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Thoughts on data in control systems

increasing role of data-centric methods
in science/engineering/industry due to

* methodological advances in statistics,
optimization, & machine learning (ML)

¢ unprecedented availability of brute force:
deluge of data & computational power

__.:/ & -
Ve -
il
e ...and frenzy surrounding big data & ML -t

Data Driven Control

Make up your own opinion, but ML works
too well to be ignored — also in control 2!?

“One of the major developments in control
over the past decade — & one of the most
important moving forward — is the interaction
of ML & control systems.” [CSS roadmap]




Approaches to data-driven control

® jndirect data-driven control via models:

SysID .
data 25 model + uncertainty — control

e growing trend: direct data-driven control
by-passing models ... (again) hyped, why ?

The direct approach is viable alternative

¢ for some applications: model-based
approach is too complex to be useful
— too complex models, environments, sensing
modalities, specifications (e.g., wind farm)

¢ due to (well-known) shortcomings of ID
— too cumbersome, models not identified for
control, incompatible uncertainty estimates, ...

e when brute force data/compute available

Central promise: It is often
easier to learn a control policy
from data rather than a model.

Example 1973: autotuned PID
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Abstraction reveals pros & cons

indirect (model-based) data-driven control

minimize  control cost (u, z) } outer separation &
| i & optimization certainty

subjectto (u,z) satisfy state-space model p atiumlonce

where x estimated from (u,y) & model } middle opt. (— LQG case)

where  model identified from (u?,y?) data } inner opt. } no separation
(— 1D-4-control)

— nested multi-level optimization problem

direct (black-box) data-driven control — trade-offs

modular vs. end-2-end
suboptimal (?) vs. optimal
subject to (u,y) consistent with (ud,yd) data  convex vs. non-convex (?)

minimize  control cost (u, y)

Additionally: account for uncertainty (hard to propagate in indirect approach)
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Indirect (models) vs. direct (data)

models are useful for
design & beyond

® some models too
complex to be useful

modular — easy end-to-end — suit-
able for non-experts

to debug & interpret K
id = noise filtering design handles noise

id = projection on
model class

harder to inject side
info but no bias error

harder to propagate
uncertainty through id

transparent: no
unmodeled dynamics

no robust separation
principle — suboptimal

possibly optimal but
often less tractable

lots of pros, cons, counterexamples, & no universal conclusions [discussion]
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http://people.ee.ethz.ch/~floriand/docs/Articles/CSS-editorial-2.pdf

A direct approach: dictionary + MPC

@ trajectory dictionary learning @ MPC optimizing over dictionary span
® motion primitives / basis functions

e theory: Koopman & Liouville — huge theory vs. practice gap
practice: (E)DMD & particles — back to basics: impulse response
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Now what if we had the impulse response recorded in our data-library?

o g1 g2 - ]=1[vs v v ...

— dynamic matrix control uiuture (1)
Ufuture (t - 1)

(Shell, 1970s): predictive yuwe(t) = [vo vl v .. e (t — 2)
control from raw data

today : arbitrary, finite, & corrupted data, ... stochastic & nonlinear ?
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Today’s menu

1. behavioral system theory: fundamental lemma
DeePC: data-enabled predictive control

robustification via salient regularizations

A w0 D

cases studies from wind & power systems

blooming literature (2-3 ArXiv/week)
— tutorial [1inx] to get started

® [1ink] to graduate school material DATA-DRIVEN CONTROL BASED ON BEHAVIORAL APPROACH:
FROM THEORY TO APPLICATIONS IN POWER SYSTEMS

® [1link] to survey

Ivan Markovsky, Linbin Huang, and Florian Dérfler

° [ s ] 1. Markovsky is with ICREA, Pg. Liuis Companys 23, Barcelona, and CIMNE, Gran Capitan, Barcelona, Spain
1ink] to related bachelor lecture (e-mail: imarkovsky@cimne.upc. edu),

L. Huang and F. Dérfler are with the Automatic Control Laboratory, ETH Zirich, 8092 Zirrich, Switzerland (e-mails:

linhuang@ethz.ch, dorfler@ethz.ch).

