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Models and control

If physics is the science of understanding the physical environment, then control theory may be
viewed as the science of modifying that environment [...] Control theory does not deal
directly with physical reality but with mathematical models.

Rudolf Kalman, Control Theory, Encyclopædia Britannica

x+/ẋ = Ax+Bu
y = Cx+Du

x+/ẋ = f(x, u)
y = h(x, u)

Data-driven control

To offset the lack of “known” models by the use of data

Using data through the lenses of control theory
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Control when the dynamics is “unknown”
If the model is unknown, there are a few approaches

System identification from data + control of the identified system

• G. Pillonetto et al. “Kernel methods in system identification, machine learning and function estimation: A survey”.

Automatica, 50(3):657–682, 2014.

Direct data-based control design

• M.C. Campi, A. Lecchini, and S.M. Savaresi. “Virtual reference feedback tuning: a direct method for the design of

feedback controllers”. Automatica, 38(8):1337-1346, 2002.

These lectures “Direct” design of controllers from data for “unknown” systems

Direct because the method returns controllers via data-dependent SDPs

The system is “unknown” but some priors are available

Data are collected to infer information about the dynamics

The method





works with perturbed data of low complexity
provides analytical guarantees of correctness
is based on basic tools of automatic control
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Control when the dynamics is unknown

These lectures “Direct” design of controllers from data for “unknown” systems

Lec 1
Linear systems
Unperturbed data of low complexity

Lec 2 Perturbed data

Lec 3 Extensions

Lec 4 Nonlinear systems

The lectures will present a personal perspective and will focus on a few selected
papers (listed at the end of the lectures). A broader overview and a discussion of
related work are discussed in those papers.
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Outline Lecture 1

We will study 3 (data-driven) control problems

• Full measurements Stabilization of linear systems via static state feedback

• Optimality Linear Quadratic Regulation

• Partial measurements Stabilization of linear systems via dynamic output
feedback

To introduce the main ideas, in Lecture 1 we consider the ideal case of
unperturbed (noise-free) data and linear systems.

Before diving into the control design, we introduce the dataset and a concept that
is at the core of these lectures.
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Dynamical control systems

We focus our attention on systems of the form

x+ = Ax+Bu

. x ∈ Rn (state) and u ∈ Rm (control)

. A ∈ Rn×n, B ∈ Rn×m are unknown matrices

Focus on discrete-time systems (but we will also briefly remark on continuous-time
systems later on)
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Dataset

Information about the system’s dynamics is obtained from a T -long dataset of
input/state samples collected during (multiple) experiment(s)

D := {u(k), x(k)}Tk=0

where the samples satisfy

x(k + 1) = Ax(k) +Bu(k), k = 0, . . . , T − 1
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Persistence of excitation

The approach to the design of controllers from data is inspired by nonparametric data-dependent
representations of the unknown dynamics. To recall the origin of such a representation, we recall a
notion of persistently exciting signals, which is useful to generate “rich” data.

Definition The sequence of input values u : [0, T − 1] ∩ Z→ Rm

u(0), u(1), . . . , u(T − 1)

is persistently exciting (PE) of order L if the Hankel matrix associated to it

U0 =




u(0) u(1) . . . u(T − L)
u(1) u(2) . . . u(T − L+ 1)

...
...

. . .
...

u(L− 1) u(L) . . . u(T − 1)




has full rank mL.

PE requires sufficiently long input sequences: T ≥ (m+ 1)L− 1

6 / 54



Generating PE signals

global L m T ud

% Initializing the length of the probing input sequence

T=L*(m+1)-1;

% Generating the probing input sequence ud on [0,T-1]

% taking values in the interval [-0.5,0.5] in the form

% of an m x T matrix [ud(0) ud(1) .... ud(T-1)]

aux=zeros(m,T);

aux(:)=0.5;

ud(1:m,1:T)=rand(m,T)-aux;

% Computing the Hankel matrix Ud on [0,T-1]

for j=1:T-L+1

for i=1:L

Ud((i-1)*m+1:(i-1)*m+m,j)=ud(1:m, j+i-1);

end

end

% If rank(Ud)= m*L then the sequence ud(0),...ud(T-1) is PE

% of order L as desired

if rank(Ud)== m*L

disp(’input sequence is PE’);

end

Time k
0 1 2 3 4 5 6

S
ig

na
l u

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

L = 3, n = 2,m = 1⇒ T = 5

u[0,T−1] =

[−0.355 0.353 0.1221 − 0.149 0.0132]

U0 =

−0.3550 0.3530 0.1221
0.3530 0.1221 −0.1490
0.1221 −0.1490 0.0132


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The Fundamental Lemma
A PE input applied to a linear reachable? system produces data that are sufficiently rich.
?A system is reachable if and only if rank

[
B AB . . . An−1B

]
= n

Lemma Let system
x(k + 1) = Ax(k) +Bu(k)

be reachable. For any t ≥ 1,

u[0,T−1] PE of order n+ t ⇒ rank

[
U0

X0

]
= n+ tm

where the matrix U0 consists of the samples of the input sequence u[0,T−1] = {u(0), u(1), . . . , u(T − 1)}

U0 =


u(0) u(1) . . . u(T − t)
u(1) u(2) . . . u(T − t+ 1)

...
...

. . .
...

u(t− 1) u(t) . . . u(T − 1)


and the matrix X0 consists of the samples of the state response x(k + 1) = Ax(k) +Bu(k),
k = 0, 1, . . . , T − t, to the input sequence u[0,T−1]

X0 =
[
x(0) x(1) . . . x(T − t)

]
J.C. Willems, P. Rapisarda, I. Markovsky, B.L. De Moor. “A note on persistency of excitation.” Systems & Control
Letters, 54, 4, 325–329, 2005.
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Example

A partially known model (n = 2, m = 1, controllable system)

u[0,T−1] PE of order n+ t = 3 (n = 2, t = 1), with T = (n+ t)(m+ 1)− 1 = 5

u[0,T−1] =
[
−0.3550 0.3530 0.1221 −0.1490 0.0132

]
We “experimentally” determine the matrix (U0 ∈ Rm×T−t, X0 ∈ Rn×T−t)

[
U0

X0

]
=

−0.3550 0.3530 0.1221 −0.1490 0.0132

0.4027 0.3478 0.3571 0.3216 0.2362
0.4448 1.1451 1.7499 2.3708 2.9301


where

X0 =
[
x(0) x(1) x(2) x(3) x(4)

]
contains the state response of the system from the initial condition x(0) to the input u[0,4]. As

predicted,

[
U0

X0

]
has rank n+ tm = 3.

9 / 54



Profound implications for control

LINEAR  
SYSTEM 
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
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For a controllable linear system
(i) Let u(0), . . . , u(T − 1) be PE of order
n+ t, t ≥ 1, then any t-long input/state
trajectory of the system (ū[0,t−1], x̄[0,t−1])
can be expressed as

[
ū[0,t−1]

x̄[0,t−1]

]
=

[
U0

X0

]
g

where g ∈ RT−t+1.
(ii) Any linear combination of the
columns of the matrix of data, i.e.,

[
U0

X0

]
g,

is a t-long input-state trajectory of the
system.

J. Coulson, J. Lygeros, F. Dörfler. “Data-Enabled Predictive Control: In the Shallows of the DeePC.” European Control
Conference, 2019. 10 / 54



Relating closed-loop trajectories with data
Consider Item (i) in the special case t = 1. Then

[
ū[0,t−1]

x̄[0,t−1]

]
=

[
U0

X0

]
g becomes

[
ū(0)
x̄(0)

]
=

[
U0

X0

]
g

Given a K ∈ Rm×n, consider n 1-long input/state trajectories

[
ū(0)
x̄(0)

]
=

[
Kx̄(0)
x̄(0)

]
, x̄(0) = ei, i = 1, 2, . . . , n

where ei is the i-th vector of the canonical basis of Rn.

Then [
K
In

] [
e1 . . . en

]
=

[
U0

X0

] [
g1 . . . gn

]

that is,

[
K
In

]
=

[
U0

X0

]
G
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Stabilization of linear systems



Data-dependent representations

Consider the dataset

D = {u(k), x(k)}Tk=0 , x(k + 1) = Ax(k) +Bu(k), k = 0, . . . , T − 1

and store it into matrices U0, X0, X1 defined as

U0 :=
[
u(0) u(1) · · · u(T − 1)

]

X0 :=
[
x(0) x(1) · · · x(T − 1)

]

X1 :=
[
x(1) x(2) · · · x(T )

]

which satisfy the identity

[
x(1) x(2) . . . x(T )

]
︸ ︷︷ ︸

X1

= A
[
x(0) x(1) . . . x(T − 1)

]
︸ ︷︷ ︸

X0

+B
[
u(0) u(1) . . . u(T − 1)

]
︸ ︷︷ ︸

U0

X1 = AX0 +BU0
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Data-dependent representations
Consider a full-state feedback u = Kx and the resulting closed-loop system
x+ = (A+BK)x

Consider any matrices K ∈ Rm×n, GK ∈ RT×n such that1

[
K
In

]
=

[
U0

X0

]
GK

where
U0 =

[
u(0) u(1) . . . u(T − 1)

]

X0 =
[
x(0) x(1) . . . x(T − 1)

] X1 = AX0 +BU0

The matrix A+BK of the closed-loop system x+ = (A+BK)x is arranged as

A+BK

=
[
B A

] [K
In

]
[
K
In

]
=

[
U0
X0

]
GK

=
[
B A

] [U0

X0

]
GK

X1=[B A]
[
U0
X0

]
= X1GK

1If
[
U0
X0

]
has full row rank, then for any K a GK exists by Rouché-Capelli theorem.
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Data-based parametrization of the closed-loop system

Consider system
x+ = Ax+Bu

in closed-loop with a state feedback u = Kx. Consider any matrices K ∈ Rm×n,
GK ∈ RT×n such that [

K
In

]
=

[
U0

X0

]
GK

Then the closed-loop system x+ = (A+BK)x has the following equivalent
representation

x+ = X1GKx

. The representation depends on data U0, X0, X1 and design variables GK

. The design of the controller is shifted from K to GK and in the process the
system’s matrices are replaced by data.

. If the system is controllable and the input PE of order n+ 1, rank
[
U0
X0

]
= n+m

and matrices K ∈ Rm×n, GK ∈ RT×n such that
[
K
In

]
=
[
U0
X0

]
GK exist.

C. De Persis, P. Tesi. “Formulas for data-driven control: stabilization, optimality, robustness”. IEEE Transactions on
Automatic Control, 65, 3, 909–924, 2020.
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Data-based stabilization



LMIs

A linear matrix inequality (LMI) is an expression of the form

F (y) := F0 + F1y1 + . . .+ FNyN ≺ 0

where

• F : RN → SM×M is an affine function

• y =
[
y1 . . . yN

]> ∈ RN is the variable

• F0, F1, . . . , FN are symmetric matrices

• F (y) ≺ 0 means that F (y) is negative definite

Note that since F is affine, it takes necessarily the form F (y) = F0 + T (y), with
T : RN → SM×M a linear function

A non-strict LMI is a linear matrix inequality of the form F (y) � 0

C. Scherer and S. Weiland, “Linear matrix inequalities in control”. Notes for a course of the Dutch Institute of Systems
and Control, 2004.
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Functions of matrix variables as LMIs

LMIs often appear as functions of matrix variables, that is in the form

F̂ (Y ) ≺ 0 Y ∈ RN1×N2 matrix variable

where F̂ (Y ) = T̂ (Y ) + F̂0 and T̂ (Y ) linear.
This is a special case of F (y) = F0 + F1y1 + . . .+ FNyN ≺ 0. Let E1, . . . , En be a
basis of RN1×N2 and let

Y =
∑

j

yjEj , yj ∈ R

Then
0 � F̂ (Y ) = F̂0 + T̂ (

∑

j

yjEj) = F̂0︸︷︷︸
=:F0

+
∑

j

yj T̂ (Ej)︸ ︷︷ ︸
=:Fj
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Systems of LMIs
A system of LMIs 




F (1)(y) ≺ 0
F (2)(y) ≺ 0
...
F (p)(y) ≺ 0

is still an LMI, because it is equivalent to




F (1)(y) 0 . . . 0
0 F (2)(y) . . . 0
...

... . . .
...

0 0 . . . F (p)(y)


 ≺ 0

which in turn is equivalent to




F
(1)
0 0 . . . 0

0 F
(2)
0 . . . 0

...
... . . .

...

0 0 . . . F
(p)
0




+

N∑

j=1

yj




F
(1)
j 0 . . . 0

0 F
(2)
j . . . 0

...
... . . .

...

0 0 . . . F
(p)
j



≺ 0
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Feasibility and optimization

LMI are studied in connection with the following two problems

• Feasibility whether or not there exists y ∈ RN such that F (y) ≺ 0

• Optimization Given a function f : S → R, where S = {y ∈ RN : F (y) ≺ 0}, an
optimization problem with LMI constraints is infy∈S f(y).

An LMI defines a convex set, i.e., the set {y : F (y) ≺ 0} is a convex set, hence checking the
feasibility of an LMI or optimizing a convex function over a constraint defined by an LMI
is a convex optimization problem

Minimizing linear objective functions over symmetric semidefinite matrix variables belongs
to the realm of semidefinite programming for which effective numerical methods and
software are available.

Here to illustrate some examples we use CVX.
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Schur complement
Schur complement is a powerful tool to linearize nonlinear inequalities.

Consider the LMI

F (y) =

[
F11(y) F12(y)
F21(y) F22(y)

]
≺ 0

where F11(y), F22(x), F12(y) are affine functions. Then∗

F (y) ≺ 0~w�{
F11(y) ≺ 0
F22(y)− F21(y)[F11(y)]−1F12(y) ≺ 0~w�{
F22(y) ≺ 0
F11(y)− F12(y)[F22(y)]−1F21(y) ≺ 0

∗The proof is based on the factorizations

[
F11 F12
F21 F22

]
=


[

I 0

F21F
−1
11 I

] [
F11 0

0 F22 − F21F
−1
11 F12

] [
I F−1

11 F12
0 I

]
if F11 is invertible[

I F12F
−1
22

0 I

] [
F11 − F12F

−1
22 F21 0

0 F22

] [
I 0

F−1
22 F21 I

]
if F22 is invertible
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Direct data-driven stabilization

Problem (Quadratic stabilization) Based on the dataset D

find K,P � 0

such that (A+BK)P (A+BK)> − P ≺ 0

. If the quadratic stabilization problem is solvable, then u = Kx makes the origin
a globally exponentially stable equilibrium for the closed-loop system x+ = (A+BK)x,
i.e., ∃c, 0 ≤ ρ < 1 such that |x(k)| ≤ cρk|x(0)| for all k ≥ 0 and all x(0) ∈ Rn.

. V (x) = x>Px is a strict Lyapunov function, i.e., a positive definite function such that
V (x+)− V (x) < 0 for all x 6= 0.

As A,B are unknown, to find a solution to the problem the idea is to work with X1GK
instead of A+BK under the condition for which X1GK = A+BK
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A formula for direct data-driven stabilization

For any K,GK such that

[
K
In

]
=

[
U0

X0

]
GK , we have A+BK = X1GK

Theorem Consider a system x+ = Ax+Bu with dataset U0, X1, X0. Consider the
decision variables

P ∈ Rn×n, Y ∈ RT×n

and the following SDP

X0Y = P (1a)
[
−P X1Y

Y >X>1 −P

]
≺ 0 (1b)

If it is feasible then the control gain

K = U0Y P
−1

solves the quadratic stabilization problem.
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Let (1) be feasible. Constraint (1b) guarantees P � 0. Hence P is invertible.
Constraint (1a) can be equivalently written as

(1a) X0Y = P ⇔ X0Y P
−1 = In,

Perform the change of variable GK := Y P−1, to obtain X0GK = In.

By the same change of variable,
the control gain

K = U0Y P
−1

can be written as K = U0GK

Hence,
[
K
In

]
=
[
U0

X0

]
GK . This returns the data-dependent representation of the closed-loop

system, i.e., A+BK = X1GK .

Consider constraint (1b)
[
−P X1Y

Y>X>1 −P

]
≺ 0. By Schur complement, the inequality is

equivalent to P � 0 and −P +X1Y P
−1Y >X>1 ≺ 0. Rewrite the last inequality as

−P +X1Y P
−1PP−1Y >X>1 ≺ 0. Bearing in mind the change of variable GK = Y P−1, the

latter can be written as −P +X1GKPG
>
KX

>
1 ≺ 0, or, by the identity A+BK = X1GK , as

P � 0, (A+BK)P (A+BK)> − P ≺ 0
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Data-based parameterization of all stabilizing controllers

Under the assumption of sufficiently rich data, i.e.,
[
U0
X0

]
has full row rank, then

one can parametrize via data all the controllers that solve the quadratic
stabilization problem.

Corollary Assume that
[
U0
X0

]
has full row rank. Any control gain K ∈ Rm×n that

solves the quadratic stabilization problem must be of the form

K = U0Y P
−1

where Y, P are a solution of

X0Y = P (2a)
[
−P X1Y

Y >X>1 −P

]
≺ 0 (2b)
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As K is stabilizing, A+BK is Schur stable, that is, equivalently, there exists P � 0 such
that (A+BK)P (A+BK)> − P ≺ 0.

As
[
U0

X0

]
has full row rank, by Rouché-Capelli theorem there must exist GK such that

[
K
In

]
=

[
U0

X0

]
GK

Hence, K = U0GK , In = X0GK and A+BK = X1GK . The latter implies that the
Lyapunov inequality can be equivalently rewritten as

P � 0, X1GKP (X1GK)> − P ≺ 0

Proceedings as before, one performs the change of variable Y := GKP and the Lyapunov
inequality above is equivalently rewritten as

[
−P X1Y

Y >X>1 −P

]
≺ 0

The identities K = U0GK , In = X0GK expressed in the variables Y, P return
K = U0Y P

−1, In = X0Y P
−1.
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Exercise

Consider the decision variables P ∈ Rn×n, Y ∈ RT×n and the following SDP

X0Y = P
[
−P Y >X>1
X1Y −P

]
≺ 0 (3a)

Show that, if it is feasible, then the control law u = Kx with K = U0Y P
−1 and

the matrix P−1 � 0 satisfy

(A+BK)>P−1(A+BK)− P−1 ≺ 0

Solution The proof proceeds as in the case of the previous result until the manipulation of
the constraint (3a), which is goes in a slightly different way as follows. By Schur
complement, the inequality is equivalent to P � 0 and −P + Y >X>1 P

−1X1Y ≺ 0.
Multiply the last inequality by P−1 on both sides, to obtain
−P−1 + P−1Y >X>1 P

−1X1Y P
−1 ≺ 0. Bearing in mind the change of variable G = Y P−1,

the latter can be written as −P−1 +G>X>1 P
−1X1G ≺ 0, or, by the identity

A+BK = X1G, as P � 0, (A+BK)>P−1(A+BK)− P−1 ≺ 0, as claimed.
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Example (cont’d)
Data-based stabilization of the unknown dynamics

State response to PE input from experiment

X0 =

[
0.4027 0.3478 0.3571 0.3216 0.2362
0.4448 1.1451 1.7499 2.3708 2.9301

]

X1 =

[
0.3478 0.3571 0.3216 0.2362 0.1541
1.1451 1.7499 2.3708 2.9301 3.3409

]

Solve for Y the (nonstrict) LMI

cvx_begin sdp

variable Y(T,n)

variable P(T,n) symmetric

[P X1*Y; Y’*X1’ P]>=eye(2*n);

P=X0*Y

cvx_end

which returns

Y =




27.4724 −20.8515
−25.5235 −8.8555
−1.6399 −2.0356
5.3938 3.6399
0.1696 18.8019




P =

[
3.3752 −6.5922
−6.5922 40.7437

]

S. Boyd. “Solving semidefinite programs using cvx,” http://stanford.edu/class/ee363/notes/lmi-cvx.pdf
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Example

Feedback gain
K = U0Y P

−1 =
[
−8.2995 −1.2512

]

Time k
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S
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Figure: Unforced solution u(k) = 0
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Figure: Solution under data-based feedback
u(k) = Kx(k)

Spectral radius data-based controlled system ρ(X1Y P
−1) = 0.5666
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A few comments

• Simple solution: data-dependent Lyapunov stability theory

• The data-based problem is solvable via efficient numerical algorithms (cvx)

• It only requires a finite number of data collected in one-shot low sample-complexity
experiments (T ≥ (m+ 1)(n+ 1)− 1)

• If the system is high-dimensional and highly unstable, then collecting data in one-shot
experiment of length T might not be viable and one can use multiple dataset of
shorter length

• The result provides a parametrization of all stabilizing state feedback gains

• The result can be extended to design dynamic output feedback control from data
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The case of continuous-time systems
Input and state sampled trajectories Given a sampling time ∆ > 0, let

U0 =
[
ud(0) ud(∆) . . . ud((T − 1)∆)

]

X0 =
[
xd(0) xd(∆) . . . xd((T − 1)∆)

]

Data-dependent representation of the closed-loop system As in the discrete-time case,
A+BK = X1GK where

X1 :=
[
ẋd(0) ẋd(∆) . . . ẋd((T − 1)∆)

]

Lyapunov stability condition Any matrix Y satisfying

{
X1Y + Y >X>1 ≺ 0

P = X0Y � 0

is such that K = U0Y (X0Y )−1 is a stabilizing feedback gain for the continuous-time system

Main difference Derivatives of the state at the sampling times X1 are required =⇒ Noisy

data (Lecture 2-4)
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The case of continuous-time systems
Alternative2 Integral version of ẋ = Ax+Bu

ξ(k)︷ ︸︸ ︷
x((k + 1)Ts)− x(kTs) = A

r(k)︷ ︸︸ ︷∫ (k+1)Ts

kTs

x(t)dt+B

v(k)︷ ︸︸ ︷∫ (k+1)Ts

kTs

u(t)dt

and work with the relation

X1︷ ︸︸ ︷[
ξ(0) . . . ξ(T − 1)

]
= A

X0︷ ︸︸ ︷[
r(0) . . . r(T − 1)

]
+B

U0︷ ︸︸ ︷[
v(0) . . . v(T − 1)

]

Lyapunov stability condition Any matrix Y satisfying

{
X1Y + Y >X>1 ≺ 0

P = X0Y � 0

is such that K = U0Y (X0Y )−1 is a stabilizing feedback gain for the continuous-time
system (and does not require state derivatives!)

