genetic 

Programming for Classification with Unbalanced Data,‘’ IEEE Transactions on Evolutionary 
Computation, 17(3):368-386, June 2013. 



Multi-objective Class Imbalance Learning 

• We can treat single class performances as separate 
objectives. 

– S. Wang, L. Minku and X. Yao, “A multi-objective ensemble method for online class imbalance 
learning,” Proc. of the 2014 International Joint Conference on Neural Networks (IJCNN'14), 
pp.3311-3318, IEEE Press, July 2014.

• We can use multi-objective algorithms for data 
sampling in class imbalance learning.

– E. Fernandes, A. {de Carvalho} and X. Yao, ``Ensemble of Classifiers based on MultiObjective
Genetic Sampling for Imbalanced Data,'' IEEE Transactions on Knowledge and Data 
Engineering, 32(6):1104-1115, June 2020.

• We can of course use different evolutionary algorithms.
– U. Bhowan, M. Johnston, M. Zhang and X. Yao, ``Evolving Diverse Ensembles using Genetic 

Programming for Classification with Unbalanced Data,‘’ IEEE Transactions on Evolutionary 
Computation, 17(3):368-386, June 2013. 



Multi-objective Class Imbalance Learning 

• We can treat single class performances as separate 
objectives. 

– S. Wang, L. Minku and X. Yao, “A multi-objective ensemble method for online class imbalance 
learning,” Proc. of the 2014 International Joint Conference on Neural Networks (IJCNN'14), 
pp.3311-3318, IEEE Press, July 2014.

• We can use multi-objective algorithms for data 
sampling in class imbalance learning.

– E. Fernandes, A. {de Carvalho} and X. Yao, ``Ensemble of Classifiers based on MultiObjective
Genetic Sampling for Imbalanced Data,'' IEEE Transactions on Knowledge and Data 
Engineering, 32(6):1104-1115, June 2020.

• We can use different evolutionary algorithms.
– U. Bhowan, M. Johnston, M. Zhang and X. Yao, ``Evolving Diverse Ensembles using Genetic 

Programming for Classification with Unbalanced Data,‘’ IEEE Transactions on Evolutionary 
Computation, 17(3):368-386, June 2013. 



Overview

• Introduction to ensemble learning

• Multi-objective learning and ensembles

• Multi-objective class imbalance learning

• Multi-objective software effort estimation

• Multi-objective approach to trustworthy AI

• Concluding remarks



Software Effort Estimation (SEE)

Problem description:

• Estimation of the effort required to develop a software 
project (e.g., in person-hours), based on features such as 
functional size (numerical), required reliability (ordinal), 
programming language (categorical), development type 
(categorical), team expertise (ordinal), etc.

Xin Yao (http://www.cs.bham.ac.uk/~xin) 46



Existing Learning Approaches to SEE

⚫ Uses historical projects as training examples for 
creating SEE models, e.g., 

⚫ Multilayer Perceptrons (MLPs)

⚫ Radial Basis Function networks (RBFs)

⚫ Regression Trees (RTs)

⚫ Learned models can then be used as decision 
support tools.

Xin Yao (http://www.cs.bham.ac.uk/~xin) 47



Different Performance Measures Were Used

48



Challenges

• There is no universally agreed single performance 
measure.

• The relationship among different measures in SEE is 
not well understood.

• Existing SEE approaches use at most one measure  
during the learning procedure. It is unclear whether a 
model/learner trained using one measure would still 
perform well under a different measure.

• Many papers did not even report the measure they 
used in training!

Xin Yao (http://www.cs.bham.ac.uk/~xin) 49
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SEE by Multi-objective Learning

• We proposed to formulate SEE as a multi-objective 
learning problem.

• Each performance measure is considered explicitly as 
a separate objective in learning.

Xin Yao (http://www.cs.bham.ac.uk/~xin) 54



Research Questions

1. What is the relationship among different 
performance measures for SEE?

2. Can we use different performance measures as a 
source of diversity to create better SEE models? 

L. L. Minku and X. Yao, “Software Effort Estimation as a Multi-objective Learning Problem,” ACM Transactions on 
Software Engineering and Methodology, 22(4), Article No. 35, October 2013, 32 pages.

Xin Yao (http://www.cs.bham.ac.uk/~xin) 55



Relationship among Different 
Performance Measures (RQ1)

Interesting insight:

1) MMRE, PRED(25) and LSD behaved more differently than 
one might have initially thought.

2) MMRE and LSD can present even opposite behaviours.

Xin Yao (http://www.cs.bham.ac.uk/~xin) 56



Multi-objective Ensemble Learning (RQ2)

Xin Yao (http://www.cs.bham.ac.uk/~xin) 57

• Multi-objective ensemble learning does improve the 
performance of single objective learning.

• The use of different measures as separate objectives 
helped to increase the diversity in the ensemble and 
improve ensemble learning performance.

• The ensembles did well even on those performance 
measures that were not used in multi-objective 
learning.
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• Multi-objective ensemble learning does improve the 
performance of single objective learning.

• The use of different measures as separate objectives 
helped to increase the diversity in the ensemble and 
improve ensemble performance.

• The ensembles performed well even according to 
those measures that were not used in multi-objective 
learning.



Pareto Ensemble vs. Other Approaches

⚫ Pareto ensemble was most often ranked first, except for LSD.

⚫ It is more robust, even according to measures that were not 
used in multi-objective learning.

Xin Yao (http://www.cs.bham.ac.uk/~xin) 61
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Some Principles Selected Keywords

Transparency
Transparency, explainability, explicability, understandability, 
interpretability, communication, disclosure, showing

Fairness and 
Justice

Justice, fairness, consistency, inclusion, equality, equity, (non-) bias, 
(non-) discrimination, diversity, plurality, accessibility, reversibility, 
remedy, redress, challenge, access and distribution

Responsibility Responsibility, accountability, liability, acting with integrity

Non-maleficence
Non-maleficence, security, safety, harm, protection, precaution, 
prevention, integrity (bodily or mental), non-subversion, reliability, 
robustness

Privacy Privacy, personal or private information, data protection,

Beneficence
Benefits, beneficence, well-being, peace, social good, common good, 
non-violence

Freedom and 
Autonomy

Freedom, autonomy, consent, choice, self-determination, liberty, 
empowerment, human rights

Solidarity Solidarity, social security, cohesion, inclusion, inclusiveness

Sustainability Sustainability, environment, nature, energy, resources

Trust Trust, trustworthiness, trustworthy

Dignity Dignity

Different Dimensions of Trustworthiness



Fair Machine Learning
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How to Measure Fairness?

