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Thoughts on data in control systems
increasing role of data-centric methods
in science / engineering / industry due to
• methodological advances in statistics,

optimization, & machine learning (ML)
• unprecedented availability of brute force:

deluge of data & computational power
• . . . and frenzy surrounding big data & ML

Make up your own opinion, but ML works
too well to be ignored – also in control ?!?

“ One of the major developments in control
over the past decade – & one of the most

important moving forward – is the interaction
of ML & control systems. ” [CSS roadmap]
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Approaches to data-driven control
• indirect data-driven control via models:

data SysID−→ model + uncertainty → control

• growing trend: direct data-driven control
by-passing models . . . (again) hyped, why ?

The direct approach is viable alternative
• for some applications : model-based

approach is too complex to be useful
→ too complex models, environments, sensing
modalities, specifications (e.g., wind farm)

• due to (well-known) shortcomings of ID
→ too cumbersome, models not identified for
control, incompatible uncertainty estimates, ...

• when brute force data/compute available

data-driven

control

u2

u1 y1

y2

Central promise: It is often
easier to learn a control policy
from data rather than a model.

Example 1973: autotuned PID
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Abstraction reveals pros & cons
indirect (model-based) data-driven control

minimize control cost
(
u, x

)

subject to
(
u, x

)
satisfy state-space model

where x estimated from
(
u, y
)

& model

where model identified from
(
ud, yd

)
data

→ nested multi-level optimization problem

}
outer
optimization

}
middle opt.

}
inner opt.





separation &
certainty
equivalence
(→ LQG case)}
no separation
(→ ID-4-control)

direct (black-box) data-driven control

minimize control cost
(
u, y
)

subject to
(
u, y
)

consistent with
(
ud, yd

)
data

→ trade-offs
modular vs. end-2-end

suboptimal (?) vs. optimal
convex vs. non-convex (?)

Additionally: account for uncertainty (hard to propagate in indirect approach)
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Indirect (models) vs. direct (data)
• models are useful for

design & beyond

• modular→ easy
to debug & interpret

• id = noise filtering

• id = projection on
model class

• harder to propagate
uncertainty through id

• no robust separation
principle→ suboptimal

• . . .

?

x+ = f(x, u)

y = h(x, u)

y

u

• some models too
complex to be useful

• end-to-end→ suit-
able for non-experts

• design handles noise

• harder to inject side
info but no bias error

• transparent: no
unmodeled dynamics

• possibly optimal but
often less tractable

• . . .

lots of pros, cons, counterexamples, & no universal conclusions [discussion]
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A direct approach: dictionary + MPC
1© trajectory dictionary learning
• motion primitives / basis functions
• theory: Koopman & Liouville

practice: (E)DMD & particles

2© MPC optimizing over dictionary span

→ huge theory vs. practice gap
→ back to basics: impulse response

y4y2

y1 y3 y5

y6

y7

u1 = u2 = · · · = 0

u0 = 1

x0 =0

y0
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y4y2

y1 y3 y5

y6

y7

u1 = u2 = · · · = 0

u0 = 1

x0 =0

y0

Now what if we had the impulse response recorded in our data-library?
[
g0 g1 g2 . . .

]
=
[
yd0 yd1 yd2 . . .

]

−→ dynamic matrix control
(Shell, 1970s): predictive
control from raw data

yfuture(t) =
[
yd
0 yd

1 yd
2 . . .

]
·


ufuture(t)

ufuture(t− 1)
ufuture(t− 2)

...


today : arbitrary, finite, & corrupted data, . . . stochastic & nonlinear ?
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Today’s menu
1. behavioral system theory: fundamental lemma

2. DeePC : data-enabled predictive control

3. robustification via salient regularizations

4. cases studies from wind & power systems

blooming literature (2-3 ArXiv / week)

→ tutorial [link] to get started
• [link] to graduate school material
• [link] to survey
• [link] to related bachelor lecture
• [link] to related publications

DATA-DRIVEN CONTROL BASED ON BEHAVIORAL APPROACH:
FROM THEORY TO APPLICATIONS IN POWER SYSTEMS

Ivan Markovsky, Linbin Huang, and Florian Dörfler
I. Markovsky is with ICREA, Pg. Lluis Companys 23, Barcelona, and CIMNE, Gran Capitàn, Barcelona, Spain
(e-mail: imarkovsky@cimne.upc.edu),
L. Huang and F. Dörfler are with the Automatic Control Laboratory, ETH Zürich, 8092 Zürich, Switzerland (e-mails:
linhuang@ethz.ch, dorfler@ethz.ch).