2
De Persis, Postoyan, Tesi. Event-triggered control from data. IEEE Transactions on Automatic Control (provisionally

accepted), arXiv:2208.11634
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Optimality



Optimality - Linear Quadratic Regulation

LQR problem Assume (A,B) reachable. Consider the problem of minimizing

J∞(x0, u) :=

∞∑

k=0

(x(k)Qx(k) + u(k)>Ru(k)), Q � 0, R � 0

over the set of input sequences u : Z≥0 → Rm for which the solution x : Z≥0 → Rn to
x(k + 1) = Ax(k) +Bu(k), x(0) = x0, satisfies limk→∞ x(k) = 0.

There exists a unique optimal controller given by

u? := K?x, K? := −(R+B>PB)−1B>PA

where P � 0 is the unique solution of the DARE

A>PA− P −A>PB(R+B>PB)−1B>PA+Q = 0

that renders the matrix A−B(R+B>PB)−1B>PA Schur stable. Moreover, the optimal
cost is x>0 Px0.

Importance of data-driven LQR
. Infinite-horizon LQR is the prime example of challenges encountered in data-driven optimal

control (effect of noise, deviation from optimality)

. Of interest to both the data-driven control and machine learning community
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A reformulation of LQR: computing K? via SDP

For the system
x(k + 1) = Ax(k) +Bu(k) + ξ(k)

z(k) =

[
Q1/2 0

0 R1/2

] [
x
u

]
(?)

design K that
. makes A+BK Schur stable
. minimizes the sum of the squares of the energy of the output responses to the impulse inputs of

the closed-loop system
x(k + 1) = (A+BK)x(k) + ξ(k)

z(k) =

[
Q1/2

R1/2K

]
x(k)
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Impulse response
Consider the Schur stable closed-loop system

x(k + 1) = (A+BK)︸ ︷︷ ︸
Ac

x(k) + In︸︷︷︸
Bc

·ξ(k)

z(k) =

[
Q1/2

R1/2K

]
︸ ︷︷ ︸

Cc

x(k)

and compute the output energy of the impulse responses of the system.

. Let z(j) be the response to the impulse ejδ(k), with ej the j-th vector of the canonical basis of Rn and
δ(k) the discrete-time impulse

z(j)(k) =

{
0 k = 0

CcA
k−1
c ej k > 0

. Let ‖z(j)‖22 denote its energy (the series is summable because Ac is Schur)

∞∑
k=0

‖z(j)(k)‖2 =
∞∑
k=0

e>j (A>c )kC>c CcA
k
c ej =

∞∑
k=0

trace(CcA
k
c eje

>
j (A>c )kC>c )

Then
n∑
j=1

‖z(j)‖22 = trace
( ∞∑
k=0

CcA
k
cBcB

>
c (A>c )kC>c

)
= trace

( ∞∑
k=0

B>c (A>c )kC>c CcA
k
cBc

)
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From
∑n
j=1 ‖z(j)‖22 = trace

( ∞∑

k=0

CcA
k
cBcB

>
c (A>c )k

)
= trace

(
Cc

( ∞∑

k=0

AkcBcB
>
c (A>c )k

)
C>c

)
,

if one sets

P :=

∞∑

k=0

AkcBcB
>
c (A>c )k

one realizes that P , the controllability gramian, is the (unique) positive semidefinite
matrix satisfying

AcPA
>
c − P +BcB

>
c = (A+BK)P (A+BK)> − P + I = 0

The last equation and P � 0 implies that

P = (A+BK)P (A+BK)> + I � I

Finally

n∑

j=1

‖z(j)‖22 = trace
(
CcPC

>
c

)

= trace
([ Q1/2

R1/2K

]
P

[
Q1/2

R1/2K

]>)
= trace(QP ) + trace(R1/2KPK>R1/2)
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In summary The sum of the squares of the energy of the output responses to the
impulse inputs of the Schur stable system

x(k + 1) = (A+BK)︸ ︷︷ ︸
Ac

x(k) + In︸︷︷︸
Bc

·ξ(k)

z(k) =

[
Q1/2

R1/2K

]

︸ ︷︷ ︸
Cc

x(k)

is given by
n∑

j=1

‖z(j)‖22 = trace(QP ) + trace(R1/2KPK>R1/2)

with P the unique matrix satisfying

(A+BK)P (A+BK)> − P + In = 0
P � In
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The H2-norm minimization problem
H2-norm By the discrete-time version of Parseval’s theorem

n∑

j=1

‖z(j)‖22 = ‖T (K)‖22

where ‖T (K)‖22 is the H2-norm? of the transfer function T (K) of the Schur stable system

x(k + 1) = (A+BK)︸ ︷︷ ︸
Ac

x(k) + In︸︷︷︸
Bc

·ξ(k)

z(k) =

[
Q1/2

R1/2K

]

︸ ︷︷ ︸
Cc

x(k)

?‖T (K)‖22 :=
1

2π

∫ 2π

0
trace

(
T (eiθ)∗T (eiθ)

)
dθ where T (eiθ) := T (K)|z=eiθ

The state feedback controller that minimizes ‖T (K)‖22, i.e., that solves

minK,P trace(QP ) + trace(R1/2KPK>R1/2)

subject to

{
(A+BK)P (A+BK)> − P + In = 0

P � In
is unique and coincides with the solution to the LQR problem, i.e., K = K? (Chen-Francis,
Optimal sampled-data control system, Section 6.4). 28 / 54



A semidefinite program for solving the H2-norm minimization problem
The previous arguments suggest the following convex relaxation of the H2-norm
minimization problem

minK,P,L trace (QP ) + trace (L)

subject to



(A+BK)P (A+BK)> − P + In�0

P � In
L−R1/2KPK>R1/2 � 0

where the equality constraint is relaxed to an inequality and the constraint

R1/2KWK>R1/2 � L

is introduced to remove
trace(R1/2KWK>R1/2)

from the cost function and replace it with the linear term trace(L).

By (Feron et al., Proposition 1), under the given assumptions, the problem above is
well-posed, ie. the feasible set is compact or empty. As the feasible set is non-empty, then
the feasible set is compact.
E. Feron, V. Balakrishnan, S. Boyd, L. El Ghaoui, “Numerical methods for H2 related problems,” in 1992 American
Control Conference, pp. 2921–2922.

29 / 54



A data-dependent solution to the LQR

The H2-norm minimization problem and its convex relaxation

minK,P trace(QP ) + trace(R1/2KPK>R1/2)

subject to

{
(A+BK)P (A+BK)> − P + In = 0

P � In

minK,P,L trace (QP ) + trace (L)

subject to


(A+BK)P (A+BK)> − P + In � 0

P � In
L−R1/2KPK>R1/2 � 0

are related as follows

Proposition A solution (K,P ,L) to the convex relation is such that (K,P ) is the solution
to the H2-norm minimization problem. Moreover, K = K?, that is, K is the solution to
the optimal LQR problem.
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A data-dependent solution to the LQR

The previous optimization problem leads to the following data-dependent SDP for designing the
LQR from data

minG,P,L trace (QP ) + trace (L)

subject to
X1GPG

>X>1 − P + In � 0

P � In
L−R1/2U0GPG

>U>0 R
1/2 � 0

X0G = In

(DD-SDP-LQR)

Theorem Assume that
[
U0
X0

]
has full row rank. Any optimal solution (Go, P o, Lo) to

(DD-SDP-LQR) is such that Ko := U0G
o satisfies

K? = Ko

and
‖T (Ko)‖22 = trace(QP o) + trace(Lo)
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A sketch of proof

Lemma 1 Consider any control gain K stabilising for

x(k + 1) = Ax(k) +Bu(k) + ξ(k)

z(k) =

[
Q1/2 0

0 R1/2

] [
x
u

]
(?)

Then there exists a triple (GK , P, L) feasible for (DD-SDP-LQR) such that

K = U0GK and ‖T (K)‖22 = trace(QP ) + trace(L)

Let K? be the optimal controller and GK? be such that
[
K?

In

]
=

[
U0

X0

]
GK?

As K? is stabilizing,
A+BK∗ = X1GK? is Schur stable and

‖T (U0GK?)‖22 = trace(QP?) + trace(R1/2U0GK?P?G
>
K?U

>
0 R

1/2)

with P? such that
X1GK?P?X1G

>
K? − P? + I = 0, P? � I
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A sketch of proof

Lemma 1 Consider any control gain K stabilising for (?). Then there exists a triple
(GK , P, L) feasible for (DD-SDP-LQR) such that

K = U0GK and ‖T (K)‖22 = trace(QP ) + trace(L)

For a given K, let GK be such that
[
K
In

]
=

[
U0

X0

]
GK ⇐⇒ K = U0GK , In = X0GK

As K is stabilizing, A+BK = X1GK is Schur stable and there exists a unique
controllability gramian P such that

X1GKPX1G
>
K − P + I = 0, P � I

Moreover, ‖T (U0GK)‖22 = trace(QP ) + trace(R1/2U0GKPG
>
KU
>
0 R

1/2)

Set L := R1/2U0GKPG
>
KU
>
0 R

1/2. Then

‖T (U0GK)‖22 = trace(QP ) + trace(L)

and (GK , P, L) is feasible for (DD-SDP-LQR)
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A sketch of proof

Lemma 1 Consider any control gain K stabilising for (?). Then there exists a triple
(GK , P, L) feasible for (DD-SDP-LQR) such that

K = U0GK and ‖T (K)‖22 = trace(QP ) + trace(L)

The feasible
solution (GK , P, L)
to

minGK ,P,L trace (QP ) + trace (L)

subject to




X1GKPG
>
KX

>
1 − P + In � 0

P � In
L−R1/2U0GKPG

>
KU
>
0 R

1/2 � 0

X0GK = In

(DD-SDP-LQR)

was obtained by

• computing GK as a solution to

[
K
In

]
=

[
U0

X0

]
GK

• Setting P equal to the controllability gramian, i.e. X1GKPG
>
KX

>
1 − P + In = 0,

P � In
• Setting L = R1/2U0GKPG

>
KU
>
0 R

1/2
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A sketch of proof

Lemma 2 Any feasible solution (GK , P, L) to (DD-SDP-LQR) is such that K = U0GK is
stabilizing for (?) and

‖T (K)‖22 ≤ trace(QP ) + trace(L)

Proof – see Exercise #1 As In = X0GK , setting K = U0GK yields A+BK = X1GK . Hence,
P � I and X1GKPX1GK

> − P + I � 0 show that K = U0GK is stabilising.
The inequality

X1GKPX1GK
> − P + I � 0 implies the existence of a matrix Θ such that

X1GKPX1GK
> − P + I + ΘΘ> = 0

Hence, P is the controllability Gramian of the system

x(k + 1) = X1GKx(k) +
[
I Θ

]
ξ(k)

z(k) =

[
Q1/2

R1/2K

]
x(k)

and, therefore, ‖Te(K)‖22 = trace(QP ) + trace(R1/2KPK>R1/2).

We conclude

‖T (K)‖22 ≤ ‖Te(K)‖22 ≤ trace(QP ) + trace(L), since ‖Te(K)‖22 =
∞∑
k=0

Cc · (X1GK)
k [I Θ

] [ I

Θ>

]
(G
>
KX
>
1 )
k
C
>
c =

∞∑
k=0

Cc(X1GK)
k
I (G

>
KX
>
1 )
k
C
>
c +

∞∑
k=0

. . .ΘΘ
>
. . .
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A sketch of proof
Exercise #1
(a) Show that K = U0GK is stabilising.
As In = X0GK , setting K = U0GK yields A+BK = X1GK . Since (GK , P, L) is a feasible
solution, P � I and X1GKPX1GK

> − P + I � 0 show that X1GK is Schur stable, hence
K = U0GK is stabilising.

(b) Show that the inequality X1GKPX1GK
> − P + I � 0 implies the existence of a matrix Θ

such that P is the controllability Gramian of the system

x(k + 1) = X1GKx(k) +
[
I Θ

]
ξ(k)

z(k) =

[
Q1/2

R1/2K

]
x(k)

Since X1GK is Schur stable, P is the controllability gramian for the system if and only if

X1GKPX1GK
> − P + I +

[
I Θ

] [
I Θ

]>
= 0

Hence, one needs to prove the existence of a matrix Θ such that the equation above holds. Since
X1GKPGK

>X>1 − P + I � 0, then there exists Θ such that

X1GKPX1GK
> − P + I + ΘΘ> = 0

In fact, set Ξ := −(X1GKPX1GK
> − P + I). Then X1GKPX1GK

> − P + I + Ξ = 0. Since

Ξ � 0, by Cholesky factorization, we have Ξ = ΘΘ>.



A sketch of proof

(c) Show that ‖Te(K)‖22 = trace(QP ) + trace(R1/2KPK>R1/2), where Te(K) is the
transfer function of

x(k + 1) = X1GKx(k) +
[
I Θ

]
ξ(k)

z(k) =

[
Q1/2

R1/2K

]
x(k)

Since P is the controllability gramian for the system, then

‖Te(K)‖22 = trace
([ Q1/2

R1/2K

]
P

[
Q1/2

R1/2K

]>)

and the claim follows immediately by the definition of trace.

(d) Conclude ‖T (K)‖22 ≤ ‖Te(K)‖22 ≤ trace(QP ) + trace(L)
By Parseval’s theorem the total energy of the output impulsive responses equals the
H2-norm squared of the system

‖Te(K)‖22 = trace
( ∞∑

k=0

Cc · (X1GK)k
[
I Θ

] [ I
Θ>

]
(G>KX

>
1 )kC>c

)



A sketch of proof

Hence

‖Te(K)‖22 = trace
( ∞∑
k=0

Cc · (X1GK)k
[
I Θ

] [ I
Θ>

]
(G>KX

>
1 )kC>c

)
=

trace
( ∞∑
k=0

Cc(X1GK)k I (G>KX
>
1 )kC>c

)
+ trace

( ∞∑
k=0

Cc(X1GK)kΘΘ>(G>KX
>
1 )kC>c

)
≥

trace
( ∞∑
k=0

Cc(X1GK)k I (G>KX
>
1 )kC>c

)
= ‖T (K)‖22

The claim follows since

‖Te(K)‖22
(c)
= trace(QP ) + trace(R1/2KPK>R1/2)
R1/2KPK>R1/2�L

≤ trace(QP ) + trace(L)



A sketch of proof – final argument
An optimal solution (GoK , P

o, Lo) to (DD-SDP-LQR) satisfies (Lemma 2)

‖T (Ko)‖22 ≤ trace(QP o) + trace(Lo) with Ko := U0G
o
K

On the other hand, since K? is stabilizing, there exists a feasible (GK? , P?, L?) for
(DD-SDP-LQR) such that (Lemma 1)

K? = U0GK? and ‖T (K?)‖22 = trace(QP?) + trace(L?)

As (GoK , P
o, Lo) is an optimal solution to (DD-SDP-LQR), it is true that

trace(QP o) + trace(Lo) ≤ trace(QP?) + trace(L?)

which implies

‖T (Ko)‖22 ≤trace(QP o) + trace(Lo) ≤ trace(QP?) + trace(L?) = ‖T (K?)‖22

As K? is the optimal solution to the H2-norm minimization problem,

‖T (K?)‖22 ≤ ‖T (Ko)‖22, that is ‖T (K?)‖22 = ‖T (Ko)‖22 and by uniqueness of the optimal

gain, Ko = K?
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A data-dependent solution to the LQR

Recap We have shown the correctness of the following data-dependent SDP for designing the LQR
from data

minGK ,P,L trace (QP ) + trace (L)

subject to
X1GKPG

>
KX

>
1 − P + In � 0

P � In
L−R1/2U0GKPG

>
KU
>
0 R

1/2 � 0

X0GK = In

(DD-SDP-LQR)

Theorem Assume that
[
U0
X0

]
has full row rank. Any optimal solution (GoK , P

o, Lo) to
(DD-SDP-LQR) is such that Ko := U0G

o
K satisfies

K? = Ko

and
‖T (Ko)‖22 = trace(QP o) + trace(Lo)
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A data-dependent SDP for solving the LQR
The change of variables Y = GKP and an application of Schur complement lead to the
semidefinite program

minY,P,L trace (QP ) + trace (L)

subject to




[
P − In X1Y

Y >X>1 P

]
� 0

[
L R1/2U0Y

Y >U>0 R
1/2 P

]
� 0

P = X0Y

with the optimal gain matrix given by

K? = U0Y P
−1

C. De Persis, P. Tesi. “Formulas for data-driven control: stabilization, optimality, robustness”. IEEE Transactions on
Automatic Control, 65(3), 909-924, 2020.
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Discussion

• The data-based problem is solvable via efficient numerical algorithms (cvx)

cvx_begin sdp

variable Y(T,n)

variable L(m,m) symmetric

variable P(n,n) symmetric

minimize ( trace(Q*P) +trace(L) )

[L, sqrtm(R)*U0*Y; Y’*U0’*sqrtm(R)’, P] >= 0

[P-eye(n), X1*Y; Y’*X1’, P] >= 0

P=X0*Y

cvx_end

K = U0*Y*inv(P);

• It only requires data collected in low sample-complexity experiments

• Solution is exactly computed via a single SDP and not approximated via
sequential iterations as in, e.g., LQR via policy iteration
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Policy iteration and LQR

Algorithm 1 Policy iteration applied to the LQR problem

1: Guess initial stabilizing gain K0

2: Set initial time k = 0
3: for i = 0 to ∞ do
4: for j = 1 to N do
5: Apply u(k) = Kix(k) + e(k), e(k) PE “exploration signal”
6: Estimate Ki(j) using RLS and I/O measurements
7: k = k + 1
8: end for
9: Set Ki+1 = Ki(N)

10: end for

There exists an estimation interval N such that the algorithm generates a sequence
{Ki : i = 0, 1, 2, . . .} such that limi→∞ ‖Ki −K?‖ = 0

S.J. Bradtke, B.E. Ydstie and A.G. Barto. Adaptive linear quadratic control using policy iteration. Proceedings of the
1994 American Control Conference, 3475–3479, 1994.
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The data-dependent solution to LQR with noisy data

minGK ,P,L trace (QP ) + trace (L)

subject to
X1GKPG

>
KX

>
1 − P + In � 0

P � In
L−R1/2U0GKPG

>
KU
>
0 R

1/2 � 0

X0GK = In

As any other result in this Lecture
1, this program is derived from
noise-free data

In the presence of noise, brought in
by the unknown matrix D0

(Lecture 2), the data-dependent
representation leads to the SDP ⇒

The resulting optimal gain matrix
is Ko = U0Y P

−1, which coincides
with K?

minGK ,P,L trace (QP ) + trace (L)

subject to
(X1 −D0)GKPG

>
K(X1 −D0)> − P + In � 0

P � In
L−R1/2U0GKPG

>
KR

1/2 � 0

X0GK = In
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The data-dependent solution to LQR with noisy data

minGK ,P,L trace (QP ) + trace (L)

subject to
X1GKPG

>
KX

>
1 − P + In � 0

P � In
L−R1/2U0GKPG

>
KU
>
0 R

1/2 � 0

X0GK = In

As any other result in this Lecture
1, this program is derived from
noise-free data

In the presence of noise, brought in
by the unknown matrix D0

(Lecture 2), the data-dependent
representation leads to the SDP ⇒

The resulting optimal gain matrix
is Ko = U0Y P

−1, which coincides
with K?

minGK ,P,L trace (QP ) + trace (L)

subject to
(X1 −D0)GKPG

>
K(X1 −D0)> − P + In � 0

P � In
L−R1/2U0GKPG

>
KR

1/2 � 0

X0GK = In
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Data-dependent solution to LQR - Soft constraint
• Since D0 is unknown, one option is to neglect D0 and require the term M = GKPG

>
K to be

small via the hard constraint 2M � εI
• The hard constraint, however, favours too much robustness to the detriment of performance

We instead look for a solution that trades off robustness for performance via a
soft constraint

minY,P,L,V trace (QP ) + trace (L) +α trace(V )

subject to



X1GKPG
>
KX

>
1 − P + In � 0

P � In
L−R1/2U0GKPG

>
KU
>
0 R

1/2 � 0

V −GKPG>K � 0

X0GK = In

where
α� 1 favours robustness
α� 1 favours performance

C. De Persis, P. Tesi. “Low-complexity learning of Linear Quadratic Regulators from noisy data”. Automatica 128, 109548,
2021
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Partial information



Output feedback stabilization problem

Minimal SISO space representation with output measurements, with A,B,C unknown
matrices

x(k + 1) = Ax(k) +Bu(k) x(k) ∈ Rn, u(k) ∈ R
y(k) = Cx(k) y(k) ∈ R, k = 0, 1, 2, . . .