® [1ink] to related publications
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 https://imarkovs.github.io/tutorial.pdf
http://people.ee.ethz.ch/~floriand/docs/Slides/Dorfler_DTU_2023_Annotated_Handout.pdf
https://www.sciencedirect.com/science/article/pii/S1367578821000754
https://www.bsaver.io/teaching
http://people.ee.ethz.ch/~floriand/bib/Keyword/DATA-DRIVEN-CONTROL.html

Organization of this lecture

¢ | will feach the basics & provide pointers to more sophisticated
research material — study cutting-edge papers yourself

® it's a school: so we will spend time on the board — take notes

¢ We teach this material also in the ETH Zirich bachelor & have
plenty of background material + implementation experience
— please reach out to me or Saverio if you need anything

e we will take a break after 90 minutes — coffee ®

10/53



Preview

complex 4-area power system:
large (n=208), few sensors (8),

nonlinear, noisy, stiff, input
constraints, & decentralized
control specifications

control objective: oscillation
damping \ without a model \

(grid has many owners, models are

proprietary, operation in flux, ...)

ontrol Signals

control

‘{ control

ke-collect data->}<«—— control ————}

Station 2 R
S I PgT;’""’, 06
; System 0.4
< Partitioning 518
T oot

e 16172

Pgy, Opa,
Loane
VSC-HVDC -

VSC-HVDC Tt
Station 1 . 0

= , , , , :
g8 ., seek a method that works
z ! reliably, can be efficiently
O o2 1 n g

= oo implemented, & certifiable
c .

S 0 s n T 0 > 20 — automating ourselves
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Reality check: black magic or hoax ?

surely, nobody would put apply such a shaky data-driven method
® on the world’s most complex engineered system (the electric grid),
® using the world’s biggest actuators (Gigawatt-sized HVDC links),

® and subject to real-time, safety, stability, constraints . ..right?

Dear Linbin and Florian,

| just submitted a very favourable review of your paper [..] which | believe could be of
importance to our work at Hitachi Power Grids. We do have [...] require off-line tuning that [...]

col Pgrid .. few days after AN adaptive approach would be very interesting.
sending our code
If 02 DeePC approach with our more detailed HVDC
sy oblem. Could so some code be made available
[... 0 ] her to do such a demonstration ? [...]
q
-02
It works! ... even
04 on an entirely
different model &
0 10 20 software platform
=

at least someone believes that our method is practically useful ... s



LTl system representations



R R,
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Behavioral view on dynamical systems

Definition: A discrete-time dynamical

system is a 3-tuple (Z>(, W, #) where

(i) Z>o is the discrete-time axis,

(i) W is the signal space, & % is the set of
all trajectories

(iiiy B C W#=0 is the behavior.

Definition: The dynamical system (Z>, W, &) is
(i) linear if W is a vector space & 4 is a subspace of WZ=o

(i) & time-invariant if # C 0%, where cw; = w¢41.

LTI system = shift-invariant subspace of trajectory space
— abstract perspective suited for data-driven control
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Properties of the LTI trajectory space

11111
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LTI systems & matrix time series

foundation of subspace system identification & signal recovery algorithms
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Fundamental Lemma

u(t)

—_— g
Uy us Q u7
* y

\" “, ¢ NSt

v ¥
s 116 Y2 o

lag ¢

d
Given: data (“g) € R™*tP & LTI complexity parameters
Yi order n

set of all T-length trajectories = (/: :) (m"j>
{ (u,y) € RMHPT ;. 3y e R sip. ——— colspan (”Z‘]“) <“"~’l:~‘>

¥ = Az + Bu,y=Cz+ Du } (ltll;,_l> <uf2>

parametric state-space model raw data (every column is an experiment)

if and only if the trajectory matrix has rank m - T +n forall T > ¢

20/53



set of all T-length trajectories
{ (u,y) € RHPT . 3 c RPT g, ——— colspan <;,;’j,) (ng> (u’;)

2t = Az + Bu, y = Czx + Du } (u%i.) (“‘;,2> <“ff>
Yr,3

all trajectories constructible from finitely many previous trajectories

¢ standing on the shoulders of giants: A mote on persstency of exciation
classic Willems’ result was only “if” & n C. Wil Palo Rapsard van Markovsky, Bart L M. De Moot
required further assumptions: Hankel, e i
persistency of excitation, controllability

¢ terminology fundamental is justified : motion primitives, subspace SysID,
dictionary learning, (E)DMD, ... all implicitly rely on this equivalence

® many recent extensions to other system classes (bi-linear, descriptor,
LPV, delay, Volterra series, Wiener-Hammerstein, ...), other matrix
data structures (mosaic Hankel, Page, ...), & other proof methods
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Input design for Fundamental Lemma