There are many （20+）fairness metrics proposed so far, which 
can be divided into 5 main categories [1]：

1. Metrics based on predicted outcome

2. Metrics based on predicted and actual outcomes

3. Metrics based on predicted probabilities and actual outcome

4. Metrics based on similarity

5. Metrics based on causal reasoning

65

[1] S. Verma and J. Rubin, “Fairness definitions explained,” in 2018 IEEE/ACM International Workshop on Software
Fairness (FairWare), IEEE, 2018, pp. 1–7.



Two Challenges

There are inherent conflicts (1) between model accuracy 
and fairness, and (2) among different fairness metrics.

66

(a) Conflict between accuracy and fairness (b) Conflict among multiple fairness metrics

Image source: Figure 4 from [17] T. Speicher, H. Heidari, N. Grgic-Hlaca, K. P. Gummadi, A. Singla, A. Weller, and M.
B. Zafarl, “A unified approach to quantifying algorithmic unfairness: Measuring individual & group unfairness via
inequality indices,” in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2018, pp. 2239–2248

dotted line: unfairness
solid line:    accuracy

dotted line: individual unfairness
solid line:    group unfairness



Multi-objective Learning Approach to 
Fairer Machine Learning

Can a machine learning model be made fairer by 
simultaneously considering accuracy and multiple
fairness metrics?

Yes, we can use a multi-objective learning approach to 
improve fairness.
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Q. Zhang, J. Liu, Z. Zhang, J. Wen, B. Mao and X. Yao, "Mitigating Unfairness via Evolutionary Multi-objective 
Ensemble Learning," in IEEE Transactions on Evolutionary Computation, 2022, doi: 10.1109/TEVC.2022.3209544.



Multi-objective Evolutionary Learning
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Q. Zhang, J. Liu, Z. Zhang, J. Wen, B. Mao and X. Yao, "Mitigating Unfairness via Evolutionary Multi-objective 
Ensemble Learning," in IEEE Transactions on Evolutionary Computation, 2022, doi: 10.1109/TEVC.2022.3209544.
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Findings from Our Experimental Studies

• Our algorithm can simultaneously optimize several 
fairness measures without sacrificing accuracy.

• It can even improve fairness measures that are not
used in model training.

• It can generate an ensemble model combined from 
evolved models to balance accuracy and multiple 
fairness measures.

Q. Zhang, J. Liu, Z. Zhang, J. Wen, B. Mao and X. Yao, "Mitigating Unfairness via Evolutionary Multi-objective 
Ensemble Learning," in IEEE Transactions on Evolutionary Computation, 2022, doi: 10.1109/TEVC.2022.3209544.
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fairness measures without sacrificing accuracy.

• It can even improve fairness measures that are not
used in model training.

• It can generate an ensemble model combined from 
evolved models to balance accuracy and multiple 
fairness measures.

Q. Zhang, J. Liu, Z. Zhang, J. Wen, B. Mao and X. Yao, "Mitigating Unfairness via Evolutionary Multi-objective 
Ensemble Learning," in IEEE Transactions on Evolutionary Computation, 2022, doi: 10.1109/TEVC.2022.3209544.
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Findings from Our Experimental Studies

• Our algorithm can simultaneously optimize several 
fairness measures without sacrificing accuracy.

• It can even improve fairness measures that are not
used in model training.

• It can generate an ensemble model combined from 
evolved models to balance accuracy and multiple 
fairness measures.

Q. Zhang, J. Liu, Z. Zhang, J. Wen, B. Mao and X. Yao, "Mitigating Unfairness via Evolutionary Multi-objective 
Ensemble Learning," in IEEE Transactions on Evolutionary Computation, 2022, doi: 10.1109/TEVC.2022.3209544.
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Findings from Our Experimental Studies

• Our algorithm can simultaneously optimize several 
fairness measures without sacrificing accuracy.

• It can even improve fairness measures that are not
used in model training.

• It can generate an ensemble model combined from 
evolved individuals to better balance accuracy and 
multiple fairness measures.

Q. Zhang, J. Liu, Z. Zhang, J. Wen, B. Mao and X. Yao, "Mitigating Unfairness via Evolutionary Multi-objective 
Ensemble Learning," in IEEE Transactions on Evolutionary Computation, 2022, doi: 10.1109/TEVC.2022.3209544.
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From Fairness to Trustworthiness

• In fact, multi-objective learning can be used to 
tackle other trustworthy AI issues,  such as model 
explainability.



What Is Feature Attribution Explanation (FAE) 

Local feature attribution explanation (FAE) describes how

much each input feature contributes to the output of the

model for a given data point.
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FAE explains a tabular data point [1] FAE explains an image data point [2]

[1] Ribeiro M T , Singh S , Guestrin C . "Why Should I Trust You?": Explaining the Predictions of Any Classifier[C]// 
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational 
Linguistics: Demonstrations. 2016.
[2]Lundberg S M, Lee S I. A unified approach to interpreting model predictions[C]//Proceedings of the 31st 
international conference on neural information processing systems. 2017: 4768-4777.