Design from data a dynamic output feedback controller

zc(k + 1) = Fzc(k) +Gy(k)
u(k) = Hzc(k)

such that the closed-loop system

[
x(k + 1)
zc(k + 1)

]
=

[
A BH
GC F

] [
x(k)
zc(k)

]

is asymptotically stable.
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Output feedback stabilization problem - rationale
Minimal SISO space representation with output measurements

x(k + 1) = Ax(k) +Bu(k) x(k) ∈ Rn, u(k) ∈ R
y(k) = Cx(k) y(k) ∈ R, k = 0, 1, 2, . . .

Rationale Reduce the data-driven output feedback control design to the state feedback one

• At a time k, we build a vector φ(k) of the past n values of the input and output
samples

φ(k) =
[
y(k − n) . . . y(k − 1) u(k − n) . . . u(k − 1)

]>
Lemma 3 There exist matrices A,B, C, depending on A,B,C, and where A,B is a
reachable pair, that describes the dynamics of φ

φ(k + 1) = Aφ(k) + Bu(k)
y(k) = Cφ(k), k ≥ n

Observe that φ(k) is a measured vector, whereas A,B are unknown
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The result means the following:

. Denote by {u(k) : k ≥ 0}, {y(k) : k ≥ 0} an I/O sequence generated by

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k), k ≥ 0

. Denote by {ũ(k) : k ≥ n}, {ỹ(k) : k ≥ 0} an I/O sequence generated by

φ(k + 1) = Aφ(k) + Bu(k)
y(k) = Cφ(k) k ≥ n

There exists an initial condition φ(n) such that, if ũ(k) = u(k) for all k ≥ n, then
ỹ(k) = y(k) for all k ≥ n.
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Exercise #2
Exercise #2 – Prove Lemma 3
(a) Use the observable canonical form for x(k+ 1) = Ax(k) +Bu(k), y(k) = Cx(k) to show
that the matrices (A,B) in φ(k + 1) = Aφ(k) + Bu(k) take the form

A =



0 1 0 · · · 0 0 0 0 · · · 0
0 0 1 · · · 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · 1 0 0 0 · · · 0
−a1 −a2 −a3 · · · −an b1 b2 b3 · · · bn

0 0 0 · · · 0 0 1 0 · · · 0
0 0 0 · · · 0 0 0 1 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · 0 0 0 0 · · · 1
0 0 0 · · · 0 0 0 0 · · · 0



B =



0
0
...
0
0
0
0
...
0
1


for some parameters a’s and b’s.

(b) Use the Key Reachability Lemma (“The pair (A,B) above is reachable if and only the
polynomials zn + anz

n−1 . . .+ a2z + a1, bnz
n−1 + . . .+ b2z + b1 are coprime”) to conclude

that (A,B) is reachable.

G.C. Goodwin, K.S. Sin. Adaptive Filtering Prediction and Control. Courier Corporation, 2014.



Exercise #2 – answers

Answers
(a) The system x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) is observable, hence there exists
the observable canonical form

z(k + 1) =




−an 1 0 · · · 0
−an−1 0 1 · · · 0

...
...

...
. . .

...
−a2 0 0 · · · 1
−a1 0 0 · · · 0



z(k) +




bn
bn−1

...
b2
b1



u(k)

y(k) =
[
1 0 0 · · · 0 0

]
z(k)

where zn + anz
n−1 . . .+ a2z + a1 is the characteristic polynomial of the matrix A and

b1, b2, . . . , bn are coefficients depending on the matrices A,B,C. From the observable
canonical form, we deduce the following left difference operator (a Deterministic Auto
Regressive Moving Average) representation

y(k) + any(k − 1) + . . .+ a2y(k − n+ 1) + a1y(k − n)

= bnu(k − 1) + . . .+ b2u(k − n+ 1) + b1u(k − n)



Exercise #2 – answers

Answers
From this representation it is straightforward to infer the pair of matrices (A,B) given in
the statement:

φ1(k + 1) = y(k − n+ 1) = φ2(k)
...

φn(k + 1) = y(k) = −any(k − 1) . . .− a2y(k − n+ 1)− a1y(k − n)
+bnu(k − 1) + . . .+ b2u(k − n+ 1) + b1u(k − n)

φn+1(k + 1) = u(k − n+ 1) = φn+2(k)
...

φ2n(k + 1) = u(k)

(b) It is enough to observe that, since (A,B,C) is minimal, the polynomials
zn + anz

n−1 . . .+ a2z + a1, bnz
n−1 + . . .+ b2z + b1 are coprime (they coincide with the

numerator and denominator of the transfer function C(zI −A)−1B and no pole/zero
cancellations are possible)



Collecting input-output data
Minimal SISO space representation with output measurements

x(k + 1) = Ax(k) +Bu(k) x(k) ∈ Rn, u(k) ∈ R
y(k) = Cx(k) y(k) ∈ R, k = 0, 1, 2, . . .

Experiment

• Consider an input u[−n,T−1], with u[0,T−1] PE of order 2n+ 1,
T ≥ (m+ 1)L− 1 = 2(2n+ 1)− 1

• At time k = −n from the initial condition x(−n), apply u[−n,T−1] to the system and
collect the measured output response in the (2n+ 1)× T matrix

u(0) u(1) . . . u(T − 1)
y(−n) y(−n+ 1) . . . y(−n+ T − 1)
y(−n+ 1) y(−n+ 2) . . . y(T − 1)
...

...
. . .

...
y(−1) u(0) . . . y(T − 2)
u(−n) u(−n+ 1) . . . u(−n+ T − 1)
u(−n+ 1) u(−n+ 2) . . . u(T − 1)
...

...
. . .

...
u(−1) u(0) . . . u(T − 2)


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Collecting input-output data
Experiment (cont’d)

• The input-output matrix of data collected from system (C,A,B)

u(0) u(1) . . . u(T − 1)
y(−n) y(−n+ 1) . . . y(−n+ T − 1)
y(−n+ 1) y(−n+ 2) . . . y(T − 1)
...

...
. . .

...
y(−1) u(0) . . . y(T − 2)
u(−n) u(−n+ 1) . . . u(−n+ T − 1)
u(−n+ 1) u(−n+ 2) . . . u(T − 1)
.
..

..

.
. . .

..

.
u(−1) u(0) . . . u(T − 2)


coincides with the matrix of input-state data of system (A,B)

[
U0

Φ0

]
:=

[
u(0) u(1) . . . u(T − 1)
φ(0) φ(1) . . . φ(T − 1)

]

since φ(k) =
[
y(k − n) . . . y(k − 1) u(k − n) . . . u(k − 1)

]>
• As (A,B) is reachable and u[0,T−1] PE of order 2n+ 1,

[
U0

Φ0

]
has full row rank.

45 / 54



Output feedback design
• Main idea Design a stabilizing “state” feedback controller

u(k) = Kφ(k)

for the system
φ(k + 1) = Aφ(k) + Bu(k)

• For each pair of matrices K and G that satisfy

[
K
I2n

]
=

[
U0

Φ0

]
G, the matrix A+ BK

results in the data-dependent representation

A+ BK = Φ1G with

[
K
I2n

]
=

[
U0

Φ0

]
G

and
Φ1 =

[
φ(1) φ(2) . . . φ(T )

]

• Using this representation and Lyapunov inequality, we conclude that a stabilizing K is
computed as

K = U0Y−1P
where P,Y are matrices that satisfy

[
P Φ1Y

Y>Φ>1 P

]
� 0 Φ0Y = P
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State space representation of the controller

The controller

u(k) = Kφ(k) =
[
d1 . . . dn −c1 . . . −cn

]




y(k − n)
...

y(k − 1)
u(k − n)

...
u(k − 1)




is a Deterministic Auto Regressive Moving Average relation

u(k) + cnu(k − 1) + . . .+ c2u(k − n+ 1) + c1u(k − n)

= dny(k − 1) + . . .+ d2y(k − n+ 1) + d1y(k − n)

for which a state space realization in observable canonical form is computable
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State space representation of the controller

The controller state vector

zc(k) =




u(k)
zc2(k)

...
zcn(k)


 =




−cnu(k − 1) + dny(k − 1) + zc2(k − 1)
−cn−1u(k − 1) + dn−1y(k − 1) + zc3(k − 1)

...
−c1u(k − 1) + d1y(k − 1)




returns the observable canonical form

zc(k + 1) =




−cn 1 0 . . . 0
−cn−1 0 1 . . . 0

...
...

...
. . .

...
−c2 0 0 . . . 1
−c1 0 0 . . . 0 0




︸ ︷︷ ︸
F

zc(k) +




dn
dn−1
. . .
d2
d1




︸ ︷︷ ︸
G

y(k)

u(k) =
[
1 0 . . . 0

]
︸ ︷︷ ︸

H

zc(k)
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Output feedback stabilization – main result

Theorem Consider the decision variables P ∈ R2n×2n, Y ∈ RT×2n and the following SDP[
P Φ1Y

Y>Φ>1 P

]
� 0 Φ0Y = P

If it is feasible, then the dynamic controller

zc(k + 1) =


−cn 1 0 . . . 0
−cn−1 0 1 . . . 0

...
...

...
. . .

...
−c2 0 0 . . . 1
−c1 0 0 . . . 0

 zc(k) +


dn
dn−1

...
d2

d1

 y(k)

u(k) =
[
1 0 0 . . . 0 0

]
zc(k)

with coefficients given by

K =
[
d1 . . . dn − c1 . . . −cn

]
:= U0YP−1

renders the closed-loop system x(k + 1) = Ax(k) +BHzc(k), zc(k + 1) = Fzc(k) +GCy(k) Schur
stable.
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Exercise #3
Exercise #3
(a) Consider the system

ẋ = Ax+Bu, y = Cx

in the observable canonical form (see answer to Exercise #2(a)) with state variable z.
Find the matrix V1 ∈ Rn×2n such that

z(k) = V1φ(k + n) k ≥ 0

Similarly, find the matrix V2 ∈ Rn×2n such that

zc(k) = V2φ(k + n) k ≥ 0

with zc the state of the controller in the observable canonical from. Show that V =

[
V1

V2

]
is

nonsingular.
(b) Show that the dynamical matrix of the closed-loop system[

x(k + 1)
zc(k + 1)

]
=

[
A BH
GC F

] [
x(k)
zc(k)

]
is similar to A+ BK, i.e. there exists a nonsingular matrix S such that[

A BH
GC F

]
= S(A+ BK)S−1



Exercise #3 – answers

Answers
(a) We determine the matrix V2. The same steps apply to the calculation of V1. Consider the
observable canonical form of the controller given before

zc(k + 1) =


−cn 1 0 . . . 0
−cn−1 0 1 . . . 0

...
...

...
. . .

...
−c2 0 0 . . . 1
−c1 0 0 . . . 0

 zc(k) +


dn
dn−1

...
d2

d1

 y(k)

u(k) =
[
1 0 0 . . . 0 0

]
zc(k)

We consider the expressions of the output u at time steps k, k + 1, . . . , k + n− 1:

u(k) = zc1(k)
u(k + 1) = −cnu(k) + zc2(k) + dny(k)
u(k + 2) = −cnu(k + 1)− cn−1u(k) + zc3(k) + dn−1y(k) + dny(k + 1)

...
u(k + n− 1) = −cnu(k + n− 2) . . .− c2u(k) + zcn(k) + d2y(k) . . .

+dny(k + n− 2)



Exercise #3 – answers

Solving for zc(k) one obtains

zc1(k) = u(k)
zc2(k) = u(k + 1) + cnu(k)− dny(k)
zc3(k) = u(k + 2) + cnu(k + 1) + cn−1u(k)− dn−1y(k)− dny(k + 1)

...
zcn(k) = u(k + n− 1) + cnu(k + n− 2) . . .+ c2u(k)− d2y(k) . . .− dny(k + n− 2)

Hence

zc(k) =


0 0 0 . . . 0 1 0 0 . . . 0
−dn 0 0 . . . 0 cn 1 0 . . . 0
−dn−1 −dn 0 . . . 0 cn−1 cn 1 . . . 0

...
...

...
. . .

...
...

...
...

. . .
...

−d2 −d3 −d4 . . . 0 c2 c3 c4 . . . 1


︸ ︷︷ ︸

V2



y(k)
...

y(k + n− 1)
u(k)

...
u(k + n− 1)


︸ ︷︷ ︸

φ(k+n)



Exercise #3 – answers
One similarly obtains

z(k) =


1 0 0 . . . 0 0 0 0 . . . 0
an 1 0 . . . 0 −bn 0 0 . . . 0
an−1 an 1 . . . 0 −bn−1 −bn 0 . . . 0

...
...

...
. . .

...
...

...
...

. . .
...

a2 a3 a4 . . . 1 −b2 −b3 −b4 . . . 0


︸ ︷︷ ︸

V1



y(k)
...

y(k + n− 1)
u(k)

...
u(k + n− 1)


︸ ︷︷ ︸

φ(k+n)

Hence

V =



1 0 0 . . . 0 0 0 0 . . . 0
an 1 0 . . . 0 −bn 0 0 . . . 0
an−1 an 1 . . . 0 −bn−1 −bn 0 . . . 0

...
...

...
. . .

...
...

...
...

. . .
...

a2 a3 a4 . . . 1 −b2 −b3 −b4 . . . 0
0 0 0 . . . 0 1 0 0 . . . 0
−dn 0 0 . . . 0 cn 1 0 . . . 0
−dn−1 −dn 0 . . . 0 cn−1 cn 1 . . . 0

...
...

...
. . .

...
...

...
...

. . .
...

−d2 −d3 −d4 . . . 0 c2 c3 c4 . . . 1





Exercise #3 – answers

To show that V is nonsingular, take the Laplace expansion along the first row. Then

det(V ) = 1 · det(M11)

where M11 is the matrix obtained by removing the first column and the first row from V .
Row n of M11, which is row n+ 1 of V with the first element removed, is again a row with only
one element different from zero and equal to 1. Taking the Laplace expansion along this row, we
obtain again that

det(V ) = 1 · 1 · det(M1n+1,1n+1)

where M1n+1,1n+1 is the matrix obtained by removing rows and columns 1, n+ 1 from V .
M1n+1,1n+1 has the first row with only one element different from zero and equal to 1, namely the
element (1, 1) (the element (2, 2) of V ), and this allows one to show that

det(V ) = 1 · 1 · 1 · det(M1 2n+1,1 2n+1)

where M1 2n+1,1 2n+1 is the matrix obtained by removing rows and columns 1, 2, n+ 1 from V .
Iterating these arguments, one arrives at the result that det(V ) = 1.



Exercise #3 – answers
(b) Consider the closed-loop system[

x(k + 1)
zc(k + 1)

]
=

[
A BH
GC F

] [
x(k)
zc(k)

]
Show that its dynamic matrix is similar to A+ BK.
The state x of the process is related to vector z used for the observable canonical form by a
nonsingular matrix S, i.e. x = Sz. Hence[

x(k)
zc(k)

]
=

[
S 0
0 I

] [
z(k)
zc(k)

]
=

[
S 0
0 I

]
V︸ ︷︷ ︸

S

φ(k + n)

Then

S−1

[
A BH
GC F

] [
x(k)
zc(k)

]
= S−1

[
x(k + 1)
zc(k + 1)

]
= φ(k+n+ 1) = (A+BK)φ(k+n) = (A+ BK)S−1

[
x(k)
zc(k)

]

Consider the underlined relation at k = 0. By the arbitrariness of
[
x(0)

zc(0)

]
, the relation above shows[

A BH
GC F

]
= S(A+ BK)S−1



Output feedback stabilization of a mechanical system

Discretized version using a sampling time of 1sec of two carts mechanically coupled by a
spring with uncertain stiffness. The output is the position of one of the carts and the input
is a force applied to the other cart.

Here n = 4 and the (unknown) observable canonical form is specified by the coefficients

[
a1 a2 a3 a4

]
=

[
1 −2.311 2.623 −2.311

]
[
b1 b2 b3 b4

]
=

[
0.039 0.383 0.383 0.039

]

Data are generated from random initial conditions and by applying a random input
sequence of length T = 9 and used to solve

[ P Φ1Y
Y>Φ>1 P

]
� 0 Φ0Y = P with Φ0 =




y(−4) y(−3) . . . y(4)
y(−3) y(−2) . . . y(5)
y(−2) y(−2) . . . y(6)
y(−1) y(0) . . . y(7)
u(−4) u(−3) . . . u(4)
u(−3) u(−2) . . . u(5)
u(−2) u(−1) . . . u(6)
u(−1) u(0) . . . u(7)



,Φ1 = ...
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Output feedback stabilization of a mechanical system

Using CVX, we obtain from K = U0YP−1 with

U0 =
[
u(0) u(1) . . . u(8)

]

the “controller gain”

K =

[
1.1837 −1.5214 1.3408 −1.4770
0.0005 −0.5035 −0.9589 −0.9620

]

which stabilizes the closed-loop dynamics.

A minimal state-space representation (F,G,H) of this controller in the observable
canonical form is given by

[
F G
H 0

]
=







−0.9620 1 0 0
−0.9589 0 1 0
−0.5035 0 0 1

0.0005 0 0 0







−1.4770
1.3408
−1.5214

1.1837




[
1 0 0 0

]
0



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A few remarks

• Under the assumption that

[
U0

Φ0

]
has full row rank, any stabilizing output

feedback controller can be given the form above with coefficients K = U0YP−1

• Under suitable assumptions on the observability index, a similar design can be
carried out in the case of Multiple Input Multiple Output systems

• As the output feedback stabilization problem is reduced to a “state” feedback
stabilization problem, if we tackle the latter in the presence of noisy data, then
we obtain a method to deal with noisy data for the former problem as well

• The design requires the knowledge of the state space dimension n. This is
either available from physical principles or can be obtained from techniques
processing the input-output data, as in e.g. subspace identification, without
requiring the whole procedure to identify the system’s model
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Summary Lecture 1

Lecture 1

• Data-driven stabilization of linear systems via full state static feedback

• Data-driven LQR

• Data-driven stabilization of linear systems via partial state dynamic feedback

• Lectures 2 and 3 discuss how these results can be extended in the presence of process
disturbances and noisy measurements

• Lecture 4 discusses extensions to nonlinear systems

• The results of Lecture 1 are taken from
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Formulas for Data-Driven Control: Stabilization,
Optimality, and Robustness

Claudio De Persis and Pietro Tesi

Abstract—In a paper by Willems et al., it was shown
that persistently exciting data can be used to represent the
input–output behavior of a linear system. Based on this
fundamental result, we derive a parametrization of linear
feedback systems that paves the way to solve important
control problems using data-dependent linear matrix in-
equalities only. The result is remarkable in that no explicit
system’s matrices identification is required. The examples
of control problems we solve include the state and output
feedback stabilization, and the linear quadratic regulation
problem. We also discuss robustness to noise-corrupted
measurements and show how the approach can be used
to stabilize unstable equilibria of nonlinear systems.

Index Terms—Control design, data-driven control, learn-
ing systems, linear matrix inequalities, nonlinear control
systems, robust control.

I. INTRODUCTION

L EARNING from data is essential to every area of science.
It is the core of statistics and artificial intelligence, and is

becoming ever more prevalent also in the engineering domain.
Control engineering is one of the domains where learning from
data is now considered as a prime issue.

Learning from data is actually not novel in control theory.
System identification [1] is one of the major developments
of this paradigm, where modeling based on first principles is
replaced by data-driven learning algorithms. Prediction error,
maximum likelihood as well as subspace methods [2] are all
data-driven techniques, which can be now regarded as standard
for what concerns modeling. The learning-from-data paradigm
has been widely pursued also for control design purposes. A
main question is how to design control systems directly from
process data with no intermediate system identification step.
Besides their theoretical value, answers to this question could
have a major practical impact especially in those situations
where identifying a process model can be difficult and time
consuming, for instance, when data is affected by noise or in the
presence of nonlinear dynamics. Despite many developments in
this area, data-driven control is not yet well understood even
if we restrict the attention to linear dynamics, which contrasts
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the achievements obtained in system identification. A major
challenge is how to incorporate data-dependent stability and
performance requirements in the control design procedure.

A. Literature Review

Contributions to data-driven control can be traced back to
the pioneering work by Ziegler and Nichols [3], direct adap-
tive control [4], and neural networks [5] theories. Since then,
many techniques have been developed under the heading data-
driven and model-free control. We mention unfalsified control
theory [6], iterative feedback tuning [7], and virtual reference
feedback tuning [8]. This topic is now attracting more and more
researchers, with problems ranging from proportional-integral-
derivative (PID) like control [9] to model reference control and
output tracking [10]–[14], predictive [15], [16], robust [17], and
optimal control [18]–[24], the latter being one of the most fre-
quently considered problems. The corresponding techniques are
also quite varied, ranging from dynamics programming to opti-
mization techniques and algebraic methods. These contributions
also differ with respect to how learning is approached. Some
methods only use a batch of process data meaning that learning is
performed offline, while other methods are iterative and require
multiple online experiments. We refer the reader to [25] and [26]
for more references on data-driven control methods.