Summary

Behavioral systems theory decouples the behavior of a
system from its representation. A key result is that, under

a persistency of excitation condition, the image of a Hankel
matrix constructed from the data equals the set of finite-
length trajectories of a linear time-variant system. This result
is the cornerstone of a recently emerged approach to direct
data-driven control. This self-contained tutorial reviews its
foundations and shows how they can be leveraged for data-
driven control. We present a generic data-driven interpola-
tion / approximation formulation encompassing many well
known problem instances, among others finite-horizon data-
driven control. We embed this problem formulation into a
predictive control setting, robustify it to inexact data by
means of regularizations, and apply the resulting methods in
the context of power electronics dominated power systems.

Physics aims to describe, classify, and predict natural phenom-
ena, while engineering aims to design new or modify existing
ones. A phenomenon is characterized by some observed vari-
ables. Three common problems control engineers solve are

» simulation: predict the variables in a new experiment,
» smoothing: remove measurement noise from observations

and infer hidden/latent variables, and
» control: modify the behavior of some variables by manip-

ulating other variables.
In order to solve them, prior knowledge about the phenomenon is
needed. This knowledge is usually given by a model, which is a
dynamical system that ideally has the same behavior as the real-
life phenomenon. The model may be obtained from physical laws
(first principles modeling), observed data (black-box modeling),
or a combination of physical laws and observed data (grey-box

modeling). Modeling using observed data, possibly incorporating
some prior knowledge from the physical laws (that is, black-box
and grey-box modeling) is called system identification.

System identification is generally applicable and mostly auto-
mated (user input may be needed for tuning hyper-parameters).
Modeling from first principles in contrast is domain specific and
laborious. Identification methods allow also for an accuracy–
complexity trade-off, so that simplified approximate models can
be obtained, while modeling from first principles delivers exact
models. Thus, system identification is often used for modeling
complex phenomena, for which models from first principles are
difficult or even impossible to obtain. The approximation aspect
of system identification, however, poses an important question:
“What is the best approximate model for design?” that is “What
is the best model for achieving our ultimate goals: simulation,
smoothing, and control?”. The question gives rise to new areas of
research, such as identification for control [1]–[3], dual control
[4]–[7], and control-regularized identification [8], [9].

Most design methods are model-based—they assume a given
model. Recently, an alternative paradigm, called data-driven,
emerged. Instead of a model, in the data-driven design paradigm,
the prior knowledge about the phenomenon is observed raw data.
The aim then is to achieve a direct map from the data to the
desired solution without identification of a model, see Figure 1.

Since ultimately both paths in Figure 1 from data to control
are based on data, the somewhat ambiguous term “data-driven”
has been used for both. Following [10], we adopt the terminology

data

model

control
model identification model-based design

direct data-driven design

FIGURE 1 The direct data-driven design paradigm aims to achieve
a map from data to result (simulated, smoothed, or control signal)
without identification of a model of the data-generating process.

1066-033X/20©2020IEEE JUNE 2022 « IEEE CONTROL SYSTEMS 1
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 https://imarkovs.github.io/tutorial.pdf
http://people.ee.ethz.ch/~floriand/docs/Slides/Dorfler_DTU_2023_Annotated_Handout.pdf
https://www.sciencedirect.com/science/article/pii/S1367578821000754
https://www.bsaver.io/teaching
http://people.ee.ethz.ch/~floriand/bib/Keyword/DATA-DRIVEN-CONTROL.html


Organization of this lecture
• I will teach the basics & provide pointers to more sophisticated

research material −→ study cutting-edge papers yourself

• it’s a school: so we will spend time on the board −→ take notes

• We teach this material also in the ETH Zürich bachelor & have
plenty of background material + implementation experience
−→ please reach out to me or Saverio if you need anything

• we will take a break after 90 minutes −→ coffee ,
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Preview
complex 4-area power system:
large (n=208), few sensors (8),
nonlinear, noisy, stiff, input
constraints, & decentralized
control specifications

control objective: oscillation
damping without a model
(grid has many owners, models are
proprietary, operation in flux, . . . )
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Reality check: black magic or hoax ?
surely, nobody would put apply such a shaky data-driven method
• on the world’s most complex engineered system (the electric grid),
• using the world’s biggest actuators (Gigawatt-sized HVDC links),
• and subject to real-time, safety, stability, constraints . . . right?
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at least someone believes that our method is practically useful . . .
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LTI system representations
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Behavioral view on dynamical systems
Definition: A discrete-time dynamical
system is a 3-tuple (Z≥0,W,B) where

(i) Z≥0 is the discrete-time axis,

(ii) W is the signal space, &

(iii) B ⊆ WZ≥0 is the behavior.