Evaluating FAE Methods

Various evaluation metrics have been proposed to assess the

explanation quality of FAE methods, such as [1]:

➢ Faithfulness: 𝑢𝐹 𝑓, 𝑔; 𝒙 = c𝑜𝑟𝑟
𝑆∈(

𝑑
𝑆
)
(σ𝑖∈𝑆𝑔 𝑓, 𝒙 𝑖 , 𝑓 𝒙 − 𝑓(𝒙 𝒙𝑠=ഥ𝒙𝑠 ))

➢ Sensitivity: 𝑢𝐴 𝑓, 𝑔, 𝒙 =
1

|𝑁𝑟|
σ𝒛∈𝑁𝑟

𝐷 𝑔 𝑓,𝒙 ,𝑔 𝑓,𝒛

𝜌 𝒙,𝒛

➢ Complexity: 𝑢𝐶 𝑓, 𝑔; 𝒙 = −σ𝑖=1
𝑑 |𝑔 𝑓,𝒙 𝑖|

σ𝑗∈[𝑑] |𝑔 𝑓,𝒙 𝑗|
ln(

|𝑔 𝑓,𝒙 𝑖|

σ𝑗∈[𝑑] |𝑔 𝑓,𝒙 𝑗|
)

However, none of the existing FAE methods actually used multiple

metrics at the same time.
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[1] Bhatt U ,  Weller A ,  Moura J . Evaluating and Aggregating Feature-based Model Explanations[C]// Twenty-
Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International 
Conference on Artificial Intelligence IJCAI-PRICAI-20. 2020.



Our Proposal: Multi-Objective FAE

◼ Problem Formulation

The multi-objective explanation problem can be defined as: 

𝐌𝐚𝐱𝐢𝐦𝐢𝐳𝐞
𝒈(𝒇,𝒙)

𝒖 𝒈; 𝒇, 𝒙 = [𝒖𝟏 𝒈; 𝒇, 𝒙 , … , 𝒖𝒌(𝒈; 𝒇, 𝒙)]

➢ 𝒇 is the black-box model

➢ 𝒙 is the explained data point

➢ 𝒈 is a local FAE function

➢ 𝒖𝒊 ⋅ 𝐟𝐨𝐫 𝒊 = 𝟏,… , 𝒌 is one of the explanation quality metrics

➢ 𝒈 𝒇, 𝒙 ∈ ℝ𝒅 is the explanation result obtained after optimizing metrics 𝒖(⋅)
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Z. Wang, C. Huang, Y. Li and X. Yao, “Multi-objective Feature Attribution Explanation For Explainable Machine 
Learning,” ACM Transactions on Evolutionary Learning and Optimization, Accepted, August 2023.



Multi-Objective FAE Framework

Input: A trained model 𝑓, an explained data point 𝑥, an FAE 𝑔, a set of explanation

quality evaluation metrics 𝑢 = {𝑢1, … , 𝑢𝑘}, selection and reproduction strategies 𝜋 

and 𝜉, respectively.

Output: Set of explainable models 𝐺∗ = {𝑔1
∗, … , 𝑔𝜏

∗}.

77

Initial 

population

Evaluate each individual 

in population using metrics

𝒖

Select better offspring 

individuals using strategy 

𝜋

Reproduction strategy 

𝜉

Stop?

…

…

𝒈𝟏 𝒈𝟐 𝒈𝝉

Offsprin

g

Evaluate each individual 

in offspring using metrics 

𝒖

𝒈𝟏
′ 𝒈𝟐

′ 𝒈𝝉
′…

…

Yes 

No

Output final 

population

An explainable

model 𝑔∗ (an

FAE

explanation)



Multi-Objective FAE Algorithm

◼ Framework Instantiation: A Specific Algorithm

Optimization objectives [1]: faithfulness 𝑢𝐹, sensitivity 𝑢𝐴, complexity 𝑢𝐶

Black-box model: artificial neural network (ANN) 

Multi-objective optimizer: non-dominated sorting genetic algorithm-III 

(NSGA-III)
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[1] Bhatt U ,  Weller A ,  Moura J . Evaluating and Aggregating Feature-based Model Explanations[C]// Twenty-
Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International 
Conference on Artificial Intelligence IJCAI-PRICAI-20. 2020.



Experimental Studies: Experimental Setup

Dataset: Adult, Iris, German, Wine, Mushroom, Car, Bank, 

and Glass 

Compared FAE methods: LIME, SHAP, Grad, IG, GI, SG

Crossover and mutation probabilities: 1.0 and 
1

𝑛
, 

respectively
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Z. Wang, C. Huang, Y. Li and X. Yao, “Multi-objective Feature Attribution Explanation For Explainable Machine 
Learning,” ACM Transactions on Evolutionary Learning and Optimization, Accepted, August 2023.



Experimental Studies: Research Questions

Q1. Do faithfulness, sensitivity, and complexity conflict
with each other?

Q2. Can MOFAE simultaneously optimize these conflicting
metrics and be competitive against existing state-of-the-
art FAE methods?

Q3. Can our method find a set of explainable models (i.e.,
explanations) with different trade-offs among the
objectives (i.e., metrics)?
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Z. Wang, C. Huang, Y. Li and X. Yao, “Multi-objective Feature Attribution Explanation For Explainable Machine 
Learning,” ACM Transactions on Evolutionary Learning and Optimization, Accepted, August 2023.



Experimental Results (Q1)

Q1. Do faithfulness, sensitivity, and complexity conflict with each other?

We optimized every two objectives

Using the Adult dataset as an example, the three objectives indeed

conflict with each other.
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Z. Wang, C. Huang, Y. Li and X. Yao, “Multi-objective Feature Attribution Explanation For Explainable Machine 
Learning,” ACM Transactions on Evolutionary Learning and Optimization, Accepted, August 2023.



Experimental Results (Q2)

Q2. Can MOFAE simultaneously optimize these conflicting metrics

and be competitive with other state-of-the-art FAE methods?
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Fig. 1. HV Convergence curve Fig. 2. Comparing methods through 3D plot

Table 1. Dominate relationship between MOFAE and other FAE methods

Using the Adult dataset as an

example.

From Fig.1, we can conclude that

better overall explanations can

be generated as the optimization

progress.

From Fig.2 and Table 1, we can

see that:

1. No MOFAE solutions were

dominated by others.

2. Many solutions of MOFAE can

dominate others.

3. Some solutions of MOFAE and

other methods are non-

dominated.



Experimental Results (Q3)

Q3. Can our method find a set of explanations with different trade-offs

among the objectives (i.e., metrics)?