B. Willems et al. Fundamental Lemma and Paper
Contribution

A central question in data-driven control is how to replace
process models with data. For linear systems, there is actually
a fundamental result, which answers this question, proposed
by Willems et al. [27]. Roughly, this result stipulates that the
whole set of trajectories that a linear system can generate can
be represented by a finite set of system trajectories provided
that such trajectories come from sufficiently excited dynamics.
While this result has been (more or less explicitly) used for data-
driven control design [16], [18], [28]–[30], certain implications
of the so-called Willems et al.’s fundamental lemma seems not
fully exploited.

In this article, we first revisit Willems et al.’s fundamental
lemma, originally cast in the behavioral framework, through
classic state-space descriptions (see Lemma 2). Next, we show
that this result can be used to get a data-dependent representation
of the open-loop and closed-loop dynamics under a feedback
interconnection. The first result (see Theorem 1) indicates that
the parametrization that emerges from the fundamental lemma
is, in fact, the solution to a classic least-squares problem, and
has clear connections with the so-called dynamic mode de-
composition [31]. The second result (see Theorem 2) is even
more interesting as it provides a data-based representation of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
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A bridge towards Lecture 2

• The derivations in Lecture 1 were based on the data-dependent closed-loop system
representation

x(k + 1) = X1GKx(k) with

[
K
In

]
=

[
U0

X0

]
GK

• Suppose now that the system’s dynamics is affected by disturbances

x(k + 1) = Ax(k) +Bu(k) + d(k)

How does the system’s representation change?
Spoiler The presence of noise leads to a perturbed data-dependent representation

x(k + 1) = (X1 −D0)GKx(k) with D0 =
[
d(0) . . . d(T − 1)

]
• How would you design a controller for the system above if D0 is unknown? Which new

assumptions would you introduce?
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Data-driven control with noisy data

So far we have considered an ideal setting where the data are noiseless. In practice, we
have to deal with noisy data, generated by disturbances and/or measurement noise:

x+/ẋ = Ax+Bu+ d x+/ẋ = f(x, u, d)

y = Cx+Du+ n y = h(x, u) + n

Huge increase of complexity!
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Problem overview

Suppose we have an LTI system

x(k + 1) = A?x(k) +B?u(k) + d(k)

with x, d ∈ Rn, u ∈ Rm. Suppose we perform an experiment of length T and collect the
data matrices:

U0 :=
[
u(0) u(1) · · · u(T − 1)

]
X0 :=

[
x(0) x(1) · · · x(T − 1)

]
X1 :=

[
x(1) x(2) · · · x(T )

]
Let D0 be the unknown data matrix relative to d:

D0 :=
[
d(0) d(1) · · · d(T − 1)

]
Objective Design K such that A? +B?K is stable despite unknown D0
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Certainty-equivalence can fail

Both indirect (sys-ID-based) and direct methods fail to provide stability guarantees if we
disregard noise.

Consider the method discussed in Lecture 1. The data-based relation for the system now
reads: [

x(1) x(2) . . . x(T )
]︸ ︷︷ ︸

X1

=

A?
[
x(0) x(1) . . . x(T − 1)

]︸ ︷︷ ︸
X0

+B?
[
u(0) u(1) . . . u(T − 1)

]︸ ︷︷ ︸
U0

+
[
d(0) d(1) . . . d(T − 1)

]︸ ︷︷ ︸
D0

In compact form:

X1 = A?X0 +B?U0 +D0
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For any K: 1

A? +B?K =
[
B? A?

] [K
In

]
=
[
B? A?

] [U0

X0

]
GK

= (X1 −D0)GK

where GK satisfies [ KIn ] = [ U0

X0
]GK .

The Lyapunov condition thus reads

(X1 −D0)GKPG
>
K(X1 −D0)> − P︸ ︷︷ ︸

L(GK ,P )

≺ 0

Simply solving X1GKPG
>
KX

>
1 − P ≺ 0 does not ensure L(GK , P ) ≺ 0.

1assume [ U0
X0

] full row rank
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The very same issue arises with indirect methods.

Consider a least-squares approach: 2

[
Â B̂

]︸ ︷︷ ︸
estimate

= X1

[
X0

U0

]†

=⇒
[
Â B̂

]
−
[
A? B?

]︸ ︷︷ ︸
estimate error

= D0

[
X0

U0

]†

Simply ensuring Â+ B̂K stable does not ensure A? +B?K stable.

We need to explicitly account for D0

2
M. Verhaegen, V. Verdult. Filtering and system identification: a least squares approach. Cambridge University Press,

2007.
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Noise models and uncertainty

Since D0 is unknown we can only assume that it belongs to a given class, the so-called
noise model. There are many noise models, examples being Gaussian,
unknown-but-bounded (UBB) ... Whatever the model, we now have uncertainty.

Example Suppose the true system is

x(k + 1) = 0.5︸︷︷︸
A?

x(k) + 0.5︸︷︷︸
B?

u(k) + d(k)

We apply u(0) = u(1) = 2, and we measure x(0) = 0, x(1) = 1 and x(2) = 2. The state data have
been generated by d(0) = 0, d(1) = 0.5. If we only know that |d| ≤ 1 then any (A,B) with

|1− 2B| ≤ 1, |2−A− 2B| ≤ 1

is also consistent with the data given our information on d.

Note
[
U0
X0

]
has full row rank.
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Noise models and uncertainty

Since D0 is unknown we can only assume that it belongs to a given class, the so-called
noise model. There are many noise models, examples being Gaussian,
unknown-but-bounded (UBB) ... Whatever the model, we now have uncertainty.

Example Suppose the true system is

x(k + 1) = 0.5︸︷︷︸
A?

x(k) + 0.5︸︷︷︸
B?

u(k) + d(k)

We apply u(0) = u(1) = 2, and we measure x(0) = 0, x(1) = 1 and x(2) = 2. The state data have
been generated by d(0) = 0, d(1) = 0.5. If we only know that |d(0)|2 + |d(1)|2 ≤ 2 then any
(A,B) with

(1− 2B)2 + (2−A− 2B)2 ≤ 2,

is also consistent with the data given our information on d.

Note
[
U0
X0

]
has full row rank.
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The uncertainty takes the form of a consistency set

Σ := {(A,B) consistent with the data given the noise model}

Example (Cont’d) Same system as before with T = 100 data points obtained with input and
disturbances uniformly distributed within [−1, 1]. (Left) Set Σ assuming |d| ≤ 1. (Right) Set Σ
assuming

∑
k d(k)2 ≤ 100.

Σ
(A on x-axis)
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Robust data-driven control

In contrast with the noiseless case we must now design a controller that stabilizes a family
of systems, namely we have a robust control problem.

In Lecture 2-3 we discuss how the approach introduced in Lecture 1 can be extended to
handle noisy data by exploiting concepts and tools from robust control.

Same features as the baseline solution

• Conceptually simple

• Gives theoretical guarantees

• Easy to implement (SDP)

• Very flexible
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Outline of Lecture 2 – 3

We will consider:

1 Input disturbances with energy-like models

2 Applications and extensions (brief overview)

3 Some recent results

restricting the analysis to full-state measurements.

Before we start

The results we are going to see also link to well-known concepts in sys-ID.
In fact, these results show that the difference between direct and indirect methods is quite
mild.
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Framework

Consider an LTI system
x(k + 1) = A?x(k) +B?u(k) + d(k)

with x, d ∈ Rn, u ∈ Rm. Suppose we perform an experiment of length T and collect the
data matrices:

U0 :=
[
u(0) u(1) · · · u(T − 1)

]
X0 :=

[
x(0) x(1) · · · x(T − 1)

]
X1 :=

[
x(1) x(2) · · · x(T )

]
Let D0 ∈ Rn×T be the unknown data matrix relative to d:

D0 :=
[
d(0) d(1) · · · d(T − 1)

]
Objective Design K such that A? +B?K is stable despite unknown D0
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Disturbance model

We consider a model that constrains the possible disturbance patterns in terms of an
energy bound.

Disturbance model

De :=
{
D ∈ Rn×T : DD> � RDR>D for known RD

}
=
{
D ∈ Rn×T :

T∑
i=1

did
>
i � RDR>D for known RD

}
where di is the i-th column of D.

Note Bounded and convex set.

Energy bound If the disturbance signal {di}T−1i=0 has energy
∑T−1
i=0 d>i di ≤ γ2, then D ∈ De

with RD = γ
√
TIn.
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Disturbance model

De :=
{
D ∈ Rn×T : DD> � RDR>D for known RD

}
=
{
D ∈ Rn×T :

T∑
i=1

did
>
i � RDR>D for known RD

}
where di is the i-th column of D.

Covers important cases:

� For n = m, the choice RD = γU0 with γ > 0 gives an upper bound on
the admissible input-disturbance SNR.

� Assuming d ∼ N (0, σ2In), a “natural” choice is RD = γ
√
TσIn, γ > 1.

� RD = γ
√
TIn covers ‖d‖ ≤ γ.
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Consistency set

The relation for the true system reads:[
x(1) x(2) . . . x(T )

]︸ ︷︷ ︸
X1

=

A?
[
x(0) x(1) . . . x(T − 1)

]︸ ︷︷ ︸
X0

+B?
[
u(0) u(1) . . . u(T − 1)

]︸ ︷︷ ︸
U0

+
[
d(0) d(1) . . . d(T − 1)

]︸ ︷︷ ︸
D0

In compact form:

X1 = A?X0 +B?U0 +D0

Any other (A,B) that satisfies X1 = AX0 +BU0 +D for some D ∈ De is consistent with
the dataset (U0, X0, X1) and the noise model
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Consistency set a

Σe := {(A,B) : X1 = AX0 +BU0 +D for some D ∈ De}

=

{
(A,B) : X1 =

[
B A

] [U0

X0

]
+D for some D ∈ De

}
Note Convex set (as De is).

aAlso termed ’Feasible Systems Set’ in sys-ID

We will consider:

Assumpt. (Noise model correctness) D0 ∈ De
(⇐⇒ (A?, B?) ∈ Σe)

Assumpt. (Quality of data) W0 :=
[
U0

X0

]
has full row rank.

Note Implies Σe bounded.
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Remark

Assuming [ U0

X0
] full row rank is not strictly needed, but if the consistency set is unbounded

the design problem is unlikely feasible. The assumption is also not restrictive. Note:

x+ = A?x+B?u+ d = A?x+
[
B? In

] [u
d

]
If (u, d) is PE of order n+ 1 and (A?, B?) is reachable, then

rank

U0

D0

X0

 = 2n+m

ensuring [ U0

X0
] full row rank.
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Problem formulation

Problem I (Quadratic stabilization)

find K,P � 0

such that (A+BK)P (A+BK)> − P︸ ︷︷ ︸
L(K,P )

≺ 0 ∀(A,B) ∈ Σe

The difficult part is that we must ensure L(K,P ) ≺ 0 for infinitely many systems, but
that’s exactly the realm of robust control!

Main tool: Petersen’s lemma
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Young’s inequality (auxiliary)

or Generalized Square Inequality.

Lemma Let M ∈ Rn×p, N ∈ Rq×n be given matrices. Consider the set
S := {S ∈ Rq×p : SS> � RSR>S for given Rs}. Then, for arbitrary ε > 0 it holds that

MS>N +N>SM> � εMM> + ε−1N>RSR
>
SN ∀S ∈ S

Proof. A completion of squares(√
εM −

√
ε−1N>S

)(√
εM −

√
ε−1N>S

)>
� 0

gives the result. �
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Petersen’s lemma

Type of variable elimination method.

Lemma3 Let G = G> ∈ Rn×n, M ∈ Rn×p, N ∈ Rq×n be given matrices. Let
S := {S ∈ Rq×p : SS> � RSR>S }. Then,

G+MS>N +N>SM> ≺ 0 ∀S ∈ S

if and only if there exists ε > 0 such that

G+ εMM> + ε−1N>RSR
>
SN ≺ 0

Proof (sketch). Sufficiency follows from Young’s inequality. Necessity is the difficult part,
we only give some intuitions.

3
I. Petersen, C. Hollot. A Riccati equation approach to the stabilization of uncertain linear systems, Automatica, 1986
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We want to show that

G+MS>N +N>SM> ≺ 0 ∀S ∈ S
=⇒ ∃ε > 0 : G+ εMM> + ε−1N>RSR

>
SN ≺ 0

Consider the scalar case:4

max
S∈S

G+MS>N +N>SM> < 0 =⇒ G+ 2|M ||RS ||N | < 0

We also have G− 2|M ||RS ||N | < 0, so

G2 − 4M2R2
SN

2 > 0

This can be viewed as the discriminant of the second-order polynomial
M2λ2 +Gλ+R2

SN
2, which has two positive roots λ±, with λ+ > λ− (note that M2 > 0,

G < 0, R2
SN

2 > 0).

4assume M,N,RS 6= 0
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The polynomial M2λ2 +Gλ+R2
SN

2 has two positive roots λ+ > λ−, so there exists a
value ε ∈ (λ−, λ+) such that M2ε2 +Gε+R2

SN
2 < 0. This is equivalent to

G+M2ε+ ε−1R2
SN

2 < 0.
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In the matrix case, instead of G2 − 4M2R2
SN

2 > 0 we have

(x>Gx)2︸ ︷︷ ︸
b(x)2

−4 (x>MM>x)︸ ︷︷ ︸
a(x)

(x>N>RSR
>
SNx)︸ ︷︷ ︸

c(x)

> 0 ∀x 6= 0

For each x, p(x) := a(x)λ2 + b(x)λ+ c(x) has two roots λ+(x) > λ−(x) and we can show
that maxx λ−(x) < minx λ+(x). �
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Nonstrict Petersen’s lemma

A version of Petersen’s lemma with nonstrict inequalities also holds.

Lemma5 Let G = G> ∈ Rn×n, M ∈ Rn×p, N ∈ Rq×n be given matrices. Let
S := {S ∈ Rq×p : SS> � RSR>S }. Suppose additionally that M 6= 0, N 6= 0 and
RSR

>
S � 0. Then,

G+MS>N +N>SM> ≺ 0 ∀S ∈ S

if and only if there exists ε > 0 such that

G+ εMM> + ε−1N>RSR
>
SN � 0

Proof (sketch). Sufficiency follows from Young’s inequality. Necessity is the difficult part,
we only give some intuitions.

5
A. Bisoffi, C. De Persis P. Tesi. Data-driven control via Petersen’s lemma, Automatica, 2022
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Robust data-driven control design

Recall:

Framework

• Dynamics: x+ = A?x+B?u+ d

• Dataset: U0, X0, X1

• Disturbance model: De =
{
D : DD> � RDR>D for known RD

}
• Consistency set: Σe = {(A,B) : X1 = AX0 +BU0 +D, D ∈ De}

Problem I (Quadratic stabilization)

find K,P � 0

such that (A+BK)P (A+BK)> − P ≺ 0 ∀(A,B) ∈ Σe
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Solution based on GK-representation

The approach that we adopted for noise-free data (say
GK-representation) provides a solution also for the noisy case.

Recall X1 = A?X0 +B?U0 +D0. For any K: 6

A? +B?K =
[
B? A?

] [K
In

]
=
[
B? A?

] [U0

X0

]
GK

= (X1 −D0)GK

where GK satisfies [
K
In

]
=

[
U0

X0

]
GK

6we are assuming [ U0
X0

] full row rank
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This representation also holds for all (A,B) in the consistency set

Σe = {(A,B) : X1 = AX0 +BU0 +D, D ∈ De}

namely:

(A,B) ∈ Σe =⇒ A+BK =
[
B A

] [K
In

]
=
[
B A

] [U0

X0

]
GK

= (X1 −D)GK , D ∈ De

where GK satisfies
[
K
In

]
=
[
U0

X0

]
GK .
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Instead of

Problem I (Quadratic stabilization)

find K,P � 0

such that (A+BK)P (A+BK)> − P ≺ 0 ∀(A,B) ∈ Σe

we consider

Problem II (Quadratic stabilization via GK-representation)

find GK , P � 0

such that (X1 −D)GKPG
>
K(X1 −D)> − P ≺ 0 ∀D ∈ De

X0GK = In

Note K = U0GK is set a posteriori.

It is simple to see that Problem II solves Problem I, and Problem II can be solved via
Petersen’s lemma.
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Problem II =⇒ Problem I

Theorem Suppose D0 ∈ De. Then Problem II solves Problem I.

Proof. Suppose that Problem II has solution (GK , P ). Then (X1 −D)GK is stable for all
D ∈ De. Let K = U0GK and recall:

(A,B) ∈ Σe =⇒ A+BK = (X1 −D)GK , D ∈ De

where GK satisfies
[
K
In

]
=
[
U0

X0

]
GK .

Therefore A+BK is stable for all (A,B) ∈ Σe. Since D0 ∈ De then A? +B?K is stable.
�
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Note Problem II is a relaxation of Problem I. Solving Problem II indeed amounts to
ensuring

(X1 −D)GK stable ∀D ∈ De
However, for a given D ∈ De, a pair (A,B) satisfying

X1 = AX0 +BU0 +D

might not exist 7, meaning that we take into account more pairs (A,B) than what is
strictly necessary.

7Exercise Show that it exists when ker[ U0
X0

] ⊆ ker(X1 −D).
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Main result

Theorem Consider a system x+ = A?x+B?u+ d with dataset U0, X0, X1.
Consider the disturbance model De :=

{
D : DD> � RDR>D for known RD

}
.

Suppose D0 ∈ De.If there exist P ∈ Rn×n, Y ∈ RT×n such that

X0Y = P,

P −RDR
>
D −X1Y 0

−Y >X>1 P Y >

0 Y I

 � 0

then K = U0 Y P
−1︸ ︷︷ ︸

GK

is stabilizing.

Note Same structure as in the noiseless case

Note We stabilize all the systems compatible with the data in a ’set-membership’
sense although the approach is still ’direct’ (no explicit sys-ID)
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Proof. Problem II is equivalent to finding matrices GK , P � 0 such that
(X1 −D)GKPG

>
K(X1 −D)> − P ≺ 0 for all D ∈ De, and X0GK = In.

By the change of variable Y = GKP , Problem II is equivalent to finding matrices
GK , P � 0 such that (X1 −D)Y P−1Y >(X1 −D)> − P ≺ 0 for all D ∈ De, and
X0GKP = P , which is equivalent to

X0Y = P,

[
−P (X1 −D)Y

Y >(X1 −D)> −P

]
≺ 0 ∀D ∈ De

The LMI reads[
−P X1Y

Y >X>1 −P

]
︸ ︷︷ ︸

G

+

[
I
0

]
︸︷︷︸
N>

D
[
0 −Y

]︸ ︷︷ ︸
M>

+

[
0
−Y >

]
︸ ︷︷ ︸

M

D>
[
I 0

]︸ ︷︷ ︸
N

≺ 0

∀D ∈ De
By Petersen’s lemma, the LMI is equivalent to

∃ε > 0 :

[
−P X1Y

Y >X>1 −P

]
︸ ︷︷ ︸

G

+ε

[
0
Y >

] [
0 Y

]
︸ ︷︷ ︸

MM>

+ε−1
[
I
0

]
︸︷︷︸
N>

RDR
>
D

[
I 0

]︸ ︷︷ ︸
N

≺ 0
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Overall, we have

X0Y = P,

[
−P + ε−1RDR

>
D X1Y

Y >X>1 −P

]
+ ε

[
0
Y >

] [
0 Y

]
≺ 0

A Schur complement finally gives

X0Y = P,

P − ε−1RDR>D −X1Y 0
−Y >X>1 P Y >

0 Y ε−1I

 � 0

The result now follows by multiplying the LMI by ε, and letting P ← εP and Y ← εY .
�
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Example

Consider a randomly generated system

A? =

 −0.3245 −0.5548 −0.2793
0.5906 −0.4228 0.0892
−0.3792 −0.2863 −0.0984

 , B? =

 0.5864
−0.8519

0.8003


We take T = 100 samples generated with |u| ≤ 1 and ‖d‖ ≤ 0.1. Assume that RD = I3 (the
disturbance model is correct). The problem is feasible and we get a stabilizing controller
K =

[
0.2868 0.1201 −0.4681

]
.

cvx begin sdp

variable P(n,n) symmetric

variable Y(T,n)

X0*Y == P;

[P - R D R D’, -X1*Y, zeros(n,T);

-Y’*X1’, P, Y’;

zeros(T,n), Y, eye(T)] > 0

cvx end

K = U0*Y/P;
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Remarks

� The SDP involves the decision variable Y ∈ RT×n, thus the computational
complexity increases with T . However, there is no advantage in using
large datasets unless the disturbance has nice features. The quality of the
data counts more.