B is the set of
all trajectories

Definition: The dynamical system (Z≥0,W,B) is
(i) linear if W is a vector space & B is a subspace of WZ≥0

(ii) & time-invariant if B ⊆ σB, where σwt = wt+1.

LTI system = shift-invariant subspace of trajectory space

−→ abstract perspective suited for data-driven control

y

u
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Properties of the LTI trajectory space
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LTI systems & matrix time series
foundation of subspace system identification & signal recovery algorithms

u(t)

t

u4

u2

u1 u3

u5
u6

u7

y(t)

t

y4

y2

y1

y3

y5

y6

y7

(
u(t), y(t)

)
satisfy LTI

difference equation
b0ut+b1ut+1+. . .+bnut+n+

a0yt+a1yt+1+. . .+anyt+n = 0

(ARX / kernel representation)

⇐
under assumptions

⇒

[ 0 b0 a0 b1 a1 ... bn an 0 ] in left nullspace
of trajectory matrix (collected data)

H
(
ud

yd

)
=




(
ud1,1

yd1,1

) (
ud1,2

yd1,2

) (
ud1,3

yd1,3

)
...

(
ud2,1

yd2,1

) (
ud2,2

yd2,2

) (
ud2,3

yd2,3

)
...

...
...

...
...

(
udT,1

ydT,1

) (
udT,2

ydT,2

) (
udT,3

ydT,3

)
...




︸ ︷︷ ︸
1st experiment

︸ ︷︷ ︸
2nd

︸ ︷︷ ︸
3rd . . .
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Fundamental Lemma
u(t)

t

u4

u2

u1 u3

u5
u6

u7

y(t)

t

y4

y2

y1

y3

y5

y6

y7

Given: data
(
udi
ydi

)
∈ Rm+p & LTI complexity parameters

{
lag `
order n

set of all T -length trajectories =
{

(u, y) ∈ R(m+p)T : ∃x ∈ RnT s.t.

x+ = Ax + Bu , y = Cx + Du
}

︸ ︷︷ ︸ ︸ ︷︷ ︸
parametric state-space model raw data (every column is an experiment)

colspan




(
ud

1,1

yd
1,1

) (
ud

1,2

yd
1,2

) (
ud

1,3

yd
1,3

)
...

(
ud

2,1

yd
2,1

) (
ud

2,2

yd
2,2

) (
ud

2,3

yd
2,3

)
...

...
...

...
...

(
ud
T,1

yd
T,1

) (
ud
T,2

yd
T,2

) (
ud
T,3

yd
T,3

)
...




if and only if the trajectory matrix has rank m · T + n for all T > `
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set of all T -length trajectories =
{

(u, y) ∈ R(m+p)T : ∃x ∈ RnT s.t.

x+ = Ax + Bu , y = Cx + Du
}

︸ ︷︷ ︸ ︸ ︷︷ ︸
parametric state-space model non-parametric model from raw data

colspan




(
ud

1,1

yd
1,1

) (
ud

1,2

yd
1,2

) (
ud

1,3

yd
1,3

)
...

(
ud

2,1

yd
2,1

) (
ud

2,2

yd
2,2

) (
ud

2,3

yd
2,3

)
...

...
...

...
...

(
ud
T,1

yd
T,1

) (
ud
T,2

yd
T,2

) (
ud
T,3

yd
T,3

)
...




all trajectories constructible from finitely many previous trajectories

• standing on the shoulders of giants:
classic Willems’ result was only “if” &
required further assumptions: Hankel,
persistency of excitation, controllability

• terminology fundamental is justified : motion primitives, subspace SysID,
dictionary learning, (E)DMD, . . . all implicitly rely on this equivalence

• many recent extensions to other system classes (bi-linear, descriptor,
LPV, delay, Volterra series, Wiener-Hammerstein, . . . ), other matrix
data structures (mosaic Hankel, Page, . . . ), & other proof methods
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Input design for Fundamental Lemma
u(t)

t

u4

u2

u1 u3

u5
u6

u7

y(t)

t

y4

y2

y1

y3

y5

y6

y7

Definition: The data signal ud ∈ RmTd of length Td is persistently

exciting of order T if the Hankel matrix



u1 ··· uTd−T+1

...
. . .

...

uT ··· uTd


 is of full rank.