83

Table 2. Comparison of the diversity of MOFAE 

and other FAE methods

As can be seen from Table 2, the

diversity of MOFAE is significantly

better than other FAE methods.

* Not compared with Grad, IG, GI

because these three methods do not

have any diversity.

Z. Wang, C. Huang, Y. Li and X. Yao, “Multi-
objective Feature Attribution Explanation For 
Explainable Machine Learning,” ACM Transactions 
on Evolutionary Learning and Optimization, 
Accepted, August 2023.
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Concluding Remarks

• Ensemble learning can be effectively combined with  
multi-objective learning.

• Many real-world learning problems are inherently 
multi-objective.

– Accuracy

– Regularisation

– Trustworthiness 

– …

• More research into multi-objective ensemble learning 
is needed.



Other Multi-objective Learning Problems

• L. Li, X. Yao, R. Stolkin, M. Gong and S. He ``An Evolutionary Multi-objective 
Approach to Sparse Reconstruction,'' IEEE Transactions on Evolutionary 
Computation, 18(6):827-845, December 2014.

• P. Wang, M. Emmerich, R. Li, K. Tang, T. Baeck and X. Yao, ``Convex Hull-Based 
Multi-objective Genetic Programming for Maximizing Receiver Operating 
Characteristic Performance,'' IEEE Transactions on Evolutionary Computation, 
19(2):188-200, April 2015. 

• P. Wang, K. Tang, T. Weise, E. P. K. Tsang and X. Yao, ``Multiobjective Genetic 
Programming for Maximizing ROC Performance,'' Neurocomputing, 125:102-
118, 11 February 2014.



Thank you!



Ensemble Member Selection 

• Sometimes it is unnecessary to include the entire set of 
classifiers found by MOEAs in an ensemble. A subset 
would be sufficient, or even better. 

– X. Yao and Y. Liu, “Making use of population information in evolutionary artificial neural 
networks,” IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 
28(3):417-425, June 1998. 

• There are various methods in the literature for selecting 
a diverse subset of classifiers from a large set, e.g., 

– U. Bhowan, M. Johnston, M. Zhang and X. Yao, ``Reusing Genetic Programming for Ensemble 
Selection in Classification of Unbalanced Data,'' IEEE Transactions on Evolutionary 
Computation, 18(6):893-908, December 2014. 
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What Is Multi-objective Optimisation?

More than one objective to be optimized simultaneously.



Multi-objective Evolutionary Algorithms

• Evolutionary algorithms (EAs) have been widely used in 
the last 20 years for multi-objective optimisation.

• They can provide a set of non-dominated solutions 
simultaneously in a single run.

• They do not require the objective functions and 
constraints to be convex, smooth, or even continuous.

• They can deal with uncertainty and dynamics better 
than other alternatives.



Widely Used?

• Deb, K., Pratap. A, Agarwal, S., and Meyarivan, T. 
(2002). “A fast and elitist multiobjective genetic 
algorithm: NSGA-II.” IEEE Transaction on Evolutionary 
Computation, 6(2), 181-197. (29,491 Google Scholar 
citations)



Unfortunately

• NSGA-II and other early MOEAs work well only with 
two or three objectives.

• They do not work well when the number of objectives 
goes beyond three.

• There is a scalability issue in terms of the number of 
objectives.
– V. Khare, X. Yao and K. Deb, “Performance Scaling of Multi-objective Evolutionary Algorithms," In Proc. 

of the 2nd International Conference on Evolutionary Multi-Criterion Optimization (EMO'03), Lecture 
Notes in Computer Science, Vol. 2632, Carlos M. Fonseca, Peter J. Fleming, Eckart Zitzler, Kalyanmoy Deb 
and Lothar Thiele (Eds.), Springer-Verlag, April 2003, pp.376-390.

• Many Objective Optimisation (MaOP) indicates that 
the number of objectives is greater than three.



Problem-solving Strategies

1. Develop more sophisticated solution approaches  
to more complex problems.

2. Simplify a complex problem so that an existing 
solution approach can be applied.



Can we simplify MaOPs?

Can we reduce the number of 
objectives?

8
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Objective Reduction

• If two objectives are positively correlated, we only 
need to optimise one of them.

• There are many methods that could be used to 
reduce the number of objectives.

• We present one example here.



Nonlinear Correlation Information Entropy 
(NCIE)

11

1

( ) ( )
b

r i i
b

i

n n
H X log

N N=

= −

1 1

( , ) ( )
b b

ij ijr

b

i j

n n
H X Y log

N N= =

= −

( , ) ( ) ( ) ( , )r r rNCIE X Y H X H Y H X Y= + −

◼ NCIE is an entropy measure.

◼ NCIE first divides variables X and Y into b*b uniform 

rank grids. Then, the probabilities pij can be 

approximated by counting the samples in those grids. 

In other words, pij in the ij-th grid can be calculated by 

the number of solutions in the ij-th grid (nij/N).

◼ Parameter b can be set as N^0.5.



Objective Reduction Based on NCIE

◼ Correlation analysis is based on the matrix of modified 

NCIE RN of a non-dominated population.

◼Objective selection aims to choose the most conflicting 

objectives. 

◼Our approach is applied in every generation of MOEAs 

to update the correlation information among objectives.

12

{ ( ) },(1 , )N

ij ijR Sgn cov NCIE i j m=  

H. Wang and X. Yao, “Objective Reduction Based on Nonlinear Correlation Information Entropy,” Soft 

Computing, June 2016, Volume 20, Issue 6, pp 2393–2407.



Objective Selection: An Example

◼ Select the most conflicting objective.

◼ Remove the objectives that are positively correlated to 

the selected objective.

➢ f5 is selected because it has the most conflicting degree with other objectives.

➢ There is no objective positively correlated to f5, thus, there is no redundant 

objective with f5 in the remaining objectives.

➢ f4 is then selected. f1 , f2, and f3 are removed because they are all positively 

correlated to f4 .

➢ Output {f5 ,f4}.
13



Objective reduction can remove 
redundant objectives, but what if there 

is no redundancy among objectives?

14
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Why Are Many Objectives Hard to Handle?