� The LMI can be infeasible if our guess on the disturbance is too conservative.
We must have model correctness (D0 ∈ De) and sufficiently tight bounds.
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Applications and extensions (brief overview)

Some interesting features of this method

This method is independent of the noise statistics, it can equally handle deterministic
noise, nonlinearities as well as stochastic noise:

� Examples of nonlinear systems

� Gaussian disturbances

It can also handle more complex noise settings:

� Measurement noise
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Nonlinearities - stabilization by the first approximation

Consider a smooth nonlinear system

x(k + 1) = f(x(k), u(k))

and let (x, u) be a known equilibrium pair, that is such that x = f(x, u). We want to find
K that locally stabilizes the system around (x, u). We can rewrite the nonlinear system as

δx(k + 1) = A?δx(k) +B?δu(k) + d(k)

where δx := x− x, δu := u− u, and where

A? :=
∂f

∂x

∣∣∣∣
(x,u)=(x,u)

, B? :=
∂f

∂u

∣∣∣∣
(x,u)=(x,u)

, d := R(δx, δu)

[
δx
δu

]
with R(δx, δu) −→ 0 as (δx, δu) −→ 0. Same SDP as before.

� In this case good quality of data means that the experiments are conducted in a
neighborhood of (x, u), so that d is sufficiently small

� Prior knowledge on the vector field f(x, u) helps give a sufficiently tight bound RD on
the resulting D0
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Example

Consider the Euler discretization of an inverted pendulum:

x1(k + 1) = x1(k) + ∆x2(k)

x2(k + 1) =
∆g

`
sinx1(k) +

(
1− ∆µ

m`2

)
x2(k) +

∆

m`2
u(k)

− x1 = angular velocity
− x2 = angular position
− u = applied torque
− m = mass to be balanced
− ` = distance from the base to the centre of mass
− µ = coefficient of rotational friction
− g = acceleration due to gravity
− ∆ = sampling time

The system has an unstable equilibrium in (x, u) = (0, 0) corresponding to the pendulum upright
position and thus δx = x, δu = u. Assume µ = 0.01, m = 1 and ` = 1 unknown.
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The residual (disturbance term) is

d(k) =

[
0

∆g

`
(sinx1(k)− x1(k))

]

We run a 2seconds-long experiment collecting T = 200 samples (∆ = 0.01) and use the first
T = 100 samples (≈ ±7◦ displacement).

Over the experimental data, maxk(sinx1(k)− x1(k)) ≈ 1e-04. Accounting for ∆g/`, we expect
‖d(k)‖ ≤ γ := 1e-04 over the experimental data. Hence we expect ‖D0‖ ≤ γ

√
T = 1e-03. We set

RD := 0.01I2. The problem is feasible and we obtain

K =
[
−244.9589 −38.6757

]
which is indeed stabilizing as ‖D0‖ = 4.6069e-05.

Note Genuine disturbances can be included

Note PE for nonlinear systems is possible 8

8
C. De Persis, P. Tesi. Designing experiments for data-driven control of nonlinear systems, 24th MTNS 2020
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Bilinear systems

Consider a single-input nonlinear system

x(k + 1) = A?x(k) +B?u(k) +D?x(k)u(k)︸ ︷︷ ︸
d(k)

with unknown A?, B?, D?. We want to locally stabilize the system around the origin. Let

V0 :=
[
x(0)u(0) x(1)u(1) · · · x(T − 1)u(T − 1)

]
Closed-loop representation:

A? +B?K +D?xK =
[
B? A?

] [K
In

]
+
[
D?x 0

] [K
In

]
=
[
B? A?

] [U0

X0

]
GK +

[
D?x 0

] [U0

X0

]
GK

= (X1 −D?V0 +D?xU0)GK
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The closed-loop representation reads

A? +B?K +D?xK = (X1 −D?V0 +D?xU0)GK

We consider as a Lyapunov function V (x) = x>Qx, Q � 0, and we apply Petersen’s lemma
twice considering

De :=
{
D ∈ Rn×n : DD> � δ2In with δ > 0

}
EQ :=

{
x ∈ Rn : x>Qx ≤ 1

}
where:

• De replaces the term D?. It requires information on the strength of the nonlinear
coupling (a Lipschitz constant).

• EQ replaces the term x. It defines the basin of attraction.
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Theorema Consider a system x+ = A?x+B?u+D?xu with dataset U0, X0 X1, V0.
Consider the disturbance model De = {D : DD> � δ2In, δ > 0} and suppose that
D? ∈ De. If there exist ε1, ε2 ∈ R, P ∈ Rn×n, Y ∈ RT×n such that

P = X0Y,


P 0 −Y >U>0 −Y >X>1 δY >V >0
? ε1P 0 0 −δε1P
? ? ε1I 0 0
? ? ? P − ε2I 0
? ? ? ? ε2I

 � 0

then K = U0Y P
−1︸︷︷︸
Q

is stabilizing and its basin of attraction contains the set

EP−1 = {x : x>P−1x ≤ 1}

a
A. Bisoffi, C. De Persis, P. Tesi. Data-based stabilization of unknown bilinear systems with guaranteed basin of

attraction. Systems & Control Letters, 2020
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Example

Consider the system9

A? =

[
0.8 0.5
0.4 1.2

]
, B? =

[
1
2

]
, D? =

[
0.45 0.45
0.3 −0.3

]
We set δ := 0.763 which over-approximates by 20% the actual ‖D?‖ = 0.636, and take T = 10
samples (unstable system). We solve the BMI using a line search on ε1 obtaining
K =

[
−0.3572 −0.5738

]
.

9
G. Bitsoris, N.Athanasopoulos. Constrained stabilization of bilinear discrete-time systems using polyhedral Lyapunov

functions. 17th IFAC World Congress, 2008.
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Gaussian noise

Assume that the disturbance vectors d(k) are i.i.d. random vectors drawn from the normal
distribution N (0, σ2I).

Theorema For any µ > 0 it holds that

D0D
>
0 � σ2T

(
1 + µ+

√
n

T

)2

In︸ ︷︷ ︸
RDR>D

with probability at least 1− e−Tµ2/2.

a
M. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint. Cambridge University Press, 2019

We have an analogous result in probability (D0 ∈ De with high probability)

There is a tradeoff on the choice of the length of the experiment: the higher T , the higher
the probability that D0D

>
0 � RDR>D, but the higher is the value of

‖RD‖ = σ
√
T (1 + µ) + σ

√
n. Things improve via averaging.

43 / 56



Example

Consider a linear system with

A? =

 −0.3245 −0.5548 −0.2793
0.5906 −0.4228 0.0892
−0.3792 −0.2863 −0.0984

 , B? =

 0.5864
−0.8519

0.8003


We perform an experiment with input |u| ≤ 1 and we collect T = 100 samples. We assume that
d ∼ N (0, 0.01I3) i.i.d.. For µ = 0.4 we obtain ‖D0‖ ≤ 1.5732 with probability at least 0.999. We
set RD := 1.5732I3. The problem is feasible and we get

K =
[
0.4768 −0.0018 −0.0451

]
This controller ensures closed-loop stability with 99.9% probability. It is indeed stabilizing as
‖D0‖ = 0.9972.

44 / 56



Averaging

We can filter out noise by averaging datasets from multiple experiments. 10

Take N independent experiments each of length T with datasets (U
(n)
0 , X

(n)
0 , X

(n)
1 , D

(n)
0 ),

n = 1, . . . , N . Denoting

S =
1

N

N∑
n=1

S(n)

we obtain the relation

X1 = A?X0 +B?U0 +D0

The average signals still provide a valid trajectory of the system and the noise will now
have a reduced variance.

10
C De Persis, P Tesi. Low-complexity learning of linear quadratic regulators from noisy data. Automatica 2021

45 / 56



Easy consequence of the previous result:

Theorema Consider N independent experiments each of length T and assume that the
disturbance vectors d(k) are i.i.d. random vectors drawn from the normal distribution
N (0, σ2I). For any µ > 0, the average matrix D0 satisfies

D0D
>
0 �

σ2T

N

(
1 + µ+

√
n

T

)2

In

with probability at least 1− e−Tµ2/2.

(Averaging reduces noise power by a factor of N)

a
M. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint. Cambridge University Press, 2019.

Theorem 6.1
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Example (Cont’d)

Consider the same system as before

A? =

 −0.3245 −0.5548 −0.2793
0.5906 −0.4228 0.0892
−0.3792 −0.2863 −0.0984

 , B? =

 0.5864
−0.8519

0.8003


We take again |u| ≤ 1 and T = 100, but this time we assume d ∼ N (0, 0.3I3) (instead of
d ∼ N (0, 0.01I3)). We consider N = 100 experiments (same u). For µ = 0.4 we have
‖D0‖ ≤ 0.7425 with probability at least 0.999. We set RD := 0.7425I3 and obtain

K =
[
0.4017 0.0422 −0.1221

]
The controller ensures closed-loop stability with 99.9% probability. It is indeed stabilizing as
‖D0‖ = 0.6163.
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(Left) Input and disturbance signals for one of the experiments

(Right) Input and disturbance signals after averaging N = 100 experiments
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Measurement noise

Consider the following setting:

x+ = A?x+B?u, y = x+ n

The relation between data and dynamics now reads:

X1 = A?X0 +B?U0, Y0 = X0 +N0, Y1 = X1 +N1

This gives the following identity relating the measured noisy data matrices Y0, Y1 (instead
of X0, X1)

Y1 = X1 +N1

= A?X0 +B?U0 +N1

= A?Y0 +B?U0 + N1 −A?N0︸ ︷︷ ︸
Q0=Q0(N0,N1,A?)

Same structure as before although the problem itself is now much more complex
(consistency set is non-convex).
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Theorem a Consider x+ = A?x+B?u, y = x+ n, with dataset U0, Y0, Y1 and
consider the noise model Qe :=

{
Q : QQ> � RQR>Q with known RQ

}
. Suppose

Q0 ∈ Qe. If there exist P ∈ Rn×n, Z ∈ RT×n such that

Y0Z = P,

P −RQR
>
Q −Y1Z 0

−Z>Y >1 P Z>

0 Z I

 � 0

then K = U0 ZP
−1︸ ︷︷ ︸

GK

is stabilizing.

a
C. De Persis, P. Tesi. Formulas for data-driven control: Stabilization, optimality, and robustness. TAC 2020
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We have

Y1 = A?Y0 +B?U0 +N1 −A?N0︸ ︷︷ ︸
Q0

and the model Qe = {Q : QQ>� RQR
>
Q}.

Alternative We can take the model Ne = {N : NN>� RNR
>
N}. If N0, N1 ∈ Ne and there exists

ε ∈ (0, 0.5) such that [
0
RN

] [
0
RN

]>
� ε

[
U0

Y0

] [
U0

Y0

]>
, RNR

>
N � εY1Y

>
1

then Q0 ∈ Qe with RQ = γY1, where γ = 9ε/(1− 2ε).

This approach avoids to infer bounds on the norm of A?
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Example

Consider the same system as before

A? =

 −0.3245 −0.5548 −0.2793
0.5906 −0.4228 0.0892
−0.3792 −0.2863 −0.0984

 , B? =

 0.5864
−0.8519

0.8003


We run an experiment with |u| ≤ 1 and we collect T = 100 samples. Suppose that ‖n‖ ≤ 0.01 and
that we select RN = 0.1I3 (very large over-approximation). We find a feasible value ε = 0.0179.
Hence we set γ := 0.1671 and RQ := γY1, which corresponds to ≈ 16% information loss relative to
the observations.

The problem is feasible and we get

K =
[
0.5258 −0.0192 0.0401

]
The controller ensures closed-loop stability as RN is a correct guess.
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Summary

� The same approach used for noise-free data extends to the noisy case
and provides theoretical guarantees.

� As in the noiseless case, it only requires a finite number of data from
a low sample-complexity experiment.

� It equally handles deterministic and stochastic noise.
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Some recent results

This approach provides sufficient conditions. In general, we do not expect
tractable NS conditions. Tight conditions are nevertheless very important to tackle more
challenging (nonlinear) settings.

Two additional findings for LTI systems with perturbed dynamics:

1. Tight conditions for energy models

2. Tractable conditions for point-wise bounds

We review these findings in Lecture 3
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Some recent results

This approach provides sufficient conditions. In general, we do not expect
tractable NS conditions. Tight conditions are nevertheless very important to tackle more
challenging (nonlinear) settings.

Two additional findings for LTI systems with perturbed dynamics:

1. Tight conditions for energy models

2. Tractable conditions for point-wise bounds
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Tight conditions for energy models

Tight conditions are actually possible for linear systems in case of input disturbances and
energy-like model.

� Approach based on Petersen’s lemma.

� Also useful for nonlinear (polynomial) systems which will be discussed in
the last part of the lectures.
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Framework and problem recap

Consider the LTI system

x(k + 1) = A?x(k) +B?u(k) + d(k)

where x, d ∈ Rn and u ∈ Rm.

Disturbance model and consistency set are given by:

Disturbance model

De :=
{
D ∈ Rn×T : DD> � RDR

>
D for known RD

}
where T is the experiment length.

Consistency set

Σe := {(A,B) : X1 = AX0 +BU0 +D for some D ∈ De}
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Problem I (Quadratic stabilization)

find K,P � 0

such that (A+BK)P (A+BK)> − P ≺ 0 ∀(A,B) ∈ Σe

Problem II (Quadratic stabilization via GK-representation)

find GK , P � 0

such that (X1 −D)GKPG
>
K(X1 −D)> − P ≺ 0 ∀D ∈ De

X0GK = In

We know that Problem II =⇒ Problem I but Problem II 6⇐= Problem I. Instead of
applying Petersen’s lemma to D we might apply it to (A,B). We must better understand
the structure of Σe.
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An equivalent description of Σe

Lemma Σe = Λe, where

Λe :=

(A,B) :

 In
B>

A>

> In X1

0 −U0

0 −X0

[−RDR>D 0
0 IT

]In X1

0 −U0

0 −X0

>  In
B>

A>

 � 0


Proof. Assume that (A,B) ∈ Σe = {(A,B) : X1 = AX0 + BU0 + D, D ∈ De}. Then

D = X1 − [ B A ]
[
U0
X0

][
In
D>

]> [−RDR>D 0
0 IT

] [
In
D>

]
� 0

Replacing the expression of D in the identity in the inequality above gives (A,B) ∈ Λe.

Let (A,B) ∈ Λe, define D := X1 −AX0 −BU0 and note thatIn X1

0 −U0

0 −X0

>  In
B>

A>

 =

[
In
D>

]

Hence, D ∈ De and this implies (A,B) ∈ Σe. �
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The constraint defining Σe is then InB>
A>

> In X1

0 −U0

0 −X0

[−RDR
>
D 0

0 IT

]In X1

0 −U0

0 −X0

>  InB>
A>

 � 0

⇐⇒

 In
B>

A>

> X1X
>
1 −RDR

>
D −X1U

>
0 −X1X

>
0

−U0X
>
1 U0U

>
0 U0X

>
0

−X0X
>
1 X0U

>
0 X0X

>
0

 InB>
A>

 � 0

⇐⇒
[
In
∆

]> [
Ξ V >

V Θ

] [
In
∆

]
� 0

⇐⇒ Ξ + ∆>V + V >∆ + ∆>Θ∆ � 0

⇐⇒
(
∆ + Θ−1V

)>
Θ
(
∆ + Θ−1V

)
+ Ξ− V >Θ−1V � 0

where the last expressions follows from
[
U0

X0

]
full row rank (Θ =

[
U0

X0

] [
U0

X0

]>
).
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Ellipsoidal description of Σe

We have

Σe =
{

∆ ∈ R(n+m)×n :
(
∆ + Θ−1V

)>
Θ
(
∆ + Θ−1V

)
� L

}
where:

• ∆ :=
[
B A

]>
• Θ := W0W

>
0

• V := −W0X
>
1

• L := V >Θ−1V − Ξ

• Ξ := X1X
>
1 −RDR>D centre: −Θ−1V

We have an ‘ellipsoidal’ uncertainty: E = {δ : (δ − δc)>Θ(δ − δc) ≤ 1}. The centre is
−Θ−1V and the size depends on L.

Σe

Note L � 0.
If L = 0, then Σe reduces to a singleton (noiseless case)
If L � 0, then ∆ = −Θ−1V + Θ−1/2SL1/2, for any S ∈ R(n+m)×n such that ‖S‖ ≤ 1, belongs to
Σe and implies that Σe has nonempty interior (”in all directions”).
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There is more than one way to represent an ellipsoid, and there exists an expression that is
suited to apply Petersen’s lemma.

Lemma It holds that
Σe = ∆e

where

∆e :=

∆ ∈ R(n+m)×n : ∆ = −Θ−1V + Θ−1/2SL1/2, ‖S‖ ≤ 1︸ ︷︷ ︸
explicit description


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Proof (we only consider L � 0). We want to prove that

Σe =
{

∆ : (∆ + Θ−1V )>Θ(∆ + Θ−1V ) � L
}

=
{

∆ : ∆ = −Θ−1V + Θ−1/2SL1/2, ‖S‖ ≤ 1
}

=: ∆e

Assume ∆ ∈ Σe. Let
S := Θ1/2(∆ + Θ−1V )L−1/2

Clearly, ∆ = −Θ−1V + Θ−1/2SL1/2. We just need to check ‖S‖ ≤ 1:

S>S = L−1/2(∆ + Θ−1V )>Θ(∆ + Θ−1V )L−1/2 � In

Hence, ∆ ∈ ∆e.

Assume ∆ ∈ ∆e. Then,

(∆ + Θ−1V )>Θ(∆ + Θ−1V ) = L1/2S>SL1/2 � L

Hence, ∆ ∈ Σe. �
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Main result

Theorem a Consider a system x+ = A?x+B?u+ d with dataset U0, X0, X1.
Assume that W0 =

[
U0

X0

]
has full row rank, and assume that D0 ∈ De where

De := {D : DD> � RDR
>
D for known RD}. Problem I is feasible if and only

if there exist P ∈ Rn×n, Y ∈ Rm×n such that
P + Ξ 0 V >

0 P
(
Y > P

)
V

(
Y
P

)
Θ

 � 0

where V = −W0X
>
1 , Ξ = X1X

>
1 −RDR

>
D, Θ = W0W

>
0 .

In this case, K = Y P−1.

a
A. Bisoffi, C. De Persis, P. Tesi. Data-driven control via Petersen’s lemma. Automatica 2022
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Proof (sketch). For any (A,B) ∈ Σe,

A+BK = ∆

[
K
I

]
= (−Θ−1V + Θ−1/2SL1/2)K for some S such that ‖S‖ ≤ 1

where K := [ KI ].

The Lyapunov stability condition reads

Θ−1/2SL1/2 −Θ−1V )>︸ ︷︷ ︸
[B A ]

KPK>(Θ−1/2SL1/2 −Θ−1V )− P ≺ 0

for all S with ‖S‖ ≤ 1

Let now Y = KP = [ KP
P ] =: [ YP ], which implies KPK> = Y P−1Y >. A Schur complement

gives [
−P (Θ−1V −Θ−1/2SL1/2)>Y

Y >(Θ−1V −Θ−1/2SL1/2) −P

]
=

[
−P V >Θ−1Y

Y >Θ−1V −P

]
+

[
L1/2

0

]
S>
[

0 −Θ−1/2Y
]

+

[
0

−Y >Θ−1/2

]
S
[
L1/2 0

]
≺ 0

for all S with ‖S‖ ≤ 1 12 / 40



By Petersen’s lemma, this condition is equivalent to the existence of a scalar ε > 0 such
that [

−P V >Θ−1Y

Y >Θ−1V −P

]
+

ε−1
[
L 0
0 0

]
+ ε

[
0

Y >Θ−1/2

]
In+m

[
0 Θ−1/2Y

]
≺ 0

This inequality can be rewritten as[
−P + ε−1L V >Θ−1Y

Y >Θ−1V −P + εY >Θ−1Y

]
≺ 0 or

[
−P + L V >Θ−1Y

Y >Θ−1V −P + Y >Θ−1Y

]
≺ 0

the latter by scaling the decision variables εP → P , εY → Y . Rewrite it as[
−P + L− V >Θ−1V 0

Y >Θ−1V −P + Y >Θ−1Y

]
+

[
−V >
−Y >

]
Θ−1

[
−V −Y

]
≺ 0

which shows the result after another Schur complement and bearing in mind that
L− V >Θ−1V = −Ξ. �
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Example

Consider again the system

A? =

 −0.3245 −0.5548 −0.2793
0.5906 −0.4228 0.0892
−0.3792 −0.2863 −0.0984

 , B? =

 0.5864
−0.8519

0.8003


We collect T = 100 samples with |u| ≤ 1, ‖d‖ ≤ 0.1. Suppose RD = γI3. With the
GK-representation the problem is feasible up to γ = 2.18, while the ∆-representation
works up to γ = 2.37.

Note The gap is not large. The reason is that Problem II is a relaxation of Problem I but
we have NS conditions for Problem II.
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Remarks

Some practical advantages:

� Tight conditions

� Reduced number of decision variables (Y ∈ Rm×n)

� Useful for linear-like (polynomial) systems

It also allows us to draw connections with least-squares methods.
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Connections with least squares

Recall that

Σe =
{

∆ ∈ Rn+n×n :
(
∆ + Θ−1V

)>
Θ
(
∆ + Θ−1V

)
� L

}
where:

• ∆ :=
[
B A

]>
• Θ := W0W

>
0

• V := −W0X
>
1

• L := V >Θ−1V − Ξ

• Ξ := X1X
>
1 −RDR>D centre: −Θ−1V

The ellipsoid centre −Θ−1V is the least-squares estimate of (A?, B?) and is purely
data-dependent. The size of the uncertainty depends on L, thus on the data and the priors
(RD).
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The least-squares estimate has a privileged position and this explains why
certainty-equivalence works well in some cases

centre: −Θ−1V

−−−−−−−−−−−−−−→
Uncertainty relative to RD ←−−−−−−−−−−−−−−

Uncertainty for actual bound
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Detour: Optimal control

Note that problems involving optimal control (like LQR design) are tricky since ”blind”
robust formulations need not ensure a sufficient performance level (even unknown
sub-optimality gap).