Input design [Willems et al, ’05]: Controllable LTI system & persistently
exciting input ud of order T + n =⇒ rank

(
H
(
ud

yd

))
= mT + n.
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Data matrix structures & preprocessing
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Bird’s view & today’s sample path
through the accelerating literature

Fundamental 
Lemma [Willems, 

Rapisarda, & 

Markovsky ’05]

subspace 
intersection 

methods 
[Moonen et al., ’89]

PE in linear 
systems 

[Green & Moore, ’86]

many recent 
variations & 
extensions

[van Waarde et al., ’20]

generalized low-
rank version 

[Markovsky 

& Dörfler, ’20]

deterministic 
data-driven  

control [Markovsky 

& Rapisarda, ’08]

data-driven 
control of linear 

systems 
[Persis & Tesi, ’19]

regularizations 
& MPC scenario

[Coulson et al., ’19]

data 
informativity

[van Waarde et al., ’20]

LFT formulation
[Berberich et al., ’20]

…

?

explicit

implicit

non-control 
applications: 

e.g., estimation. 
filtering, & SysID stabilization of 

nonlinear 
systems 

[Persis & Tesi, ’21]

…

robust stability 
& recursive 
feasibility 

[Berberich et al., ’20]

 (distributional) 
robustness 

[Coulson et al., ’20, 

Huang et al., ’21]

regularizer from 
relaxed SysID 
[Dörfler et al., ’21]

…
…

…

subspace 
predictive 

control 
[Favoreel et al., ’99]

subspace 
methods

[Breschi, Chiuso, & 

Formention ’22]

instrumental 
variables

[Wingerden et al., ’22]

1980s 2005 today
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Output Model Predictive Control (MPC)

minimize
u, x, y

Tfuture∑

k=1

‖yk − rk‖2Q + ‖uk‖2R

subject to xk+1 = Axk +Buk

yk = Cxk +Duk

}
∀k ∈ {1, . . . , Tfuture}

xk+1 = Axk +Buk

yk = Cxk +Duk

}
∀k ∈ {−Tini − 1, . . . , 0}

uk ∈ U
yk ∈ Y

}
∀k ∈ {1, . . . , Tfuture}

quadratic cost with
R � 0, Q � 0 & ref. r

model for prediction
with k ∈ [1, Tfuture]

model for estimation
with k ∈ [−Tini − 1, 0] &
Tini ≥ lag (many flavors)

hard operational or
safety constraints

“[MPC] has perhaps too little system
theory and too much brute force [. . . ], but
MPC is an area where all aspects of the
field [. . . ] are in synergy.” – Willems ’07

Elegance aside, for an LTI
plant, deterministic, & with
known model, MPC is the
gold standard of control.
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Data-enabled Predictive Control (DeePC)

minimize
g, u, y

Tfuture∑

k=1

‖yk − rk‖2Q + ‖uk‖2R

subject to H
(
ud

yd

)
· g =




uini
yini
u
y




uk ∈ U
yk ∈ Y

}
∀k ∈ {1, . . . , Tfuture}

quadratic cost with
R � 0, Q � 0 & ref. r

non-parametric
model for prediction
and estimation

hard operational or
safety constraints

• real-time measurements (uini, yini) for estimation

• trajectory matrix H
(
ud

yd

)
from past

experimental data

updated online

collected offline
(could be adapted online)

→ equivalent to MPC in deterministic LTI case . . .
but needs to be robustified in case of noise / nonlinearity ! 27/53



Regularizations to make it work

minimize
g, u, y, σ

Tfuture∑

k=1

‖yk − rk‖2Q + ‖uk‖2R + λy‖σ‖p + λgh(g)

subject to H
(
ud

yd

)
· g =




uini
yini
u
y


 +




0
σ
0
0




uk ∈ U
yk ∈ Y

}
∀k ∈ {1, . . . , Tfuture}

measurement noise
→ infeasible yini estimate
→ estimation slack σ
→ moving-horizon

least-square filter

noisy or nonlinear
(offline) data matrix
→ any (uy) feasible
→ add regularizer h(g)

Bayesian intuition: regularization ⇔ prior, e.g., h(g) = ‖g‖1 sparsely
selects {trajectory matrix columns} = {motion primitives} ∼ low-order basis

Robustness intuition: regularization ⇔ robustifies, e.g., in a simple case
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regularization
m

incorporating priors
+ implicit SysID



Regularization = relaxing low-rank
approximation in pre-processing

minimizeu,y,g control cost
(
u, y

)

subject to

[
u
y

]
= H

(
û
ŷ

)
g

where
(

û
ŷ

)
∈ argmin

∥∥∥
(

û
ŷ

)
−

(
ud

yd

)∥∥∥

subject to rank
(
H

(
û
ŷ

))
= mL + n

↓ sequence of convex relaxations ↓
minimizeu,y,g control cost

(
u, y

)
+ λg · ‖g‖1

subject to

[
u
y

]
= H

(
ud

yd

)
g

`1-regularization = relaxation of low-rank
approximation & smoothened order selection



 optimal control



 low-rank approximation

!
"#
$%
&
'"
#
#
(
)*
#
$+

realized closed-loop cost

λg
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