• The number of non-dominated solutions increases 
exponentially as the number of objectives grows.

• As a result, there is no selection pressure in MaOEAs
to drive the evolutionary search.

• Can we use alternative dominance relationship other 
than Pareto dominance in order to distinguish 
currently non-dominated solutions?



Θ-dominance --- Intuition

• f’s are normalised
objective functions.

• λ is the reference 
direction (point).

Y. Yuan, H. Xu, B. Wang and X. Yao, “A 
New Dominance Relation Based 
Evolutionary Algorithm for Many-
Objective Optimization,” IEEE 
Transactions on Evolutionary 
Computation, 20(1):16-37, February 
2016.

17



Θ-dominance --- Definition

18

Y. Yuan, H. Xu, B. Wang and X. Yao, “A New Dominance Relation Based Evolutionary Algorithm for Many-Objective 
Optimization,” IEEE Transactions on Evolutionary Computation, 20(1):16-37, February 2016.



Balancing Convergence and Diversity

◼ The form of Ƒj(x) indicates that the balance between 
convergence and diversity is essential in MaOEAs.

◼Why not manipulating the balance explicitly?
◼ Y. Yuan, H. Xu, B. Wang, B. Zhang and X. Yao, “Balancing Convergence and Diversity in 

Decomposition-Based Many-Objective Optimizers,” IEEE Transactions on Evolutionary 
Computation, 20(2):180-198, April 2016.

◼ Strike the balance stochastically.
◼ B. Li, K. Tang, J. Li and X. Yao, ``Stochastic Ranking Algorithm for Many-Objective 

Optimization Based on Multiple Indicators,'‘ IEEE Transactions on Evolutionary 
Computation, 20(6):924-938, December 2016.

19
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What if alternative dominance 
relationships still do not provide a 
satisfactory solution to a MaOP?
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Original Two-Archive Algorithm

Two-Archive algorithm (Two_Arch) maintains two archives 
(CA and DA) to promote convergence and diversity 
explicitly.

•K. Praditwong and X. Yao, “A New Multi-objective Evolutionary Optimisation Algorithm: The Two-
Archive Algorithm,” Proc. of the 2006 International Conference on Computational Intelligence and 
Security (CIS'2006), 3-6/11/2006, Ramada Pearl Hotel, Guangzhou, China. IEEE Press, Volume 1, 
pp.286-291.

22



Improved Two-Archive Algorithm: Main Idea

23

Indicator-based 

CA

Pareto-based 

DA

Improve 

convergence

Maintain  

diversity



Two_Arch2: Main Steps

H. Wang, L. Jiao and X. Yao, “Two_Arch2: An Improved Two-Archive Algorithm for Many-Objective 

Optimization,” IEEE Transactions on Evolutionary Computation, 19(4):524-541, August 2015.

24

Step 1: Initialization.

Step 2: Output DA if the stopping criterion is met, 

otherwise continue.

Step 3: Generate new solutions from CA and DA by 

crossover and mutation.

Step 4: Update CA and DA separately, go to Step 2.



Convergence Archive (CA)

◼The quality indicator Iε+ in IBEA is used in 

selection of CA. Iε+ is an indicator that 

describes the minimum distance that one 

solution needs to dominate another solution in 

the objective space.

25

◼The fitness is assigned as below, the solution 

with the smallest fitness is removed from CA 

first.



Diversity Archive (DA)

◼ Update DA
• When DA overflows, boundary solutions (solutions with 

maximal or minimal objective values) are firstly selected. 
• In the iterative process, the most different solution from the 

current DA is added until reaching the size.

◼ Lp-norm distance is adopted as the similarity measure 
in DA.

◼ DA is used as the final output of Two_Arch2.

26

H. Wang, L. Jiao and X. Yao, “Two_Arch2: An Improved Two-Archive Algorithm for Many-Objective 

Optimization,” IEEE Transactions on Evolutionary Computation, 19(4):524-541, August 2015.



Degraded Euclidean Distance (Distance 
Concentration) in High-Dimensional Space

◼The Euclidean distance (L2-norm) degrades its 

similarity indexing performance in a high-

dimensional space.

◼Most of existing diversity maintenance methods 

use the Euclidean distance to measure 

similarity among solutions for MaOPs.

27

C. C. Aggarwal, A. Hinneburg and D. A. Keim, “On the surprising behavior  of  distance  metrics  in  high  dimensional  
space.” Springer, 2001.



Similarity in High-Dimensional Space

◼The fractional distances (Lp-norm, p<1) perform 

better in a high-dimensional space.

◼ L1/m-norm is employed in Two_Arch2, where m

is the number of objectives.

28

H. Wang, L. Jiao and X. Yao, “Two_Arch2: An Improved Two-Archive Algorithm for Many-Objective 

Optimization,” IEEE Transactions on Evolutionary Computation, 19(4):524-541, August 2015.



Interaction between CA and DA: Mutation

◼Mutation to DA does not 

speed up convergence, 

and disturbs the guidance 

of CA to DA.

◼Mutation is applied to CA 

only in Two_Arch2.

29
H. Wang, L. Jiao and X. Yao, “Two_Arch2: An Improved Two-Archive Algorithm for Many-Objective 

Optimization,” IEEE Transactions on Evolutionary Computation, 19(4):524-541, August 2015.



Interaction between CA and DA: Crossover

◼ The crossover between CA 

and DA has the fastest 

convergence speed.

◼ The crossover between CA 

and DA is employed in 

Two_Arch2.

30
H. Wang, L. Jiao and X. Yao, “Two_Arch2: An Improved Two-Archive Algorithm for Many-Objective 

Optimization,” IEEE Transactions on Evolutionary Computation, 19(4):524-541, August 2015.



Experimental Comparisons

◼ Two_Arch2: Our algorithm.

◼ Two_Arch: The original version of Two_Arch, to show 

the improvement of Two_Arch2 over Two_Arch.

◼ IBEA: An indicator-based (Iε+) MOEA with good 

convergence but poor diversity.

◼NSGA-III: A newly-proposed MOEA, which is widely 

used. 