We need the consistency set included in the set of admissible performance

−−−−−−−−−−→
consistency set

set of admissible performance
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Ideal LQR formulation with unitary weights (Lecture 1):

minimizeY,P,L trace (P ) + trace (L)

subject to

(X1 −D0)Y P−1Y >(X1 −D0)> − P + In︸ ︷︷ ︸
L(Y,P,D0)

� 0

P � In
L− U0Y P

−1Y >U>0 � 0

X0Y = P

which cannot be implemented as D0 is unknown. Replacing the constraint
L(Y, P,D0) with L(Y, P,D) for all D ∈ De favours too much robustness to the detriment of
performance.

We instead look for a solution that trades off robustness for performance via a soft
constraint.
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Soft constraint formulation:1

minimizeY,P,L trace (P ) + trace (L) + α trace(V )

subject to

X1Y P
−1Y >X>1 − P + In � 0

P � In
L− U0Y P

−1Y >U>0 � 0

X0Y = P

V − Y P−1Y > � 0

where α > 0.

• α� 1 favours performance (close to ideal formulation)

• α� 1 favours robustness as it favours solutions with trace(V )� 1, and this makes
(X1 −D0)Y P−1Y >(X1 −D0)> − P + In � 0 easier to satisfy.

1
C De Persis, P Tesi. Low-complexity learning of linear quadratic regulators from noisy data. Automatica 2021
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Instantaneous bounds

Thus far we have considered energy models.

Another important model constrains the admissible disturbances in terms of their
‘instantaneous’ amplitude. Disturbances in this class are typically called
unknown-but-bounded (UBB).

Disturbance model (UBB)

Di :=
{
d ∈ Rn : ‖d‖2 ≤ ε for known ε

}
Note We consider the 2-norm but other norms can be used.
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This model is just as important as the energy model but is considerably more difficult to
handle. The typical approach is indeed to convert it to an energy model.

We discuss an approach that works directly with instantaneous bounds and results in a
tractable formulation (LMI).
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Consistency set associated with Di

Consider again the system

x(k + 1) = A?x(k) +B?u(k) + d(k)

where x, d ∈ Rn and u ∈ Rm. Assume now instantaneous bounds for the disturbance,
namely Di = {d ∈ Rn : ‖d‖2 ≤ ε for known ε}.

Consistency set

Σi :=

T−1⋂
k=0

Σ
(k)
i

where

Σ
(k)
i := {(A,B) : x(k + 1) = Ax(k) +Bu(k) + d for some d ∈ Di}

(each samples defines a constraint)
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The consistency set now appears as an intersection of sets. The design is more involved as
Σi has a complicated structure.

Example System A? = B? = 0.5. Set Σi resulting from an experiment of length T = 100
where |u(k)| ≤ 1 and |d(k)| ≤ 1 for all k, both randomly generated.

Σi =
⋂

k Σ
(k)
i
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Converting inst. bounds into energy bounds?

A simple approach to treat instantaneous bounds is to convert them into energy bounds
and use previous tools (Petersen’s lemma). The procedure is extremely simple:

1. Start with Di = {d : ‖d‖2 ≤ ε}

2. Define De := {D : DD> � TεIn}

3. Stabilize Σe := {(A,B) : X1 = AX0 +BU0 +D, D ∈ De}

The procedure works because of the following:

Lemma Σi ⊆ Σe for any experiment of any length T .
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On the gap between Σi and Σe

The gap between the two sets can be very large.

Example System as in the previous example. (Left) Set Σi associated with
Di = {d : |d| ≤ 1}. (Right) Set Σe (De = {D : DD> � 100}).

Σi =
⋂

k Σ
(k)
i Σe
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A closer look shows the following:

Lemma a Let Σi(T ) be the consistency set associated with an experiment of length T and
the disturbance model Di. Let Σe(T ) be the consistency set obtained by converting Di

into De. Then:

• Σi(T ) ⊆ Σe(T ) (previous lemma)

• Σi(T + 1) ⊆ Σi(T )

• Σe(T + 1) * Σe(T )

a
A. Bisoffi, C. De Persis, P. Tesi. Trade-offs in learning controllers from noisy data. Systems & Control Letters 2021

27 / 40



Consistency sets in the previous example for increasing number of data points. (Left) Σe. (Right)
Σi (depicted in grey colors).
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A direct tractable approach

As Σe is typically much larger than Σi, we want to work directly with Σi. The structure of
Σi is complicated, and we have to search for relaxations. We discuss a relaxation approach
that is based on the so-called S-lemma (or S-procedure).

Consistency set

Σi :=

T−1⋂
k=0

Σ
(k)
i

Problem III

find K,P � 0

such that (A+BK)P (A+BK)> − P ≺ 0 ∀(A,B) ∈ Σi
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Consistency set

Σi :=

T−1⋂
k=0

Σ
(k)
i

Problem III

find K,P � 0

such that (A+BK)P (A+BK)> − P︸ ︷︷ ︸
L(K,P )

≺ 0 ∀(A,B) ∈ Σi

Idea We want to check when one relation ((A,B) ∈ Σi) implies another one (L(K,P ) ≺ 0),
where the relation (A,B) ∈ Σi consists of a ’system’ of quadratic inequalities.

The S-procedure is a relaxation method which tries to solve a system of quadratic
inequalities via an LMI relaxation. Very famous because under certain conditions the
relaxation is exact or “lossless”. 2

2
A. Yakubovich. Solution of certain matrix inequalities in the stability theory of nonlinear control systems. Soviet

Mathematics Doklady 1962
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Main results

Theorem a Consider a system x+ = A?x+B?u+ d with dataset U0, X0, X1. Suppose that
each element (column) of the matrix D0 belongs to Di where
Di =

{
d : ‖d‖2 ≤ ε for known ε > 0

}
. Problem III is feasible if there exist

P ∈ Rn×n, Y ∈ Rm×n, τ0, . . . , τT−1 ∈ R≥0 such that


P 0 0 0
0 −P −Y > 0
0 −Y 0 Y
0 0 Y > P


︸ ︷︷ ︸

Q

−
T−1∑
k=0

τk


I x(k + 1)
0 −x(k)
0 −u(k)
0 0

[εI 0
0 −I

]
I x(k + 1)
0 −x(k)
0 −u(k)
0 0


>

︸ ︷︷ ︸
Sk

� 0

In this case, K = Y P−1.

a
A. Bisoffi, C. De Persis, P. Tesi. Trade-offs in learning controllers from noisy data. Systems & Control Letters 2021
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Proof (sketch). Recall:

Σ
(k)
i =

{
(A,B) : x(k + 1) = Ax(k) +Bu(k) + d, ‖d‖2 ≤ ε

}
Each constraint can be rewritten as I

A>

B>

> I x(k + 1)
0 −x(k)
0 −u(k)

[εI 0
0 −I

]I x(k + 1)
0 −x(k)
0 −u(k)

>  I
A>

B>


︸ ︷︷ ︸ I

X

>Sk

 I
X



� 0

It remains to look at the stability condition.

32 / 40



The stability condition reads

(A+BK)P (A+BK)> − P ≺ 0

and it can be rewritten as I
A>

B>

> P 0 0
0 −P −PK>
0 −KP −KPK>

 I
A>

B>


︸ ︷︷ ︸ I

X

>Q
 I
X



� 0

We want to show that[
I
X

]>
Q

[
I
X

]
� 0 for all X such that

[
I
X

]>
Sk

[
I
X

]
� 0 for all k = 0, 1, . . . , T − 1

By applying the S-lemma, this holds if there exists τ0, . . . , τT−1 ∈ R≥0 such that

Q−
T−1∑
k=0

τkSk � 0

Letting Y = KP and performing a Schur complement the condition above is equivalent to
the condition in the statement. �
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This approach only provides sufficient conditions. Nonetheless, it is never more
conservative than the one that uses Σe.

Recall:

Problem III (just solved)

find K,P � 0

such that (A+BK)P (A+BK)> − P ≺ 0 ∀(A,B) ∈ Σi

Problem I (solvable via Petersen’s lemma)

find K,P � 0

such that (A+BK)P (A+BK)> − P ≺ 0 ∀(A,B) ∈ Σe

Theorem a Problem I =⇒ Problem III.

a
A. Bisoffi, C. De Persis, P. Tesi. Trade-offs in learning controllers from noisy data. Systems & Control Letters 2021

The proof is omitted.
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Example

Example for system with 3 states and 2 inputs under different ε and T . For each value of ε
and T , we solve a batch of 100 feasibility problems with |u| ≤ 1. (Left) Results with Σe.
(Right) Results with Σi.

35 / 40



Working with Σi increases the computations as we have T more decision variables
(τ0, . . . , τT−1). Except for very large datasets, the price paid in terms of computation time
appears negligible.
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We can search for other less conservative ellipsoidal over-approximations of Σi. However, even for
scalar systems finding the ellipsoid of minimum volume that contains Σi is NP-complete. In
practice, ’good’ over-approximations Σi can be found but they can anyway be loose.
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Previous example now with a classic approach3 that determines an outer approximation of
the intersection of ellipsoids (top-right figure)

3
S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory (§ 3.7.2),

SIAM 1994
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Summary and next lecture

� Simple method with stability guarantees, only requires a finite number
of data from a low sample-complexity experiment.

� Tight conditions for energy models (ellipsoidal uncertainty)

� Can handle deterministic and stochastic noise, and can be adapted to
different noise models (energy and point-wise models).

� Generalizes to robust performance and nonlinear settings.

To follow

Nonlinear input-affine systems, polynomial systems, SOS tools
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Nonlinear systems



Nonlinear systems

We consider nonlinear input-affine systems

ẋ = f?(x) + g?(x)u

where f?, g? are unknown vector fields.

Prior 1 f?, g? can be expressed as linear combinations of basis of known functions

f?(x) = A?Z(x) g?(x) = B?W (x)

with

• A?, B? unknown constant matrices

• Z(x) ∈ RN ,W (x) ∈ RM×m matrices of known functions that encode prior
information
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Comments

• The linear parametrization allows for a data-dependent representation which
is suitable for synthesis and analysis

• We do not allow Z(x),W (x) to depend on parameters, i.e. to have
Z(x, θ),W (x, θ), with θ unknown, thus compelling the designer to use large
number of functions in Z(x),W (x)

• The linear parametrization can be replaced by non-parametric models
satisfying different priors but the data-dependent representation is more
challenging to use for synthesis and analysis
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Example

ẋ = f?(x) + g?(x)u

Priors

• Polynomial system with f?(x) of degree ≤ 3 and g?(x) of degree 0

• State x of order 2, i.e. x ∈ R2

Based on these priors we choose

Z(x) =
[
x1 x2 x2

1 x1x2 x2
2 x3

1 x2
1x2 x1x

2
2 x3

2

]>
W (x) =1

Then
ẋ = A?Z(x) +B?u with A? ∈ R2×7, B? ∈ R2×1 unknown

is the system representation to be used for data-driven control design
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Data collection for nonlinear systems
Experiment We run an experiment on the nonlinear system

ẋ = A?Z(x) +B?W (x)u+ d

during which

• An open-loop control u over a finite time interval I over which a solution x(t) exists
is applied

• T triples of samples {ẋ(tk), x(tk), u(tk)}T−1k=0 at sampling times tk ∈ I (not necessarily
evenly spaced) are collected

• Process disturbance d affects the dynamics

• Samples {ẋ(tk), x(tk), u(tk)}T−1k=0 are measured with no noise?

• Vectors {Z(x(tk)),W (x(tk))u(tk)}T−1k=0 are computed with no errors?

At each sampling time tk

ẋ(tk) = A?Z(x(tk)) +B?W (x(tk))u(tk) + d(tk) k = 0, 1, . . . , T − 1

?Both cases of noisy measurements and computation errors can be included at the price of a more involved analysis
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Disturbance model

• Dataset identities The dataset satisfies the identities[
ẋ(t0) ẋ(t1) . . . ẋ(tT−1)

]︸ ︷︷ ︸
X1

= A?
[
Z(x(t0)) Z(x(t1)) . . . Z(x(tT−1))

]︸ ︷︷ ︸
Z0

+ B?
[
W (x(t0))u(t0) W (x(t1))u(t1) . . . W (x(tT−1))u(tT−1)

]︸ ︷︷ ︸
U0

+
[
d(t0) d(t1) . . . d(tT−1)

]︸ ︷︷ ︸
D0

= A?Z0 +B?U0 +D0 =
[
B? A?

] [ U0

Z0

]
+D0

Key fact This identity on data is formally analogous to the one used for linear systems

• Standing assumption rank

[
U0

Z0

]
= M +N
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Data-dependent representation of nonlinear systems

Prior 2 - (Energy constrained disturbances) Given the disturbance sequence {d(tk)}T−1k=0 ,
the matrix

D0 =
[
d(t0) d(t1) . . . d(tT−1)

]
belongs to the set

De =
{
D ∈ Rn×T : DD> � RDR>D

}
for some known RD.
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Data-dependent representation of nonlinear systems

• Feasible system matrices set Under the given priors and the data set, the set of feasible
system’s matrices is given by

C :=
{

(A,B) : X1 = AZ0 +BU0 +D, D ∈ Rn×T , DD> � RDR>D
}

• By eliminating D in the identity X1 = AZ0 +BU0 +D, and setting

W 0 :=

[
U0

Z0

]
one obtains the condition(

X1 −
[
B A

]
W 0

)(
X1 −

[
B A

]
W 0

)>
� RDR>D

and the equivalent representation

C :=
{

(A,B) :
[
B A

]
Θ

[
B>

A>

]
+
[
B A

]
V + V >

[
B>

A>

]
+ Ξ � 0

}
where

Θ := W 0W
>
0 V := −W 0X

>
1 Ξ := X1X

>
1 −RDR>D

all known data-dependent matrices
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Data-dependent representation of nonlinear systems
• Feasible system matrices set as a matrix ellipsoid The set

C :=
{

(A,B) :
[
B A

]
Θ

[
B>

A>

]
+
[
B A

]
V + V >

[
B>

A>

]
+ Ξ � 0

}
has the form of a matrix ellipsoid{

Z : Z>ΘZ + Z>V + V >Z + Ξ � 0
}

• Feasible system matrices set Bearing in mind that Θ non-singular by standing assumption

rankW 0 = M +N with W 0 =

[
U0

Z0

]
the matrix ellipsoid can be rearranged in the form

C =
{

(A,B) :
[
B A

]>
= −Θ−1V + Θ−1/2Y L1/2, ‖Y ‖ ≤ 1

}
with

−Θ−1V = (X1W
†
0)> L = X1(W

>
0 (W 0W

>
0 )−1W 0 − I)X>1 +RDR

>
D � 0

• C bounded ‖
[
B A

]> ‖ ≤ ‖Θ−1V ‖+ λmin(Θ)−1/2‖L1/2‖ for any (A,B) ∈ C
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Data-dependent representation of nonlinear systems

Summary Nonlinear input-affine systems

ẋ = f?(x) + g?(x)u+ d

Prior 1 Linear parametrization of f?, g?

f?(x) = A?Z(x) g?(x) = B?W (x)

Data set T -long data set {ẋ(tk), x(tk), u(tk)}T−1
k=0 satisfying

ẋ(tk) = A?Z(x(tk)) +B?W (x(tk))u(tk) + d(tk) k = 0, 1, . . . , T − 1

Prior 2 Energy constrained disturbances

{
d(t0), d(t1), . . . , d(tT−1)} such that

T−1∑
k=0

d(tk)(tk)> � RDR>D for some RD
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Data-dependent representation of nonlinear systems

The nonlinear input-affine system

ẋ = f?(x) + g?(x)u+ d

belongs to the set of data-dependent representations

ẋ =
[
B A

] [W (x)u
Z(x)

]
+ d with (A,B) ∈ C

where
C =

{
(A,B) :

[
B A

]>
= −Θ−1V + Θ−1/2Y L1/2, ‖Y ‖ ≤ 1

}
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Control synthesis



Towards data-driven control design for nonlinear systems

Data enable the replacement of the unknown system

ẋ = A?Z(x) +B?W (x)u+ d

with the uncertain system

ẋ =
[
B A

] [W (x)u
Z(x)

]
+ d with (A,B) ∈ C

There are manifold challenges to the synthesis of a controller for this
data-dependent representation

• There is no apparent structure in the system to exploit

• The system is nonlinear and uncertain

• For stabilization purposes, both a Lyapunov function and a controller must be
designed
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Towards data-driven control design for nonlinear systems

Data enable the replacement of the unknown system

ẋ = A?Z(x) +B?W (x)u+ d

with the uncertain system

ẋ =
[
B A

] [W (x)u
Z(x)

]
+ d with (A,B) ∈ C

• We focus on stabilization, the quintessential control problem

• We assume that the equilibrium pair (xeq, ueq) of interest is known and equal
to the origin
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Towards data-driven control design for nonlinear systems
Main idea to exploit the linear parametrization of the system

• Consider the controller

u = K(x)Z(x) with K(x) matrix of functions

to obtain the closed-loop system

ẋ =
[
B A

] [W (x)K(x)
IN

]
Z(x) + d with (A,B) ∈ C

• Consider the Lyapunov function

V (x) = Z(x)>PZ(x) with P � 0

• Look for conditions under which there exist P � 0 and K(x) such that

V̇ (x) = 2Z(x)>P
∂Z(x)

∂x

[
B A

] [W (x)K(x)
IN

]
Z(x) < 0 for all (A,B) ∈ C

We will be soon more specific on the domain of validity of the Lyapunov inequality
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A remark on the robustness of the closed-loop system

• Asymptotic stability of the nonlinear closed-loop system

ẋ =
[
B A

] [W (x)K(x)
IN

]
Z(x) + d with (A,B) ∈ C

for d = 0 does not guarantee its robustness with respect to arbitrary d 6= 0

• However, if the equilibrium is globally asymptotically stable then the system
is robust to sufficiently small disturbances, namely?

∃β(·, ·) ∈ KL, γ(·) ∈ K, σ : R≥0 → R≥0, continuous with σ(s) 6= 0
for s 6= 0, such that ∀x(0), d(·) for which ‖d(·)‖∞ ≤ σ(‖x(0)‖)

‖x(t)‖ ≤ β(‖x(0)‖, t) + γ(‖d(·)‖∞) ∀t ≥ 0

We focus on a globally stabilizing controller and neglect d

?E.D. Sontag. “Further facts about input to state stabilization”, IEEE Transactions on Automatic Control, 35(4), 473–476,
1990.
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Towards data-driven control design for nonlinear systems

• Z(x) is used in the representation of f?(x) and may be high dimensional, leading to
higher computational load in the design phase. For feedback control u and Lyapunov
function V a much lower-dimensional Ẑ(x) might suffice, related to Z(x) via

Z(x) = H(x)Ẑ(x) with H(x) matrix of functions

• Feedback control and Lyapunov function A revised controller

u = K(x)Ẑ(x) with K(x) matrix of functions

and a revised Lyapunov function

V (x) = Ẑ(x)>PẐ(x) with P � 0

• Properties of Ẑ(x)

Ẑ(x) = 0⇔ x = 0 (⇒ V (x) globally positive definite)

Ẑ(x) radially unbounded (⇒ V (x) radially unbounded)

Ẑ(x) contains the state vector x
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Example

ẋ = f?(x) + g?(x)u

Priors

• Polynomial system with f?(x) of degree ≤ 3 and g?(x) of degree 0

• State x of order 2, i.e. x ∈ R2

Previously we chose

Z(x) =
[
x1 x2 x2

1 x1x2 x2
2 x3

1 x2
1x2 x1x

2
2 x3

2

]>
W (x) =1

If now we choose
Ẑ(x) = [x1 x2]>

then

H(x) =

[
1 0 x2 x1 0 x1x2 0 x2

1 0
0 1 0 0 x2 0 x1x2 0 x2

2

]>
H(x) not unique
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Data-driven control design of nonlinear systems

• Write the closed-loop system...

