Comparison: direct vs. indirect control

indirect ID-based data-driven control

minimize control cost (u, y)

subject to (u, y) satisfy parametric model

where $\mathsf{model} \in \mathsf{argmin} \mathsf{ id } \mathsf{cost} \left(u^d, y^d \right)$ subject to $\mathsf{model} \in \mathsf{LTI}(n, \ell) \mathsf{ class}$

ID projects data on the set of LTI models

- with parameters (n, ℓ)
- removes noise & thus lowers variance error
- suffers bias error if plant is not LTI(n, ℓ)

direct regularized data-driven control

minimize control cost $(u, y) + \lambda$ regularizer subject to (u, y) consistent with (u^d, y^d) data

- regularization robustifies
 → choosing λ makes it work
- *no projection* on $LTI(n, \ell)$ \rightarrow no de-noising & no bias

hypothesis: ID wins in stochastic (variance) & DeePC in nonlinear (bias) case

Case study: direct vs. indirect control

$\textit{stochastic LTI case} \rightarrow \textit{indirect ID wins}$

- LQR control of 5th order LTI system
- Gaussian noise with varying noise to signal ratio (100 rollouts each case)
- *l*₁-regularized DeePC, SysID via N4SID, & judicious hyper-parameters

nonlinear case \rightarrow direct DeePC wins

- Lotka-Volterra + control: $x^+ = f(x, u)$
- interpolated system $x^+ = \epsilon \cdot f_{\text{linearized}}(x,u) + (1-\epsilon) \cdot f(x,u)$
- same ID & DeePC as on the left & 100 initial x₀ rollouts for each ε

Power system case study revisited

- *complex* 4-area power *system*: large (n = 208), few measurements (8), nonlinear, noisy, stiff, input constraints, & decentralized control
- control objective: damping of inter-area oscillations via HVDC link
- *real-time* MPC & DeePC prohibitive \rightarrow choose T, T_{ini} , & T_{future} wisely

Centralized control

DeePC PEM-MPC

Prediction Error
 Method (PEM)
 System ID + MPC

 $t < 10\,\mathrm{s}$: open loop data collection with white noise excitat.

 $t > 10 \, \mathrm{s}$: control

Performance: DeePC wins (clearly!)

DeePC hyper-parameter tuning

regularizer λ_g

- for distributional robustness ≈ radius of Wasserstein ball
- wide range of sweet spots
 → choose λ_a = 20

estimation horizon Tini

- for model complexity \approx lag
- T_{ini} ≥ 50 is sufficient & low computational complexity
 - \rightarrow choose $T_{\text{ini}} = 60$

prediction horizon T_{future}

 nominal MPC is stable if horizon T_{future} long enough

 \rightarrow choose $T_{\text{future}} = 120$ & apply first 60 input steps

data length T

 long enough for low-rank condition but card(g) grows

$$\rightarrow$$
 choose $T = 1500$
(data matrix \approx square)

Computational cost

• T = 1500

•
$$\lambda_g = 20$$

•
$$T_{\text{ini}} = 60$$

- T_{future} = 120 & apply first 60 input steps
- sampling time = 0.02 s
- solver (OSQP) time = 1 s (on Intel Core i5 7200U)
- ⇒ implementable

Comparison: Hankel & Page matrix

- comparison baseline: Hankel and Page matrices of same size
- perfomance : Page consistency beats Hankel matrix predictors
- offline *denoising via SVD threshholding* works wonderfully for Page though obviously not for Hankel (entries are constrained)
- effects very pronounced for *longer horizon* (= open-loop time)
- price-to-be-paid : Page matrix predictor requires more data

Decentralized implementation

- *plug'n'play MPC:* treat interconnection P₃ as disturbance variable w with past disturbance w_{ini} measurable & future w_{future} ∈ W uncertain
- for each controller augment trajectory matrix with disturbance data w
- decentralized *robust min-max DeePC:* $\min_{g,u,y} \max_{w \in W}$

Decentralized control performance

- colors correspond to different hyperparameter settings (not discernible)
- ambiguity set $\mathcal W$ is ∞ -ball (box)
- for computational efficiency W is downsampled (piece-wise linear)
- solver time $\approx 2.6 \, \text{s}$

 \Rightarrow implementable

Conclusions

main take-aways

- matrix time series as predictive model
- robustness & side-info by regularization
- method that works in theory & practice
- focus is robust prediction not predictor ID

ongoing work

- $\rightarrow\,$ certificates for adaptive & nonlinear cases
- → applications with a true "business case", push TRL scale, & industry collaborations

questions we should discuss

- catch? violate no-free-lunch theorem ? \rightarrow more real-time computation
- when does direct beat indirect ? \rightarrow Id4Control & bias/variance issues ?

Florian's version of

Thanks!

Florian Dörfler

mail: dorfler@ethz.ch [link] to homepage [link] to related publications