◼MOEA/D: An aggregation function-based MOEA.

◼AEG-II: A Pareto-based MOEA with the ε-grid 

approximation in the objective space.

31
H. Wang, L. Jiao and X. Yao, “Two_Arch2: An Improved Two-Archive Algorithm for Many-Objective 

Optimization,” IEEE Transactions on Evolutionary Computation, 19(4):524-541, August 2015.



DTLZ1 with 10 Objectives

32
H. Wang, L. Jiao and X. Yao, “Two_Arch2: An Improved Two-Archive Algorithm for Many-Objective 

Optimization,” IEEE Transactions on Evolutionary Computation, 19(4):524-541, August 2015.



Two_Arch2 vs. NSGA-III on DTLZ2 with 
10 Objectives

33

Convergence Diversity Extreme point

Two_Arch2 Good Good Fair

NSGA-III Good Fair Good



Two_Arch2 vs. NSGA-III on DTLZ2 with 
15 Objectives

34

Convergence Diversity Extreme point

Two_Arch2 Good Good Poor

NSGA-III Good Fair Good



Two_Arch2 vs. NSGA-III on DTLZ2 with 
20 Objectives

35

Convergence Diversity Extreme point

Two_Arch2 Good Good Poor

NSGA-III Good Fair Good



Two_Arch2 vs. NSGA-III
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Two_Arch2 NSGA-III

Convergence 
methodology 

Iε+ Pareto dominance

Convergence 
degeneration

No No

Diversity 
maintenance

L1/m-norm-based
distance

Minimal perpendicular 
distances to reference 

points 

Diversity 
degeneration

No
Increase with the 

dimension of objective 
space

Manual settings None Reference points 



More Experimental Results

More experimental results are in
– H. Wang, L. Jiao and X. Yao, “Two_Arch2: An Improved Two-Archive 

Algorithm for Many-Objective Optimization,” IEEE Transactions on 
Evolutionary Computation, 19(4):524-541, August 2015.

including Matlab code.
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Conclusions

◼There are three major approaches to dealing 

with a large number of objectives:
① Objective reduction

② Alternative dominance relationship

③ New algorithms

◼This talk touches on only a tiny proportion of all 

the work. For more comprehensive review:
◼ B. Li, J. Li, K. Tang and X. Yao, “Many-Objective Evolutionary 

Algorithms: A Survey,” ACM Computing Surveys, 48(1), Article 13, 35 

pages, September 2015.
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Future Work

1. Dynamic number of objectives, e.g., 
– R. Chen, K. Li and X. Yao, "Dynamic Multiobjectives Optimization With a Changing 

Number of Objectives," IEEE Transactions on Evolutionary Computation, vol. 22, 
no. 1, pp. 157-171, Feb. 2018.

2. Constraint handling, e.g., 
– K. Li, R. Chen, G. Fu and X. Yao, "Two-Archive Evolutionary Algorithm for 

Constrained Multi-Objective Optimization,'' IEEE Transactions on Evolutionary 
Computation, online on 19/7/2018. DOI: 10.1109/TEVC.2018.2855411
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Motivation

• Given a classification task, most machine learning 
methods assume that:

– Every class has the same misclassification cost.

– Aim to maximize the classification accuracy.

• However, many real-world applications have very 
unbalanced distributions among classes:

– E.g. fault diagnosis, software defect prediction, etc.

– Minority class: rare cases, high misclassification cost.



Class Imbalance Learning

• Class imbalance learning refers to learning from 
imbalanced data sets, in which some classes of 
examples (minority) are highly under-represented 
compared to other classes (majority).

• Learning difficulty: poor generalization on the minority 
class.

• Learning objective: obtaining a classifier that will 
provide high accuracy for the minority class without 
severely jeopardizing the accuracy of the majority class.



Existing Work

• Re-sampling techniques try to rebalance the data 
distribution.

– Over-sampling minority classes

– Under-sampling majority classes

• Cost-sensitive methods increase the misclassification 
cost of minority classes.

– Hard to quantify costs in practice

• Classification ensembles combine multiple learners to 
improve performance.

– Advantages: can improve minority and overall performance.
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• Classification ensembles combine multiple learners to 
improve performance.
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Why Ensembles?

• For a large and complex problem, designing a 
monolithic system to solve it is often very difficult. 

• Divide-and-conquer is a common strategy in solving 
such problems.

• Ensemble approaches could be viewed as an automatic 
approach toward divide-and-conquer.

• Ensemble learning has some nice theoretical properties 
that explain why and when it works.

• It is often straightforward to implement.

Y. Liu and X. Yao, ``Ensemble learning via negative correlation,'' Neural Networks, 12(10):1399-1404, December 1999.



What is an Ensemble?

• There are many different ways to determine or learn wj.
– X. Yao and Y. Liu, ``Making use of population information in evolutionary artificial neural 

networks,'' IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 
28(3):417-425, June 1998.

• There are many different training algorithms, e.g., 
bagging, boosting, negative correlation learning, etc.
• Y. Liu and X. Yao, ``Ensemble learning via negative correlation,'' Neural Networks, 

12(10):1399-1404, December 1999.



Diversity is Essential in Ensembles

• An ensemble of positively correlated individuals 
provide few advantages over single individuals.

• There have been many studies demonstrating that a 
diverse ensemble provide better generalisation.

• What do we mean by “diverse”? How do we define 
diversity? How do we generate diversity? … [1,2]

– Still ongoing research as to how diversity can be best defined 
and used in practice.

[1] G. Brown, J. L. Wyatt, R. Harris and X. Yao, “Diversity Creation Methods: A Survey and Categorisation,” 
Information Fusion, 6(1):5-20, January 2005.

[2] E. K. Tang, P. N. Suganthan and X. Yao, “An Analysis of Diversity Measures,” Machine Learning, 65:247-271, 2006.



• If diversity is so important in ensembles, 
what role(s) does it play in dealing with class 
imbalance classification problems?
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Diversity in Class Imbalance Ensembles

Strong correlations have been found between diversity 
and generalisation performance measures [1]:

– Diversity showed a positive impact on the minority class, by 
making the ensemble produce smoother and less over-fitting 
classification boundaries for the minority class;

– Diversity was shown to be beneficial to both AUC and G-
mean (overall performance).