ẋ =
[
B A

] [W (x)u
Z(x)

]
with (A,B) ∈ C u = K(x)Ẑ(x)

as

ẋ =
[
B A

] [W (x)K(x)
H(x)

]
Ẑ(x)

• ...and the Lyapunov inequality

V̇ (x) = 2Ẑ(x)>P
∂Ẑ(x)

∂x

[
B A

] [W (x)K(x)
H(x)

]
Ẑ(x) < 0 ∀x 6= 0

for all (A,B) ∈ C

Observe the product of the two decision variables P and K(x)
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Data-driven control design of nonlinear systems

To prevent the product of the two decision variables P and K(x)

1) Pull the vector PẐ(x) out of the Lyapunov inequality

V̇ (x) = 2Ẑ(x)>P
∂Ẑ(x)

∂x

[
B A

] [W (x)K(x)P−1

H(x)P−1

]
PẐ(x)

2) Perform a change of variables analogous to the case of linear systems

F (x) := K(x)P−1 Q = P−1

which yields
V̇ (x) = Ẑ(x)>P M(x)PẐ(x)

where

M(x) =
∂Ẑ(x)

∂x

[
B A

] [W (x)F (x)
H(x)Q

]
+

[
W (x)F (x)
H(x)Q

]> [
B A

]> ∂Ẑ(x)

∂x

>
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Data-driven control design of nonlinear systems

Express Lyapunov stability conditions in terms of the matrix M(x)

∃Q � 0, F (x) : M(x) ≺ 0 ∀x 6= 0 =⇒ V̇ (x) < 0 ∀x 6= 0

The advantage of working with

M(x) =
∂Ẑ(x)

∂x

[
B A

] [W (x)F (x)
H(x)Q

]
+

[
W (x)F (x)
H(x)Q

]> [
B A

]> ∂Ẑ(x)

∂x

>

is that the decision variables appear linearly, at the price of some conservatism
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Data-driven control design of nonlinear systems

Problem Find matrix Q � 0 and matrix of functions F (x) such that

∂Ẑ(x)

∂x

[
B A

] [W (x)F (x)
H(x)Q

]
+

[
W (x)F (x)
H(x)Q

]> [
B A

]> ∂Ẑ(x)

∂x

>

≺ 0

for all x 6= 0 and all (A,B) ∈ C

If F (x) and Q � 0 are found, then (recall that u = K(x)Ẑ(x) and K(x)Q = F (x))

u = F (x)Q−1Ẑ(x)

is a globally asymptotically stabilizing controller and

V (x) = Ẑ(x)>Q−1Ẑ(x)

is a Lyapunov function
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Data-driven control design of nonlinear systems

Problem Find matrix F (x) and matrix Q � 0 such that

M(x) ≺ 0 for all x 6= 0 and all (A,B) ∈ C

where

M(x) =
∂Ẑ(x)

∂x

[
B A

] [W (x)F (x)
H(x)Q

]
+

[
W (x)F (x)
H(x)Q

]> [
B A

]> ∂Ẑ(x)

∂x

>

Bearing in mind that (A,B) ∈ C is equivalent to[
B A

]>
= Zc + U−1/2Y L1/2 ‖Y ‖ ≤ 1

where Zc = −Θ−1V for short, we write

M(x) =
∂Ẑ(x)

∂x
Z>c

[
W (x)F (x)
H(x)Q

]
+

[
W (x)F (x)
H(x)Q

]>
Zc
∂Ẑ(x)

∂x

>

+

[
W (x)F (x)
H(x)Q

]>
U−1/2Y L1/2 ∂Ẑ(x)

∂x

>

+ (?)>
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Data-driven control design of nonlinear systems

Let us single out the different parts of M(x)

M(x) =

G(x)︷ ︸︸ ︷
∂Ẑ(x)

∂x
Z>c

[
W (x)F (x)
H(x)Q

]
+

[
W (x)F (x)
H(x)Q

]>
Zc
∂Ẑ(x)

∂x

>

+[
W (x)F (x)
H(x)Q

]>
U−1/2︸ ︷︷ ︸

M(x)

Y︸︷︷︸
Y

L1/2 ∂Ẑ(x)

∂x

>

︸ ︷︷ ︸
N (x)

+(?)>

By pointwise application of Petersen’s lemma

M(x) ≺ 0 ∀Y : Y >Y � I

m

∃ε(x) > 0: G(x) + ε(x)M(x)M(x)> + ε(x)−1N (x)>N (x) ≺ 0
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Data-driven control design of nonlinear systems

By writing explicitly the condition

G(x) + ε(x)M(x)M(x)> + ε(x)−1N (x)>N (x) ≺ 0

we obtain[
W (x)F (x)
H(x)Q

]>
Zc
∂Ẑ(x)

∂x

>

+ (?)> + ε(x)

[
W (x)F (x)
H(x)Q

]>
Θ−1

[
W (x)F (x)
H(x)Q

]
ε(x)−1

∂Ẑ(x)

∂x
L
∂Ẑ(x)

∂x

>

≺ 0

By pointwise Schur complement, the latter is equivalent to
[
W (x)F (x)
H(x)Q

]>
Zc
∂Ẑ(x)

∂x

>

+ (?)> + ε(x)−1 ∂Ẑ(x)

∂x
L
∂Ẑ(x)

∂x

> [
W (x)F (x)
H(x)Q

]>
[
W (x)F (x)
H(x)Q

]
−ε(x)−1Θ

 ≺ 0
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Recap – what we understood so far
Under

Prior 1 ẋ = f?(x) + g?(x)u = A?Z(x) +B?W (x)u

Prior 2 {d(tk)}T−1k=0 ∈
{
{dk}T−1k=0 :

T−1∑
k=0

dkdk
> � RDR>D

}
let Ẑ(x), H(x) be matrices of functions such that

Z(x) = H(x)Ẑ(x) with Ẑ(x) =
[
x> . . .

]>
If there exist Q � 0, matrix F (x) and µ(x) > 0 such that

[
W (x)F (x)
H(x)Q

]>
Zc
∂Ẑ(x)

∂x

>

+ (?)> + µ(x)
∂Ẑ(x)

∂x
L
∂Ẑ(x)

∂x

> [
W (x)F (x)
H(x)Q

]>
[
W (x)F (x)
H(x)Q

]
−µ(x)Θ

 ≺ 0

for all x 6= 0, then

u = F (x)Q−1Ẑ(x) globally asymptotically stabilizer

V (x) = Ẑ(x)>Q−1Ẑ(x) Lyapunov function
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Comments

• The previous condition requires the following to hold

∂Ẑ(x)

∂x
Z>c

[
W (x)F (x)
H(x)Q

]
+ (?)> + ε(x)−1

∂Ẑ(x)

∂x
L
∂Ẑ(x)

∂x

>

≺ 0

That is, the controller matrix F (x) must stabilize the system at the centre of the
matrix ellipsoid

ẋ = Z>c

[
W (x)F (x)
H(x)Q

]
= ALSZ(x) +BLSW (x)u with u = F (x)Ẑ(x)

with some stability margin: V̇ (x) < −‖∂Ẑ(x)
∂x

>
PZ(x)‖2L

• For each fixed x 6= 0, the condition is an LMI in the variables Q � 0 and F (x). If
solvable for each x 6= 0 in real time, then we would have a numerical solution to the
stabilization problem.

• Major issues no analytic solution; few insights in the properties of feedback u; any
further analysis of robustness, performance etc. is hard; feasibility of the solution for
each x 6= 0 uncheckable a priori

• To obtain a tractable solution we strengthen the priors about the unknown system
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Nonlinear polynomial systems

We consider nonlinear input-affine systems

ẋ = f?(x) + g?(x)u

where f?, g? are unknown polynomial vector fields.

Prior 1 - revised f?, g? can be expressed as linear combinations of basis of known
functions

f?(x) = A?Z(x) g?(x) = B?W (x)

with

• A?, B? unknown constant matrices

• Z(x) ∈ RN ,W (x) ∈ RM×m matrices of all distinct monomials that appear in
f?(x), g?(x)

• If such a granular prior on f?(x), g?(x) is not available, then we assume an
upper bound on the degrees of f?(x), g?(x) and Z(x),W (x) will consists of a
basis for such polynomials
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Why polynomial systems?

• Computational advantage The analysis and design of polynomial control systems rests
on Sum-of-Squares (SOS) programming, which can be eventually reduced to LMIs

• Universal approximators Polynomial functions are universal approximators
(Stone-Weierstrass theorem), hence learning control for polynomial systems might
enable learning control for general nonlinear systems.

• Carleman linearization A special class of polynomial systems are the bilinear systems
used in nonlinear control design via Carleman linearization

• Analysis extendible to other classes of nonlinear systems that include
e.g. trigonometric and rational functions via addition of new state variables and
(in)equality constraints (Anderson, Chesi, Hancock, Papachristodolou, Peet, Tedrake,
Valmorbida,...)
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Sum of Squares polynomials
A polynomial p : Rn → R is positive if p(x) ≥ 0 for all x

A polynomial p : Rn → R is a sum of squares (SOS) polynomial if

p(x) =
∑
i

pi(x)2 for some polynomials pi(x)

p(x) SOS ⇒ p(x) positive (but not the converse)

Establishing whether a polynomial is an SOS is a convex optimization problem and
provides an efficient method to certify the positivity of a polynomial

P.A. Parrilo, “Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization”.
Ph.D. dissertation, California Institute of Technology, Pasadena, California, 2000.
G. Chesi, “LMI techniques for optimization over polynomials in control: A survey.” IEEE Transactions on Automatic
Control, 55, 11, pp. 2500-2510, 2010.
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Sum of Squares polynomials

A polynomial p : Rn → R of degree 2d can always be represented via its square matricial
representation, which gives an easy way to test the SOS property

Theorem The polynomial p of degree 2d is an SOS if and only if there exists a symmetric
matrix L � 0 such that

p(x) = ζ(x)>Lζ(x)

where ζ(x) is the vector of all distinct monomials of degree less than or equal to d.

Proof If p(x) = ζ(x)>Lζ(x) with L � 0, then by Cholesky factorization L = V >V and
therefore p(x) = (V ζ(x))2, i.e. p(x) is an SOS.

Only if By definition of SOS polynomial, p(x) =
∑
i pi(x)2. Each pi(x) is a polynomial of

at most degree d, hence there exists ci such that pi(x) = c>i ζ(x). It follows that

p(x) =
∑
i

pi(x)2 =
∑
i

(c>i ζ(x))2 =
∑
i

ζ(x)>cic
>
i ζ(x)

= ζ(x)>
(∑

i cic
>
i

)
ζ(x) =: ζ(x)>Lζ(x) �
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Sum of Squares polynomials
Computational procedure

Given a polynomial p : Rn → R of degree 2d and the vector ζ(x) ∈ RN , we seek the
N(N + 1)/2 entries of L that solve the equation

p(x) = ζ(x)>Lζ(x)

Example p(x) = g4x
4 + g3x

3 + g2x
2 + g1x+ g0, with x ∈ R. In this case, n = 1 and 2d = 4

and
ζ(x) =

[
1 x x2

]>
Hence

ζ(x)>Lζ(x) = `33x
4 + 2`23x

3 + (2`13 + `22)x2 + `12x+ `11 L = [`ij ]

Matching the coefficients on both sides of p(x) = ζ(x)>Lζ(x) returns the equations


0 0 0 0 0 1
0 0 0 0 2 0
0 0 2 1 0 0
0 2 0 0 0 0
1 0 0 0 0 0




`11

`12

`13

`22

`23

`33

 =


g4

g3

g2

g1

g0

⇔ L =

 g0 g1/2 0
g1/2 g2 g3/2

0 g3/2 g4

+ `13

0 0 1
0 −2 0
1 0 0


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Sum of Squares polynomials

Example (cont’d) The problem becomes

Find `13

such that

 g0 g1/2 0
g1/2 g2 g3/2

0 g3/2 g4

+ `13

0 0 1
0 −2 0
1 0 0

 � 0 �

Instead of manually performing these steps, the task of checking whether a given
polynomial p is an SOS is automatically performed by software packages such as
SOSTOOLS
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Sum of Squares polynomial matrices
A polynomial matrix P : Rn → Rr×r is positive if it is symmetric and P (x) � 0 for all x

A polynomial matrix P : Rn → Rr×r is an SOS polynomial matrix if

P (x) =
∑
i Pi(x)>Pi(x) for some polynomial matrices Pi(x)

(not necessarily square)

Let Pi(x) : Rn → Rq×r have degree d and

ζ(x) =
[
ζ1(x) . . . ζN (x)

]>
be the vector of all distinct monomials of degree less than or equal to d. Then

Pi(x) = Ci1ζ1(x) + . . .+ CiNζN (x)

=
[
Ci1 . . . CiN

]  ζ1(x)Ir
...

ζN (x)Ir

 = Ci(ζ(x)⊗ Ir) Cij ∈ Rq×r

P (x) SOS ⇒ P (x) positive (but not the converse)
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Sum of Squares polynomials

Theorem The polynomial matrix P : Rn → Rr×r of degree 2d is an SOS if and only if
there exists a symmetric matrix L � 0 such that

P (x) = (ζ(x)⊗ Ir)>L(ζ(x)⊗ Ir)

where ζ(x) is the vector of all distinct monomials of degree less than or equal to d.

Proof. If P (x) = (ζ(x)⊗ Ir)>L(ζ(x)⊗ Ir) with L � 0, then by Cholesky factorization
L = V >V and therefore P (x) = P1(x)>P1(x), with P1(x) = V (ζ(x)⊗ Ir).

Only if By definition of SOS polynomial matrix, P (x) =
∑
i Pi(x)>Pi(x). Each Pi(x) is a

polynomial of at most degree d, hence there exists Ci such that Pi(x) = Ci(ζ(x)⊗ Ir). It
follows that

P (x) =
∑
i

Pi(x)>Pi(x) =
∑
i

(ζ(x)⊗ Ir)>C>i Ci(ζ(x)⊗ Ir)

= (ζ(x)⊗ Ir)>
∑
i

C>i Ci(ζ(x)⊗ Ir) =: (ζ(x)⊗ Ir)>L(ζ(x)⊗ Ir) �
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An example
Consider the following example◦

ẋ = f?(x) + g?(x)u

=

[
x1 − 2x2

2

−x2 − x1x2 − 2x3
2

]
+

[
1
0

]
u

The origin is an unstable unforced
(u = 0) equilibrium of the system.
We would like to

• stabilise

• find a Lyapunov function

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

◦ Modified from Example 7.2 in P.A. Parrilo, “Structured semidefinite programs and semialgebraic geometry methods in
robustness and optimization”. Ph.D. dissertation, California Institute of Technology, Pasadena, California, 2000.
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An example

ẋ = f?(x) + g?(x)u

=

[
x1 − 2x2

2

−x2 − x1x2 − 2x3
2

]
+

[
1
0

]
u

The origin is an unstable unforced
(u = 0) equilibrium of the system.
We would like to

• stabilise the equilibrium

• find a Lyapunov function

Here

Z(x) =


x1

x2

x1x2

x2
2

x3
2

 W (x) = 1

Hence

A? =

[
1 0 0 −2 0
0 −1 −1 0 −2

]
B? =

[
1
0

]
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Example

We look for
controllers u = K(x)Ẑ(x)

Lyapunov functions V (x) = Ẑ(x)>PẐ(x)

with
Ẑ(x) = x

Hence

Z(x) = H(x)Ẑ(x) with Z(x) =


x1
x2
x1x2
x22
x32

 , H(x) =


1 0
0 1
x2 0
0 x2
0 x22


To achieve stability, we impose

∂Ẑ(x)

∂x

[
B? A?

] [W (x)F (x)
H(x)Q

]
+

[
W (x)F (x)
H(x)Q

]> [
B? A?

]> ∂Ẑ(x)

∂x

>

≺ 0

where F (x) = K(x)P−1, Q = P−1
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SOSTOOLS script
% Defining the state variables x1 x2 x

syms x1 x2 real

x = [x1,x2];

% Defining Astar, Bstar

Astar = [1 0 0 -2 0 ; 0 -1 -1 0 -2];

Bstar = [1 ; 0];

% System dimensions

n=2; m=1;

sizeAstar=size(Astar); sizeBstar=size(Bstar);

M=sizeBstar(1,2);

% Vector hat_Z(x)=x appearing in the Lyapunov function

hat_Z = [x1;x2];

hat_N=length(hat_Z);

% Jacobian of hat_Z(x)

d_hat_Z=jacobian(hat_Z);

%Matrix H(x) relating Z(x) and hat_Z(x)

Hx= [1, 0; 0, 1; x2, 0; 0, x2; 0, x2^2];
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SOSTOOLS script
% Defining the matrix Q appearing in the Lyapunov function

% as a polynomial matrix of degree 0

degreeQ=0;

[prog,Q]=sospolymatrixvar(prog,monomials(x,degreeQ),

[hat_N,hat_N],’symmetric’);

% Constraint on Q to be an SOS matrix

prog = sosmatrixineq (prog, Q,’quadraticMineq’);

% Defining the polynomial matrix F(x) of degree 0

degreeF = 0;

[prog,F] = sospolymatrixvar(prog,monomials(x,0:degreeF),

[m,hat_N]);

% Computation of the the matrix M appearing in Vdot

M = d_hat_Z * [Bstar Astar] * [F ; Hx*Q]+

[F ; Hx*Q]’ * [Bstar Astar]’ * d_hat_Z’;

% Constraint on -M to be an SOS

prog = sosmatrixineq (prog, -M,’quadraticMineq’);
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SOSTOOLS script

% Call solver

solver_opt.solver = ’sedumi’;

prog = sossolve(prog,solver_opt);

% Extracting the solutions

Qs = sosgetsol(prog,Q);

Fs = sosgetsol(prog,F);

Ms = sosgetsol(prog,M);

% The computed controller

Ks = Fs*inv(Qs);

u = Ks*hat_Z;

% The computed Lyapunov function

V= [x1, x2]*Qs*[x1; x2];

% Closed-loop system

fcl=[x1-2*x2^2+u; -x2-x1*x2-2*x2^3];

% Computation of Vdot along the

% closed-loop dynamics

Vdot = diff(V,x1)*fcl(1)

+diff(V,x2)*fcl(2);

% Finding the Square Matricial

% Representation of -Vdot

[QminusVdot,ZetaminusVdot]=

findsos(-Vdot);

?A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and P. Parrilo, “Sostools – version 3.03 sum of
squares optimization toolbox for Matlab.” User’s guide, 2018.
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SOSTOOLS script

After one runs the script, it returns the controller

u = −3.59x1

and the Lyapunov function

V (x) = Ẑ(x)>
[
0.2709 0

0 0.3417

]
Ẑ(X)

The command

[QminusVdot,ZetaminusVdot]= findsos(-Vdot);

returns the Square Matrix Representation

−V̇ (x) =


x1
x2
x1x2
x22


> 

1.4059 0 0 0.8836
0 0.6834 0 0
0 0 0 0

0.8836 0 0 1.3668



x1
x2
x1x2
x22

 =

x1x2
x22

> 1.4059 0 0.8836
0 0.6834 0

0.8836 0 1.3668

x1x2
x22



which shows V̇ (x) < 0 for all x 6= 0
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Reminder – what we understood previously

Under
Prior 1 ẋ = f?(x) + g?(x)u = A?Z(x) +B?W (x)u

Prior 2 {d(tk)}T−1k=0 ∈
{
{dk}T−1k=0 :

T−1∑
k=0

dkdk
> � ε T In

}
let Ẑ(x), H(x) be matrices of functions such that

Z(x) = H(x)Ẑ(x) with Ẑ(x) =
[
x> . . .

]>
If ∀x 6= 0 there exists Q � 0, matrix F (x) and µ(x) > 0 such that

[
W (x)F (x)
H(x)Q

]>
Zc
∂Ẑ(x)

∂x

>

+ (?)> + µ(x)
∂Ẑ(x)

∂x
L
∂Ẑ(x)

∂x

> [
W (x)F (x)
H(x)Q

]>
[
W (x)F (x)
H(x)Q

]
−µ(x)Θ

 ≺ 0

then
u = F (x)Q−1Ẑ(x) globally asymptotically stabilizer

V (x) = Ẑ(x)>Q−1Ẑ(x) Lyapunov function
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Towards data-driven control design for polynomial systems
To make the previous condition tractable via SOS conditions, we focus on the
polynomial case

• Z(x), Ẑ(x), H(x) are all polynomial matrices satisfying

Z(x) = H(x)Ẑ(x)

• We seek a polynomial controller

u = K(x)Ẑ(x) with K(x) polynomial matrix

and a polynomial Lyapunov function

V (x) = Ẑ(x)>PẐ(x) with P � 0

• Properties of Ẑ(x) (as before)

Ẑ(x) = 0⇔ x = 0 (⇒ V (x) globally positive definite)

Ẑ(x) radially unbounded (⇒ V (x) radially unbounded)

Ẑ(x) contains the state vector x
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A polynomial matrix condition

Having imposed the decision variables F (x), µ(x) to be polynomials, the matrix appearing
in the condition

−


[
W (x)F (x)
H(x)Q

]>
Zc
∂Ẑ(x)

∂x

>

+ (?)> + µ(x)
∂Ẑ(x)

∂x
L
∂Ẑ(x)

∂x

> [
W (x)F (x)
H(x)Q

]>
[
W (x)F (x)
H(x)Q

]
−µ(x)Θ


� 0

becomes a polynomial matrix, and the condition itself becomes one of certifying the strict
positivity of a polynomial matrix
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From positivity to SOS conditions
Imposing the strict positivity of a polynomial (matrix) is NP-hard, hence we relax the
requirement by imposing SOS conditions

Look for Q � 0, polynomial matrix F (x) and polynomial µ(x) > 0 such that

−


[
W (x)F (x)
H(x)Q

]>
Zc
∂Ẑ(x)

∂x

>

+ (?)> + µ(x)
∂Ẑ(x)

∂x
L
∂Ẑ(x)

∂x

> [
W (x)F (x)
H(x)Q

]>
[
W (x)F (x)
H(x)Q

]
−µ(x)Θ


is an SOS polynomial matrix

Rationale? “SOS polynomials that vanish at some points in space lie on the boundary of
the cone of SOS polynomials, while interior point algorithms will look for the analytic
center of the feasibility set, which is away from the boundary. Hence, SOS conditions will
automatically aim at strict positivity if such solutions are feasible”.