U Ug

Definition: The data signal u¢ € R™< of length T} is persistently

Ur -0 UTy—TH+1

exciting of order T if the Hankel matrix [ o ] is of full rank.

up - ur,

Input design [Willems et al, '05]: Controllable LTI system & persistently
exciting input u¢ of order T +n = rank (%ﬂ (;‘j )) =mT +n.
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Data matrix structures & preprocessing
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Bird’s view & today’s sample path
through the accelerating literature

stabilization of
nonlinear

systems
[Persis & Tesi, '21]

robust stability
& recursive
feasibility

[Berberich et al., '20]

(distributional)
robustness
[Coulson et al., 20,
Huang et al., '21]

non-control d
applications: inf at"t‘, it
- informativity
PE in linear e.g., estimation. - 4
systems filtering, & SysID data-driven |- [van Waarde et al., *20]
[Green & Moore, '86] control of linear >
systems
~ [Persis & Tesi, '19] [ ~]
S e LFT formulation
Sa [Berberich et al., '20]
subspace Fundamental explicit
intersection | _ 3, Lemma Wwilems, implicit
methods Rapisarda, &
[Moonen et al., '89] Markovsky '05] \ many recent
7 A variations &
pid / extensions /
-, / [van Waarde et al., '20]
? / L
/ regularizations | 5
/ deterministic & MPC scenario
/ data-driven [Coulson et al., *19]
/ I~
, control
; & Rapisarda, '08] generalized low-
b rank version —>
subspace [Markovsky
predictive & Dérler, *20]
control
[Favoreel et al., '99]

regularizer from
relaxed SysID
[Dérfler et al., 21]

A

instrumental

1980s

2005

today

>
>

variables
[Wingerden et al. "22]

subspace
methods
[Breschi, Chiuso, &
Formention '22]
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Output Model Predictive Control (MPC)

Tfuture

. 2 2 quadratic cost with
sfpignize D o = rillg + uelle R 0.Q %08 ref. r

subject to = icti
I St B iy TR
Tp41 = Az + Buy
yr = Cxp + Duy,
up € U
Y €Y }

model for estimation
} Vk € {=Thi—1,...,0} withk € [T —1,0] &
Tini > lag (many flavors)

Vk e {1,..., Tre} hard operational or
safety constraints

“IMPC] has perhaps too little system
theory and too much brute force [...], but
MPC is an area where all aspects of the
field [...] are in synergy.” — Willems ‘07

Elegance aside, for an LTI
plant, deterministic, & with
known model, MPC is the
gold standard of control.
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Data-enabled Predictive Control (DeePC)

Tfuture . .
L. Z ” . ”2 4 ||u ”2 quadratic cost with
R T 2 Y = Tkl kiR R>0,Q>0&ref. r
Uini non-parametric
subject to %p(uj) g = Yini model for prediction
& U and estimation
Y
up €U hard operational or
Y €Y } vk € {1, Thuwe} safety constraints

¢ real-time measurements (uinj, yini) for estimation  updated online

¢ trajectory matrix %(ﬁ,) from past collected offline
experimental data (could be adapted online)

— equivalent to MPC in deterministic LTI case ...
but needs to be robustified in case of noise/nonlinearity ! 27/53



Regularizations to make it work

Thure measurement noise
minimize |y — 7xllg + luxlz + Aylloll, + Agh(g) — infeasible yin estimate
¥ O — estimation slack o

— moving-horizon

. d least-square filter
subject to %(Zd> g =

(o RN IES I en)

noisy or nonlinear
(offline) data matrix

} Vk € {1,..., Ture} — any () feasible
— add regularizer h(g)

up €U
Yk €Y

Bayesian intuition: regularization < prior, e.g., h(g) = ||g|/: sparsely
selects {trajectory matrix columns} = {motion primitives} ~ low-order basis

Robustness intuition: regularization < robustifies, e.g., in a simple case
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regularization

0

incorporating priors
+ implicit SysID



Regularization = relaxing low-rank
approximation in pre-processing

minimize,, , , control cost (u, y)
bject ¢ Y=
subject to o = (y) g

where (Z) € argmin

O]

subject to rank (' (%)) = mL +n

J sequence of convex relaxations |

minimize,  , controlcost(u,y) + A, - |91
u d
bject t = ()
subject to Lj vl

(y-regularization = relaxation of low-rank
approximation & smoothened order selection

}
|

10°%¢
i realized closed-loop cost

optimal control

low-rank approximation