[1] S. Wang and X. Yao, “Relationships Between Diversity of Classification Ensembles and Single-Class Performance 
Measures,” IEEE Transactions on Knowledge and Data Engineering, 25(1):206-219, January 2013.



Making Use of Diversity: AdaBoost.NC

Building on the existing AdaBoost algorithm:

• Apply random oversampling to rectify the imbalanced 
distribution first.

• Encourage diversity: introduce diversity information (amb) into 
the weights of training examples in the sequential training 
procedure of AdaBoost.
– The weight-updating rule of AdaBoost is modified such that both high 

classification errors and high diversity will lead to larger weights.

S. Wang, H. Chen and X. Yao, “Negative correlation learning for classification ensembles”. Proc. of IJCNN’10, 
pp.2893-2900. IEEE Press, 2010.



AdaBoost.NC: Result Summary

AdaBoost.NC with random over-sampling is effective in 
classifying minority class examples correctly without
sacrificing the overall performance (in terms of AUC), in 
comparison to other methods.

S. Wang, H. Chen and X. Yao, “Negative correlation learning for classification ensembles”. Proc. of IJCNN’10, 
pp.2893-2900. IEEE Press, 2010.
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Multi-class Imbalance Learning

• Multi-class imbalance: there are more than two 
classes with uneven class distributions.

– E.g. In software defect prediction: there are different types 
of defects.

• Most existing imbalance learning techniques are only 
designed for and evaluated in two-class scenarios.

• Existing methods are not effective or even cause a 
negative effect when there is more than one 
minority/majority class [1].

[1] S. Wang and X. Yao, “Multi-Class Imbalance Problems: Analysis and Potential Solutions,” IEEE Transactions on 
Systems, Man and Cybernetics, Part B, 42(4):1119-1130, August 2012.



Research Questions

• Two types of multi-class imbalance : multi-minority and 
multi-majority.

1. Are there any differences between multiple minority and 
multiple majority classes?

2. Would these two types of problem pose the same or 
different challenges to a learning algorithm?

• More effective learning algorithms:

3. Can AdaBoost.NC be extended to tackle multi-class 
imbalance directly?

4. Is class decomposition necessary for multi-class problems?

S. Wang and X. Yao, “Multi-Class Imbalance Problems: Analysis and Potential Solutions,” IEEE Transactions on 
Systems, Man and Cybernetics, Part B, 42(4):1119-1130, August 2012.



Experimental Analysis: Multi-minority

• Multi-minority reduces the performance of ensemble 
learning, and 

• Data re-sampling does not help.

S. Wang and X. Yao, “Multi-Class Imbalance Problems: Analysis and Potential Solutions,” IEEE Transactions on 
Systems, Man and Cybernetics, Part B, 42(4):1119-1130, August 2012.



Experimental Analysis: Multi-majority

• The ensembles suffered from significant performance 
reduction because of multi-majority.

S. Wang and X. Yao, “Multi-Class Imbalance Problems: Analysis and Potential Solutions,” IEEE Transactions on 
Systems, Man and Cybernetics, Part B, 42(4):1119-1130, August 2012.



Key Messages

• Both multi-minority and multi-majority negatively 
affect the overall and minority-class performance. 

• In particular, the multi-majority case tends to be more 
challenging, in terms of F-measure and recall.

• Neither oversampling nor undersampling is satisfactory:

– Random oversampling suffers from overfitting as no new 
information is introduced into minority classes to facilitate 
classification;

– The effect of random undersampling is weakened when there 
are more minority classes.

S. Wang and X. Yao, “Multi-Class Imbalance Problems: Analysis and Potential Solutions,” IEEE Transactions on 
Systems, Man and Cybernetics, Part B, 42(4):1119-1130, August 2012.



Potential Solution: AdaBoost.NC

• AdaBoost.NC can better balance the performance 
across multiple classes with a high G-mean.

• Using class decomposition is unnecessary in tackling  
multi-class imbalance problems.

S. Wang and X. Yao, “Multi-Class Imbalance Problems: Analysis and Potential Solutions,” IEEE Transactions on 
Systems, Man and Cybernetics, Part B, 42(4):1119-1130, August 2012.



Why do we always separate sampling from 
learning?



Embedding Sampling into Learning

• Sampling/re-sampling does not have to be done 
separately before learning.

• Consider a single classifier, we can use the following 
simple strategy called DyS [1]:

– For every training example that is fed to the current classifier, 
the probability of it being actually used for training the 
classifier is first estimated. 

– Then the classifier is trained on this example according to 
that probability.

[1] M. Lin, K. Tang and X. Yao, “A Dynamic Sampling Approach to Training Neural Networks for Multi-class 
Imbalance Classification,” IEEE Transactions on Neural Networks and Learning Systems, 24(4):647-660, April 2013.



Estimating the Probability

• Very simple: considering both the current status of 
training and imbalanceness [1]:

– The examples that were misclassified will be selected to 
update the classifier.

– For the examples that were correctly classified, those from 
minority classes are emphasized more than those from  
majority classes.

[1] M. Lin, K. Tang and X. Yao, “A Dynamic Sampling Approach to Training Neural Networks for Multi-class Imbalance 
Classification,” IEEE Transactions on Neural Networks and Learning Systems, 24(4):647-660, April 2013.



Advantages of DyS

• Handle multiple classes easily.

• No need to worry about whether it’s over- or under-
sampling.

• Applicable to different classifiers.

• Very simple.
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Online Class Imbalance Learning

• A relatively new area of research, combining online 
learning with class imbalance learning.

• Online learning here means learning from data 
examples “one-by-one” without storing and 
reprocessing observed examples.

• Online class imbalance learning deals with data 
streams where data arrive continuously and the class 
distribution is imbalanced.

• It introduces new research challenges.