?A.A. Ahmadi. “Non-monotonic Lyapunov functions for stability of nonlinear and switched systems: theory and
computation”, Master’s thesis, Massachusetts Institute of Technology, p. 41, 2008.
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Data-driven control for polynomial systems

Theorem Consider a system
ẋ = A?Z(x) +B?W (x)u+ d

with dataset U0, X0, X1, Z0, U0 satisfying X1 = A?Z0 +B?U0 +D0.
Assume that

W 0 =

[
U0

Z0

]
has full row rank

and
D0 ∈ De = {D : DD> � RDR>D}

If there exist Q � 0, polynomial matrix F (x) and polynomial µ(x) > 0 such that

−


[
W (x)F (x)
H(x)Q

]>
Zc
∂Ẑ(x)

∂x

>

+ (?)> + µ(x)
∂Ẑ(x)

∂x
L
∂Ẑ(x)

∂x

> [
W (x)F (x)
H(x)Q

]>
[
W (x)F (x)
H(x)Q

]
−µ(x)Θ


is an SOS polynomial matrix, then

u = F (x)Q−1Ẑ(x) globally asymptotically stabilizer

V (x) = Ẑ(x)>Q−1Ẑ(x) Lyapunov function
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Remarks I

• The approach is based on choosing the Lyapunov function V (x) = Ẑ(x)>PẐ(x), and
designing a controller that deals with the quadratic uncertainty induced by
DD> � RDR>D and imposing SOS conditions on a matrix of polynomials.

• One could impose P to be polynomial as well, but this would complicate considerably
the analysis

• Solution based on a data-dependent SOS program

• Other designer’s choices: degrees of the controller gain F (x) and of the polynomial
multiplier µ(x)

• The SOS program has size (N̂ +N +M)× (N̂ +N +M) with
N̂ ,N size of vectors Ẑ(x), Z(x), M number of rows of W (x)

• The decision variables are the m× N̂ polynomial matrix F (x) and the N̂ × N̂ matrix
P and the scalar multiplier µ(x). Thus, using Ẑ(x) rather than Z(x) helps lowering
the number of decision variables

M. Guo, C. De Persis, P. Tesi. “Learning Control for Polynomial Systems Using Sum of Squares”. CDC 2020.
M. Guo, C. De Persis, P. Tesi. “Data-driven stabilization of nonlinear polynomial systems with noisy data”. IEEE
Transactions on Automatic Control, provisionally accepted, ArXiv:2011.07833, 2020.
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A simple example

Unknown system
ẋ = x2 + u+ d

Priors f(x) polynomial of degree 2 and g(x) polynomial of degree 0.
Hence

A? =
[
0 1

]
B? = 1

Z(x) =

[
x
x2

]
W (x) = 1

Furthermore, we set

Ẑ(x) = x and H(x) =

[
1
x

]
The disturbance d that affects the system is such that d(t) ∈ [−ε, ε] for all t, with ε = 0.05.

An experiment is performed over the time interval [0, 2.5], initializing the system in the
interval [−1, 1] and with an input sequence satisfying u(t) ∈ [−1, 1] for all t.
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Example

% Experiment carried out on the time interval [0,tt]

% value of the solutions are seeked at the k times

% specified in t1

tt=2.5;k=8*tt+1;

t1=linspace(0,tt,k)’;

% Vector field f(x)+g(x)u= x^2 +u

n=1; m=1;

% Initial conditions

% infty-norm on x0

x0infty=1;

% randomly generate row vector of initial condition in the

% square of length x0infty

x0=(rand([1,n])-0.5.*ones(1,n))*x0infty;

u0=zeros(1,m);
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Example

% Input in [-1,1] used during the experiment

uexp=(rand([length(t1),1])-0.5*ones([length(t1),1]))*2;

% Disturbance during the experiment

% Max Euclidean norm of disturbance

dmagn=0.1;

% Disturbance

dexp1=(rand([length(t1),1])-0.5*ones([length(t1),1]))*dmagn;

% Execution of the experiment

[t,y]=ode45(@(t,y) simplepoly(t,y,t1,uexp,dexp1),t1,x0);
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Example

% Data collection

% T <= k samples are selected for control design from data

T=k-1;

% Z(x) as in the factorization f(x)= AZ(x);

% for f(x) as above Z(x) = [x ; x^2], W(x)=1

N=2; M=1;

% Initialization of the matrix of data

U0=zeros(m,T); X0=zeros(n,T); X1=zeros(n,T); Z0=zeros(N,T);

for i=1:T

U0(1,i)=uexp(i); D0(1,i)=dexp1(i); X0(:,i)=y(i,:)’;

u(i)=uexp(i); d(i,1)=dexp1(i);

% Noisy derivative measurements x_dot = f(x)+g(x)u=[x^2+u]

X1(:,i)= [y(i,1)^2+u(i)+d(i,1)];

% Z(x) = [x ; x^2]

Z0(:,i)= [y(i,1); y(i,1)^2];

end
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Example

% To carry out the design, W0 must be full row rank

W0=[U0 ; Z0];

% Noise free least square estimate of [B A]’

ZcTranspose=X1*pinv(W0);

% Other matrices of data used in the SOS program

L = X1*pinv(W0)*W0*X1’-(X1*X1’-dmagn*T*eye(n));

% Here U stands for Theta in the slides

U = W0*W0’;

% Exemplifying an element of the uncertainty set \mathcal{C}

InvSqrtU=inv(sqrtm(U)); sqrtL=sqrtm(L);

SizeInvSqrtU=size(InvSqrtU); SizeSqrtL=size(sqrtL);

Yaux=rand(SizeInvSqrtU(1),SizeSqrtL(2)); Y=Yaux/(norm(Yaux));

% An element of the feasible set of matrices under noisy measurements

BAestimate=ZcTranspose-sqrtm(L)*Y’*inv(sqrtm(U))

An element of C
[
B A

]
=
[

1.1366 2.8327 6.6046
]
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Example

At this stage we have all the elements to write down the matrix M(x)

−


[
W (x)F (x)
H(x)Q

]>
Zc
∂Ẑ(x)

∂x

>

+ (?)> + µ(x)
∂Ẑ(x)

∂x
L
∂Ẑ(x)

∂x

> [
W (x)F (x)
H(x)Q

]>
[
W (x)F (x)
H(x)Q

]
−µ(x)Θ

 =

−



 F (x)[
1
x

]
Q

> Zc + (?)> + µ(x)L

 F (x)[
1
x

]
Q

>
 F (x)[

1
x

]
Q

 −µ(x)Θ


To make M(x) of even degree we need to require F (x) and/or µ(x) of even degree.

It turns out that having both of degree 2 is numerically better. Hence F (x)[
1
x

]
Q

 =

c2 + c3x+ c4x
2

c1

c1x

 with
Q = c1 F (x) = c2 + c3x+ c4x

2

µ(x) = c7 + c6x+ c5x
2

52 / 58



Example

As in the previous example, we can code SOSTOOLS to look for Q � 0, F (x) and
SOS polynomial µ(x) (i.e., c1, . . . , c7) that render M(x) an SOS polynomial
matrix, if feasible.

In this case, it returns

V (x) = 0.052x2

F (x) = −16.94x2 − 2.52x− 17.49
µ(x) = 0.391x2 + 0.0155x+ 0.3951

with

V̇ (x) = −
[
x
x2

]> [
1.8116 0.0788
0.0788 1.7552

] [
x
x2

]
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Remarks
� The uncertainty introduced by the noise can give raise to systems that are

dramatically different from the ground-truth one (i.e. dense A?, B?, higher
degree polynomials, etc)

� Inclusion of as many priors as possible and increased quality of data are
important factors to successfully carry out control synthesis

� Priors such as so-called “side information” (invariance of sets, decrease of
energy functions, etc.) can be included in the SOS program as constraints?

� Disturbances that fulfil instantaneous bounds (Lecture 3) rather than energy
like bounds might lead to smaller uncertainty sets whose size decreases with
larger data sets

� The size of SOS programs grows polynomially with the dimension of the state
and exponentially with the degree of the polynomials involved can be tackled
via scalable alternatives to SOS synthesis◦

?A.A. Ahmadi, B. El Khadir. “Learning Dynamical Systems with Side Information”. arXiv:2008.10135, 2020.
◦A.A. Ahmadi, G. Hall, A. Papachristodoulou, J. Saunderson, Y. Zheng. “Improving efficiency and scalability of sum of
squares optimization: Recent advances and limitations”. Proceedings 56th CDC, 453–462, 2017.
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Other topics...

....for which there was no time

• The case with noisy measurements

• Local asymptotic stabilizers

• Bilinear systems (Exercise #1)
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Selected references

This lecture mostly follows:

M. Guo, C. De Persis, P. Tesi. Data-driven stabilization of nonlinear polynomial systems
with noisy data. IEEE Transactions on Automatic Control 2022.

Other results (e.g., local stabilization, instantaneous bounds, etc.):

A. Bisoffi, C. De Persis, P. Tesi. Data-driven control via Petersen’s lemma. Automatica
2022

Design of control invariant sets (safe control) is discussed in:

A. Luppi, A. Bisoffi, C. De Persis, P. Tesi. Data-driven design of safe control for
polynomial systems. arXiv:2112.12664, 2021.

The design of input-to-state stabilising controllers is studied in:

H. Chen, A. Bisoffi, C. De Persis. Learning input-to-state stability with respect to
measurement error from data. IEEE Conference on Decision and Control 2023

Control design for general nonlinear systems via Taylor’s expansion is considered in:

M. Guo, A. Bisoffi, C. De Persis. Data-driven stabilizer design and closed-loop analysis of
general nonlinear systems via Taylor’s expansion. ArXiv:2209.01071 2021

56 / 58



Conclusions

The lectures have covered methods for the “direct” design of data-driven control policies

• The methods lead to data-dependent formulas based on LMI, SDP, SOS

• Data collected in a low-complexity one-shot experiment

• Robustness to noise

• Noise modeled as a bounded energy signal or fulfilling instantaneous bounds

• Good potentials for nonlinear systems

• Much of the work is in progress

• The proposed methods have many connections with other existing approaches in learning for
control, all to be explored

• Exciting opportunities
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Outlook
• LMIs, SDP are ubiquitous in control – this approach can be used to deal with manifold

problems replacing models with data.

• Data-driven SOS can be extensively developed for tackling a variety of control tasks along
with techniques that limit their computational complexity.

• Nonlinear dynamics Use approximate data-dependent representations of nonlinear systems
to learn control policies•

• Exploiting structure of nonlinear systems for less conservative design?

• Dynamic output feedback for nonlinear systems◦

• Safe control Include state and input constraint in the data-based control design to obtain
explicit formulas for safe controllers.

• Design of (control) Lyapunov functions from data.

• “Real-life” applications to show the effectiveness of these methods for challenging
engineering problems.

• C. De Persis, M. Rotulo, P. Tesi. Learning controllers from data via approximate nonlinearity cancellation. IEEE
Transactions on Automatic Control 2023.

? M. Guo, C. De Persis, P. Tesi. Learning control of second-order systems via nonlinearity cancellation. IEEE
Conference on Decision and Control 2023.
◦X. Dai, C. De Persis, N. Monshizadeh, P. Tesi. Data-driven control of nonlinear systems from input-output data. IEEE

Conference on Decision and Control 2023.
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Appendix



Exercises

Exercise#1 The aim of this exercise is to show how Petersen’s lemma-based arguments can be also
effectively used to design model-based controllers for bilinear system. The arguments can be
extended to deal with the data-driven case and have the advantage to require the solution of an
LMI rather than an SOS program.

Consider the single-input bilinear system

ẋ = Ax+Bu+ uDx

with x ∈ Rn, u ∈ R.
(a) Let V (x) = x>Px, with P � 0, and u = Kx. Determine the state-dependent matrix P(x) in
the expression of the Lyapunov inequality

V̇ (x) = x>P P(x) Px

Answer. Straightforward calculations show that

P(x) = (A+BK)P−1 + P−1(A+BK)> +DxKP−1 + P−1K>x>D>
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Exercises

(b) Show whether or not the condition

∃P � 0,K such that P̂(δ) ≺ 0 ∀δ ∈ Rn such that δ>δ ≤ 1

where

P̂(δ) = (A+BK)P−1 + P−1(A+BK)> +DP−1/2δKP−1 + P−1K>δ>P−1/2D>

implies the condition

∃P � 0,K such thatP(x) ≺ 0 ∀x ∈ Rn such that x>Px ≤ 1

Answer. Consider the matrix P(x) for any x such that x>Px ≤ 1. Define δ = P 1/2x, which is well
defined because P � 0. Then P(x)|x=P−1/2δ = P̂(δ). Moreover, δ>δ = x>P 1/2P 1/2x = x>Px ≤ 1.

Hence, P(x)|x=P−1/2δ = P̂(δ) ≺ 0 and by the genericity of x, the implication holds.

(c) Using Petersen’s lemma, show that V̇ (x) < 0 for all x 6= 0 such that x>Px ≤ 1 if there exist
Q � 0, Q ∈ Rn×n, F ∈ R1×n and ε > 0 such that the following matrix inequality is satisfied[B A

] [F
Q

]
+

[
F
Q

]> [
B A

]>
+ εDQD> F>

F −ε

 ≺ 0
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Exercises

Answer. We use Petersen’s lemma for P̂(δ). Observe that

P̂(δ) = (A+BK)P−1 + P−1(A+BK)>︸ ︷︷ ︸
G

+DP−1/2︸ ︷︷ ︸
M

δ KP−1︸ ︷︷ ︸
N

+P−1K>δ>P−1/2D>

and that P̂(δ) ≺ 0 for all δ ∈ Rn such that δ>δ ≤ 1 if and only there exists ε > 0 such that

0 � G + εMM> + ε−1N>N
= (A+BK)P−1 + P−1(A+BK)> + εDP−1D> + ε−1(KP−1)>KP−1

Changing the variables as
F := KP−1 Q := P−1

one obtains the equivalent inequality

[
B A

] [F
Q

]
+

[
F
Q

]> [
B A

]>
+ εDQD> + F> + ε−1F>F ≺ 0

An application of Schur complement returns the solution.
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Exercises
Exercise #2 The purpose of this exercise is to show that, if at each sampling time the disturbance satisfies
linear constraints (instead of the quadratic ones adopted during the lectures), then the set of feasible
system matrices is a bounded polyhedral set if and only if the data satisfy a persistence of excitation
condition.
Consider the linearly parametrized nonlinear system

ẋ = A?Z(x) +B?W (x)u+ d

with x ∈ Rn, u ∈ Rm, Z(x) ∈ RN ,W (x) ∈ RM , and the dataset{
u(ti), x(ti), ẋ(ti), z(ti), u(ti), i = 0, 1, . . . , T − 1

}
satisfying

ẋ(ti) = A?z(ti) +B?u(ti) + d(ti) i = 0, 1, . . . , T − 1

where
z(ti) := Z(x(ti))
u(ti) := W (x(ti))u(ti).

For each i = 0, . . . , T − 1, let the disturbance vector d(ti), with i = 0, . . . , T − 1, belong to the set

Di :=
{
d ∈ Rn : − ε1n ≤ d ≤ ε1n

}
for some known ε > 0, where the inequalities in the definition of Di must be understood componentwise
and 1n is the n-dimensional vector of all ones. Consider the feasible set of system’s matrices

I :=
{

(A,B) : − ε1n ≤ ẋ(ti)−
[
B A

] [u(ti)
z(ti)

]
≤ ε1n, ∀i = 0, 1, . . . , T − 1

}
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Exercises

(a) Use the identity vec(AXB) = (B> ⊗A)vec(X) 1 to show that

I =
{

(A,B) : − ε1nT − vec(X1) ≤ −
([
U0

Z0

]>
⊗ In

)
vec(

[
B A

]
) ≤ ε1nT − vec(X1)

}
where

vec(X1) =


ẋ(t0)
ẋ(t1)

...
ẋ(tT−1)

 and

[
U0

Z0

]
:=

[
u(t0) u(t1) . . . u(tT−1)
z(t0) z(t1) . . . z(tT−1)

]

1The symbol ⊗ denotes the Kronecker product and vec(Y ) is the vectorization of matrix

Y =
[
Y1 Y2 . . . Yq

]
∈ Rp×q , i.e. vec(Y ) =

Y1

. . .
Yq

.
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Exercises

Answer. Observe that

ẋ(ti)−
[
B A

] [u(ti)
z(ti)

]
= ẋ(ti)−

([u(ti)
z(ti)

]>
⊗ In

)
vec(

[
B A

]
)

= ẋ(ti)−
([
u(ti)

> z(ti)
>]⊗ In)vec(

[
B A

]
)

Hence, (A,B) ∈ I if and only if vec(
[
B A

]
) satisfies

−ε


1n
1n
...
1n

−


ẋ(t0)
ẋ(t1)

...
ẋ(tT−1)

 ≤ −(


u(t0)> z(t0)>

u(t1)> z(t1)>

...
u(tT−1)> z(tT−1)>

⊗ In)vec(
[
B A

]
)

≤ ε


1n
1n
...
1n

−


ẋ(t0)
ẋ(t1)

...
ẋ(tT−1)

 .
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Exercises

(b) Use the following result

Lemma (Blanchini-Miani)Let A = {x : b1 ≤ Ax ≤ b2} be a nonempty set with A ∈ Rm×n, b1, b2 ∈ Rm.
Then A is bounded if and only if A has full column rank.

to show that I is bounded if and only if

[
U0

Z0

]
has full row rank.

Answer. First we observe that the set I is nonempty because (A?, B?) belongs to it. To continue, recall
the following property of the Kronecker product: rank(A⊗B) = rank(A)rank(B). Hence,

rank
([
U0

Z0

]>
⊗ In

)
= rank

([
U0

Z0

]>)
n

We conclude that the nT × n(N +M) matrix

[
U0

Z0

]>
⊗ In has full column rank if and only if

rank
([
U0

Z0

]>)
= N +M , i.e. if and only if

[
U0

Z0

]
has full row rank.
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Exercises

Exercise #3 The purpose of this exercise is to provide a different condition for the design
of a stabilizing controller for polynomial systems in the case a control Lyapunov function is
available.

Consider the system ẋ = A?Z(x) +B?W (x)u, with x ∈ Rn, u ∈ R, and
Z(x) ∈ RN ,W (x) ∈ RM known vectors of monomials. Assume that a continuously
differentiable, radially unbounded and globally positive definite polynomial function
V : Rn → R is known for which there exists a polynomial function k(x) such that
∂V
∂x

>
(A?Z(x) +B?W (x)k(x)) < 0 for all x 6= 0.

The pair (B?, A?) is known to belong to the set

I =
{

(A,B) : Nvec(
[
B A

]
) ≤ e

}
where the inequality holds componentwise and N ∈ R2nT×n(M+N), e ∈ R2nT are known
matrices of data (see Exercise 2(a) for an expression of these matrices).
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Exercises

(a) Find a vector d(x) ∈ Rn(M+N) such that

∂V

∂x
(AZ(x) +BW (x)k(x)) = d(x)>vec(

[
B A

]
)

for any (A,B) ∈ I.
Answer. We use the identity vec(AXB) = (B> ⊗A)vec(X) once again on

∂V

∂x
(AZ(x) +BW (x)k(x)) =

∂V

∂x

[
B A

] [W (x)k(x)
Z(x)

]
to obtain ([W (x)k(x)

Z(x)

]>
⊗ ∂V

∂x

)
vec(

[
B A

]
) = d(x)>vec(

[
B A

]
)

where

d(x) :=

[
W (x)k(x)
Z(x)

]
⊗ ∂V

∂x

>
.
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Exercises

(b) Use the following version of Farkas’ lemma

Lemma (Mangasarian, Dai-Sznaier) Consider matrices N ∈ Rµ×ν , d ∈ Rν , e ∈ Rµ. Assume
Nz ≤ e is feasible. Then, the inclusion{

z : Nz ≤ e
}
⊆
{
z : d>z < 0

}
holds if and only if

∃w ∈ Rµ : N>w = d, e>w < 0, w ≥ 0

to show that for any x 6= 0

∂V

∂x
(AZ(x) +BW (x)k(x)) < 0 ∀(A,B) ∈ I

if and only if
∃y(x) ∈ R2nT : N>y(x) = d(x), e>y(x) < 0, y(x) ≥ 0
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Exercises

Answer. Note that
∂V

∂x
(AZ(x) +BW (x)k(x)) < 0 ∀(A,B) ∈ I

is equivalently stated as the inclusion{
(A,B) : Nvec(

[
B A

]
) ≤ e

}
⊆
{

(A,B) : d(x)>vec(
[
B A

]
) < 0

}
By pointwise application of Farkas’ lemma, the inclusion holds if and only if

∃y(x) ∈ R2nT : N>y(x) = d(x) e>y(x) < 0 y(x) ≥ 0
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Exercises

(c) Relax the previous condition to a sufficient SOS-based condition in the polynomial
decision variables y(x), k(x).

Answer. The relaxation takes the form

∃y(x) ∈ Σ2nT , k(x) ∈ P : N>y(x) =

(W (x)⊗ ∂V
∂x

>)
k(x)

Z(x)⊗ ∂V
∂x

>

 , −e>y(x) ∈ Σ

where Σq is the set of q-dimensional SOS polynomial vectors (with Σ1 = Σ for the sake of
simplicity) and P is the set of polynomials.
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