Defining Class Imbalance Is Difficult

To handle class imbalance online, we first need to define 
it by answering the following three questions:

1. Is the data stream currently imbalanced? 

2. Which classes belong to the minority/majority? 

3. What is the imbalance rate currently?

S. Wang, L. L. Minku and X. Yao, ``Resampling-Based Ensemble Methods for Online Class Imbalance Learning,'' 
IEEE Transactions on Knowledge and Data Engineering, 27(5):1356-1368, May 2015.



Online Bagging + Re-sampling

• Sampling is added to online bagging to handle 
imbalanced data streams [1]:

– Over-sampling based online bagging (OOB)

– Under-sampling based online bagging (UOB)

• We will look at two-class problems first.

• Use a simple parameter to adjust the re-sampling rate.

• No need to use any class imbalance detection method.

[1] S. Wang, L. L. Minku and X. Yao, ``Resampling-Based Ensemble Methods for Online Class Imbalance Learning,'' 
IEEE Transactions on Knowledge and Data Engineering, 27(5):1356-1368, May 2015.



Main Findings

• Both UOB and OOB performed significantly better than 
just OB, showing the importance of sampling.

• In most cases, UOB has the best performance in terms 
of the minority recall and G-mean.

• However, OOB is more robust against the imbalance 
rate changes.

• It is possible to combine the advantages of OOB and 
UOB.

S. Wang, L. L. Minku and X. Yao, “Resampling-Based Ensemble Methods for Online Class Imbalance Learning,” IEEE 
Transactions on Knowledge and Data Engineering, 27(5):1356-1368, May 2015.
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Multi-objective Class Imbalance Learning

• Multi-objective learning treats single class 
performances as separate objectives.

• Multi-objective optimisation algorithms, such as multi-
objective evolutionary algorithms (MOEAs), are used as 
learning algorithms.

• The result from such an MOEA is a non-dominated set 
of solutions (i.e., learners), which ideally form an 
ensemble we are interested in.
– A Chandra and X. Yao, ``Ensemble learning using multi-objective evolutionary algorithms,'' 

Journal of Mathematical Modelling and Algorithms, 5(4):417-445, December 2006.



Multi-objective Genetic Programming

• Still treat accuracy and diversity as separate objectives.

• Diversity is introduced explicitly to MOGP for classifying 
imbalanced data. Two alternatives to diversity definition:

– Negative correlation learning (NCL)
• Y. Liu and X. Yao, “Negatively correlated neural networks can produce best ensembles,” Australian Journal 

of Intelligent Information Processing Systems, vol. 4, pp. 176–185, 1997.

– Pairwise Failure Crediting (PFC)
• A. Chandra and X. Yao, “Ensemble learning using multi-objective evolutionary algorithms,” Journal of 

Mathematical Modelling and Algorithms, vol. 5, pp. 417–445, 2006.

• No need for sampling/re-sampling in MOGP.
– U. Bhowan, M. Johnston, M. Zhang and X. Yao, ``Evolving Diverse Ensembles using Genetic Programming for 

Classification with Unbalanced Data,‘’ IEEE Transactions on Evolutionary Computation, 17(3):368-386, June 
2013.



Ensemble Member Selection

• Sometimes it is unnecessary to include the entire set of 
classifiers found by MOEAs in an ensemble. A subset 
would be sufficient or even better.

• There are various methods for selecting a diverse 
subset of classifiers from a large set, e.g.,
– X. Yao and Y. Liu, “Making use of population information in evolutionary artificial neural 

networks,” IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 
28(3):417-425, June 1998.

– U. Bhowan, M. Johnston, M. Zhang and X. Yao, ``Reusing Genetic Programming for Ensemble 
Selection in Classification of Unbalanced Data,'' IEEE Transactions on Evolutionary 
Computation, 18(6):893-908, December 2014.
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Concluding Remarks

• Ensembles are competitive learning methods to tackle 
class imbalance problems.

• Diversity is the key issue in ensemble learning.

• Insight into diversity’s roles enables us to design better 
ensemble algorithms.

• Online class imbalance learning is a promising future 
research direction.

• We need more theoretical analysis of the algorithms.



Existing Work

• Use class decomposition: Converting a multi-class problem into a 
set of two-class sub-problems; then use two-class imbalance 
techniques to handle each obtained binary sub-task.

• Class decomposition schemes include (given a c-class task, c > 2):

– one-against-all (OAA): Each of the c classes is trained against all 
other classes. It results in c binary classifiers, making data more 
imbalanced.

– one-against-one (OAO): Each of the c classes is trained against 
every one of the other classes. It results in c(c-1)/2 binary 
classifiers. When c is large, the training time can be very long.

– P-against-Q (PAQ): Using P of the c classes against the other Q of 
the c classes, the training process is repeated several times. 
Different P classes are chosen at each time.

• No work treated multi-class imbalance problems as multi-class.



Experimental Analysis: Setup

• Data generation:
– Data points in each class are generated randomly from Gaussian distributions, where 

the mean and standard deviation of each attribute are random real values in [0,10].

– Small imbalanced data: each example has 2 attributes; each minority class has 10 
examples and each majority class has 100 examples.

– Large imbalanced data: each example has 20 attributes; each minority class has 100 
examples and each majority class has 1000 examples.

• Experimental settings:
– Multi-minority: the number of minority classes is varied from 1 to 20, and only one 

majority class exists.

– Multi-majority: the number of majority classes is varied from 1 to 20, and only one 
class is generated as the minority.

– 3 ensemble methods, each containing 51 C4.5 decision tree as base learners:

• the conventional AdaBoost that is trained from the original imbalanced data (baseline 
model);

• random oversampling + AdaBoost;

• random undersampling + AdaBoost.



Experimental Results: Multi-minority



Experimental Results: Multi-majority



Detecting Imbalance: 
Time-decayed Class Size 

• Given a data stream (xt, yt), where yt can be c1, c2, … cN, 
define the class size as 



Detecting Imbalance: Recall



Minority vs. Majority



OOB and UOB



Combining OOB and UOB (I): WEOB1

• Suppose OOB has G-mean value go and UOB has G-
mean value gu at the current moment. Let αo and αu

denote the weights of OOB and UOB respectively. 



Combining OOB and UOB (II): WEOB2
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